中国医科大学学报  2022, Vol. 51 Issue (1): 6-11

文章信息

崔兴, 徐龙进
CUI Xing, XU Longjin
干预microRNA-181a调控线粒体自噬促进骨髓瘤细胞凋亡的研究
Experimental study of anti-microRNA-181a induces apoptosis via mitophagy enhancing on multiple myeloma cells
中国医科大学学报, 2022, 51(1): 6-11
Journal of China Medical University, 2022, 51(1): 6-11

文章历史

收稿日期:2020-12-16
网络出版时间:2021-12-27 20:35
干预microRNA-181a调控线粒体自噬促进骨髓瘤细胞凋亡的研究
崔兴1 , 徐龙进2     
1. 山东中医药大学附属医院血液科, 济南 250011;
2. 山东省疾病预防控制中心, 济南 250011
摘要目的 探讨干预微RNA-181a(miR-181a)促进多发性骨髓瘤(MM)细胞凋亡的机制。方法 检测健康志愿者外周血、MM患者骨髓、MM细胞株MM1S中miR-181a的表达水平。分别转染miR-181a抑制剂、对照siRNA入MM1S细胞,回复实验进一步验证miR-181a功能。流式细胞术检测细胞凋亡率和线粒体膜电位,透射电镜观察线粒体超微结构及自噬泡,Western blotting检测cleaved-caspase-3、Bcl-2/Bax、LC3Ⅱ/LC3Ⅰ、P62、Parkin蛋白的表达。结果 MM患者骨髓和MM1S细胞株中,miR-181a相对表达水平显著升高(1.57±0.09和1.64±0.06,P < 0.05)。miRNA-181a抑制剂作用下,MM1S细胞的凋亡率及cleaved-caspase-3表达水平显著高于对照组及阴性对照组,电镜下自噬泡数目增加,线粒体结构毁坏严重,线粒体膜电位水平低下,Bcl-2/Bax、LC3Ⅱ/LC3Ⅰ表达水平显著升高,而P62表达水平显著降低。敲减Parkin的回复实验显示,miRNA-181a抑制剂对MM细胞的作用明显降低。结论 抑制miRNA-181a可增强Parkin表达,促进Parkin通路介导的线粒体自噬,从而促进MM细胞凋亡。
关键词多发性骨髓瘤    微RNA-181a    线粒体    自噬    凋亡    
Experimental study of anti-microRNA-181a induces apoptosis via mitophagy enhancing on multiple myeloma cells
CUI Xing1 , XU Longjin2     
1. Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China;
2. Shandong Center for Disease Control and Prevention, Jinan 250014, China
Abstract: Objective To investigate the role and possible molecular mechanism of anti-microRNA (miRNA) -181a in the regulation of mitophagy and apoptosis on multiple myeloma (MM) cells. Methods In the expression of miRNA-181a in human normal peripheral blood CD138+ cells, MM patients' bone marrow CD138+ cells and human myeloma cell lines MM1S were detected by fluorescence quantitative PCR. The miR-181a inhibitor (miR-181a inhibitor group) and a negative control (NC group) were transfected into MM1S cells. Mitochondrial membrane potential (MMP) was examined by flow cytometry while autophagy and mitochondrial structure were observed by transmission electron microscope. Western blotting was used to detect the expression of mitophagy related protein (cleaved-caspase-3, Bcl-2/Bax, LC3Ⅱ/LC3Ⅰ, P62, and Parkin) in three groups. Overexpression Parkin of miR-181a inhibitor group as rescue test and Western blotting was used to detect mitophagy related protein expression after overexpressing Parkin. Results The relative expression levels of miR-181a in MM patients' bone marrow and MM1S cell lines were 1.57±0.09 and 1.64±0.06, significantly higher than normal peripheral blood cells (P < 0.05). After transfection of miR-181a inhibitor, the apoptosis rate of miR-181a inhibitor group was significantly higher than the other two groups. The number of autophagic vesicles that decreased with badly damaged mitochondrial structure were also observed in miR-181a inhibitor group. In the miR-181a inhibitor group, relative expression of autophagy related protein cleaved-caspase-3, the ratio of Bcl-2/Bax and LC3Ⅱ/LC3Ⅰincreased significantly, P62 decreased remarkably (P < 0.01). After the Parkin expression was rescued, MM1S cells' viability recovered. Conclusion Anti-miRNA-181a could induce apoptosis on MM cells via enhancing the level of mitophagy.
Keywords: multiple myeloma    microrna-181a    mitochondria    autophagy    apoptosis    

微RNA(microRNA,miRNA)是真核细胞生物中广泛存在的RNA分子,通过与mRNA特异性结合,抑制相关基因的表达[1],其表达紊乱与肿瘤发病密切相关[2]。miRNA既可作为多发性骨髓瘤(multiple myeloma,MM)诊断和治疗的标志性因子[3],也可以通过干预增殖、自噬、凋亡等相关基因,影响MM的进程[4-5]。miR-181家族在人体内广泛存在,主要包括miR-181a、miR-181b、miR-181c及miR-181d [6]。在白血病细胞模型中,miR-181a以周期蛋白p27Kip 1为靶点,抑制细胞分化和细胞周期停滞[7]。miR-181a还能以ATG5为靶点,抑制血清饥饿诱导和雷帕霉素诱导的细胞自噬[8]。miR-181a表达降低可导致线粒体功能障碍,线粒体膜电位降低[9],并可以通过干预Parkin对线粒体自噬起调控作用[10]。本研究组在前期预实验中发现,干预MM细胞的线粒体自噬可以诱发其程序性死亡,本研究拟进一步探讨明确miR-181a对MM的干预作用。

1 材料与方法 1.1 材料

MM细胞株MM1S购自中国科学院细胞库,LipofectamineTM RNAiMAX及相关转染试剂购自美国Invitrogen公司;LC3 Ⅱ,LC3Ⅰ,Beclin-1,P62,cleaved-caspase-3,Bcl-2,Bax,Parkin单克隆抗体购自美国Affinity Biosciences公司;AnnexinV-FITC/PI凋亡流式检测试剂盒购自美国BD公司;miRNA的PCR引物、miRNA抑制剂(miRNA inhibitor)由北京Invitrogen公司合成。Parkin siRNA购自锐博生物公司。miRNA实时荧光定量聚合酶链反应(real-time fluorescence quantitative polymerase chain reaction,qRT-PCR)检测试剂盒All-in-One miRNA qRT-PCR购自美国GeneCopoeia公司,使用美国ABI公司的ABI 7500仪器进行qRT-PCR检测。

1.2 MM患者骨髓及细胞株中miR-181a表达水平的检测

抽取15例MM患者骨髓,作为MM组。抽取5例健康志愿者外周血,作为正常对照组。以上标本均使用免疫磁珠分选。所有样本的采集均获得患者知情同意及医院伦理委员会的批准。将MM细胞株设为MM1S组。根据操作说明书,TRIzol法提取2组细胞总RNA,逆转录获得cDNA。miR-181a引物序列为5’-TGTCAGGCAACCGTATTCACCGTGAGTGGTACT CAC-3’;Short-miR-181 a序列为5’-CGTCAGATGTCC GAGTAGAGGGGGAACGGCGAACATTCAACGCTGT CGGTGA-3’。按SYBR PrimeScript miRNA RT-PCR试剂盒(TaKaRa RR716)说明书配制反应体系,经过94 ℃预变性30 s;94 ℃变性5 s,60 ℃退火15 s,72 ℃延伸10 s,扩增45个循环。结果用比较阈值法定量分析,用2-△△Ct法计算。

1.3 细胞分组及检测

1.3.1 细胞分组及转染

培养人MM细胞株MM1S细胞并传代,将处于对数生长期细胞接种至6孔板,37 ℃、5%CO2培养箱培养。根据Lipofectamine®2000试剂盒说明书,分别用miR-181a inhibitor、对照siRNA转染细胞,设为miR-181a inhibitor组、miR-181a NC组。LV3-miR-181a inhibitor序列为5’-ACTCACCGACAG CGTTGAATGTT-3’。LV3-NC序列为5’-TTCTCCGA ACGTGTCACGT-3’。干扰Parkin以回复实验的操作为在转染miR-181a inhibitor后,培养10 h,使用Parkin siRNA转染细胞,设为Parkin组。各组转染后置于37 ℃、5%CO2培养箱中常规培养,12 h后更换新鲜培养基,继续培养48 h后检测。

1.3.2 CCK-8法检测细胞活性

各组细胞离心,用PBS洗涤,调整细胞密度为2×105/mL,将2×103个细胞接种于96孔板内培养24 h,分别在24、48和72 h时,加入10 μL CCK-8溶液,在37 ℃、5%CO2培养箱中再孵育2 h后上机检测,使用酶标仪在450 nm处检测吸光度,计算各组活性,实验重复3次。

1.3.3 流式细胞术检测细胞凋亡

根据AnnexinⅤ试剂盒说明书操作。各组细胞离心,PBS洗涤,调整细胞密度为1×106/mL,将2×105个细胞加入5 μL Anne- xinⅤ-EGFP混匀后,加入5 μL碘化丙啶,混匀。避光孵育10~15 min后,上机检测。统计Q4区数值,计算早期凋亡率,实验重复3次。

1.3.4 线粒体膜电位(mitochondrial membrane potential,MMP)检测

取2×105细胞置于0.5 mL细胞培养液中,加入0.5 mL JC-1染色液,37 ℃培养15 min,4 ℃离心4 min,洗涤,重悬细胞,上流式细胞仪检测,通过分析2个通道的比例(红色Q2/绿色Q4)判断MMP水平。

1.3.5 细胞内线粒体形态及自噬小体的透射电子显微镜(简称电镜)观测

各组取2×105个细胞离心沉淀,加入2.5%戊二醛溶液固定,经丙酮脱水、渗透、包埋固化、60~80 nm超薄切片、染色后,透射电镜下观察自噬泡。

1.3.6 miR-181a靶基因的生物信息学分析

通过Targetscan(http://www.targetscan.org/vert_71/)在线预测的miR-181a所有潜在靶基因,将其输入在线功能聚类软件David(http://david.abcc.ncifcrf.gov/)对所有基因功能分类,找到miR-181a的靶基因。

1.3.7 Western blotting检测自噬相关蛋白表达

各组细胞培养48 h后,收集5×105个细胞,提取总蛋白,蛋白定量,取40 μg蛋白行SDS-PAGE电泳,40 mA恒流条件下4 ℃转膜过夜。TBST洗膜,分别加入一抗4 ℃孵育过夜(LC3Ⅱ、LC3Ⅰ、P62、cleaved-caspase-3、Bcl-2/Bax和Parkin抗体),再与HRP标记的二抗作用,ECL发光,采用灰度扫描系统测定软件(美国National Institutes of Health)分析目的蛋白条带。

1.4 统计学分析

采用SPSS 19.0软件进行统计分析。计量资料以x±s表示,组间差异比较采用单因素方差分析,多重比较采用Tukey检验方法。P < 0.05为差异有统计学意义。

2 结果 2.1 各组miR-181a的表达情况

结果显示,MM组与MM1S组miR-181a表达水平无统计学差异(P = 0.14),且均较正常对照组显著升高(P < 0.001),见图 1

** P < 0.001. 图 1 3组miRNA-181a表达水平 Fig.1 The miRNA-181a mRNA expression levels in three groups

2.2 miR-181a inhibitor对MM1S细胞活性的影响

与对照组比较,转染miR-181a inhibitor后,MM1S细胞的活性在48 h时受到显著抑制(P = 0.008),见图 2A。提示miR-181a对维持MM细胞活性具有重要意义。

A, the viability of four groups at the 24th, 48th, and 72nd hour, respectively; B, the apoptosis level of four groups at the 48th hour; C, the flow cytometry scatter plot of apoptosis level of miR-181a inhibitor group at the 48th hour; D, the mitochondrial membrane potential level of four groups at the 48th hour; E, the flow cytometry scatter plot of mitochondrial membrane potential level of miR-181a inhibitor group at the 48th hour. * P < 0.01, compared with the normal control group and the negative control group. 图 2 各组细胞活性、凋亡水平及线粒体膜电位水平检测结果 Fig.2 The viability, apoptosis level, and mitochondrial membrane potential level test results

2.3 miR-181a对MMP的影响

应用JC-1荧光探针测定各组MMP,以观察线粒体途径早期细胞凋亡情况。结果表明,miR-181a inhibitor组MMP的水平(0.43±0.03)显著低于空白对照组(2.21±0.07)和miR-181a NC组(2.07±0.12)(P < 0.01),见图 2D。说明抑制miR-181a可以促进MM1S细胞的线粒体途径凋亡。

2.4 miR-181a靶基因的生物信息学分析

通过Targetscan在线预测及在线功能聚类软件David对所有基因功能分类,发现miR-181a的靶基因为Parkin,见图 3A

A, the target gene of miR-181a is Parkin; B and C, the mitophagy proteins level test; D and E, the TEM picture of control group and miR-181a inhibitor group(×16 500). * P < 0.01, compared with the normal control group and negative control group. Con, control group. 图 3 各组细胞线粒体自噬相关蛋白水平及电镜检测结果 Fig.3 The mitophagy proteins level and TEM test results

2.5 miR-181a干预Parkin介导的线粒体自噬

Western blotting结果显示,与对照组比较,miR-181a inhibitor组cleaved-caspase-3表达上调(P < 0.001),提示该组细胞凋亡水平高;Bcl-2/Bax水平显著降低(P < 0.001),提示为线粒体途径凋亡;与对照组比较,miR-181a inhibitor组的自噬标志物LC3Ⅱ/LC3Ⅰ水平上调(P < 0.001),P62水平显著下降(P = 0.001),提示转染组自噬水平显著升高;miR-181a inhibitor组Parkin表达水平高于对照组(P < 0.001),Parkin siRNA组回复后表达水平与对照组差异显著(P = 0.003),提示抑制miR-181a的表达后,MM1S细胞线粒体自噬水平升高,见图 3B3C

2.6 电镜下观察自噬泡和线粒体结构

透射电镜下,对照组未见到明显自噬泡,线粒体的大小和形状基本正常,见图 3D。而miR-181a inhibitor组可以观察到线粒体结构破坏、嵴消失、正常线粒体数量减少,自噬泡增多,证明miR-181a可以抑制自噬,降低正常线粒体水平及功能,诱发细胞凋亡。见图 3E

2.7 Parkin基因敲减对自噬与凋亡的影响

敲减Parkin以进行回复实验,结果显示,Parkin组细胞活性、凋亡水平(图 2A2B)、MMP水平(图 2D)、Bcl-2/Bax水平及线粒体自噬相关标志物水平(图 3B)与对照组相仿,与miR-181a inhibitor组差异显著(P < 0.001)。提示抑制miR-181a后,MM1S线粒体自噬水平升高,而凋亡经由Parkin通路诱发。

3 讨论

miRNA对正常细胞及包括MM在内的多种肿瘤细胞自噬的调控涉及多个环节,包括起始、成核、成熟等[11-14]。自噬可通过抑制内质网应激防止生成错误折叠蛋白,促进MM细胞的增殖;子叶烯A和长春新碱能通过干预MM细胞自噬而抑制其自我更新[15-16]。线粒体是关乎所有细胞生命活动极其重要的细胞器,因此线粒体自噬维持线粒体的质量与数量对细胞稳态至关重要。而线粒体自噬异常、mTOR和ERK1/2磷酸化水平增高与MM自我更新及硼替佐米耐药有关[17]。目前已知线粒体自噬的调控方式主要有2种,一种是Parkin依赖性的,即Parkin与线粒体外膜蛋白PINK1介导的线粒体自噬[18],另一种是非Parkin依赖性的,如Nix介导的线粒体自噬[19]。Parkin对底物泛素化具有重要意义,能够触发选择性线粒体自噬[20],因此Parkin水平能在一定程度上反映线粒体自噬程度。而作为调控Parkin水平的miRNA,pre-miR-181a参与了包括肺癌[21]和急、慢性白血病[22-23]在内的多种肿瘤细胞线粒体内在途径,包括Bax寡聚化,MMP降低及凋亡蛋白caspase-9和caspase-3的水解;miR-181a也可直接调控某些靶基因的转录水平,并在疾病的发生发展中发挥重要作用[24]。研究[25]发现,miR-181a可通过下调人神经母细胞瘤SH-SYSY细胞E3泛素链接蛋白Parkin的表达,抑制线粒体自噬,并能提高线粒体解偶联剂诱导细胞凋亡的程度,进一步证实了miR-181a的靶基因及其具体作用机制。

既往研究[26]证实,MM患者骨髓、外周血单个核细胞中miR-181a水平较正常人显著升高;在意义未明单克隆免疫球蛋白血症患者中,该miR-181a水平也可见升高[10],且与疾病的程度呈正相关,D-S分期Ⅲ患者水平明显高于Ⅰ+Ⅱ期患者[27]。研究[27-29]证实,miR-181a可通过干预包括NOVA1、HOXA1等多种基因影响MM细胞的增殖;动物体内实验证实,敲除miR-181a后,MM瘤负荷明显降低[30],以上结果均证实了miR-181a与MM发病的相关性。但目前少见关于miR-181a在MM细胞线粒体自噬中的研究。

本研究结果表明,在MM患者的骨髓及MM1S细胞株中,miR-181a表达水平均高于正常人,与其他研究[27-28]结果一致。MM1S细胞株转染miR-181a inhibitor后,细胞活性明显下降。考虑到miR-181a是线粒体自噬抑制剂,因此进行了线粒体相关检测,结果发现,在miR-181a inhibitor作用下,MM1S细胞的MMP下降,而cleaved-caspase-3水平升高,Bcl-2/Bax水平明显降低。Bcl-2与Bax属于同一个家族,通过控制线粒体膜的通透性,调节凋亡激活物的释放,影响细胞的状态,Bcl-2表达水平升高和(或)Bax表达水平降低表示细胞对凋亡的抵抗性增强。本研究结果发现,抑制miR-181a后,Bcl-2水平下降明显,而Bax水平变化不显著,提示miR-181a inhibitor诱发了MM细胞的线粒体途径凋亡。进一步检测线粒体自噬指标发现,miR-181a inhibitor作用下,P62蛋白表达水平降低,LC3Ⅱ/ LC3Ⅰ比值升高,且电镜证实细胞内自噬小体增加,而miR-181a的靶基因Parkin表达水平升高,提示抑制miR-181a可以通过调控Parkin通路干预线粒体自噬,从而促进MM细胞的凋亡。回复实验结果进一步显示,敲减Parkin后,miR-181a inhibitor降解靶基因Parkin的作用减弱,从而促进线粒体自噬及MM细胞凋亡。

综上所述,本研究发现抑制miRNA-181a可增强Parkin表达,促进其通路介导的线粒体自噬,从而促进MM细胞的凋亡。

参考文献
[1]
BARTEL DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. DOI:10.1016/s0092-8674(04)00045-5
[2]
CHEN Y, GAO DY, HUANG L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies[J]. Adv Drug Deliv Rev, 2015, 81: 128-141. DOI:10.1016/j.addr.2014.05.009
[3]
KUBICZKOVA L, KRYUKOV F, SLABY O, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance[J]. Haematologica, 2014, 99(3): 511-518. DOI:10.3324/haematol.2013.093500
[4]
PICHIORRI F, SUH SS, ROCCI A, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development[J]. Cancer Cell, 2016, 30(2): 349-351. DOI:10.1016/j.ccell.2016.07.007
[5]
ABDI J, RASTGOO N, LI L, et al. Role of tumor suppressor p53 and microRNA interplay in multiple myeloma pathogenesis[J]. J Hematol Oncol, 2017, 10(1): 169. DOI:10.1186/s13045-017-0538-4
[6]
王瑾, 杨惠玲. 微小RNA与肿瘤[J]. 国际内科学杂志, 2007, 34(3): 131-134.
[7]
DUGGAL J, HARRISON JS, STUDZINSKI GP, et al. Involvement of microRNA181a in differentiation and cell cycle arrest induced by a plant-derived antioxidant carnosic acid and vitamin D analog doxercalciferol in human leukemia cells[J]. Microrna Shariqah United Arab Emir, 2012, 1(1): 26-33. DOI:10.2174/2211536611201010026
[8]
TEKIRDAG KA, KORKMAZ G, OZTURK DG, et al. MIR181A regulates starvation-and rapamycin-induced autophagy through targeting of ATG5[J]. Autophagy, 2013, 9(3): 374-385. DOI:10.4161/auto.23117
[9]
朱耀魁, 程妮, 张磊, 等. microRNA-181家族与疾病的相关性研究进展[J]. 暨南大学学报(自然科学与医学版), 2012, 33(6): 547-552. DOI:10.3969/j.issn.1000-9965.2012.06.001
[10]
CHENG M, LIU L, LAO Y, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis[J]. Oncotarget, 2016, 7(27): 42274-42287. DOI:10.18632/oncotarget.9786
[11]
MENGHINI R, CASAGRANDE V, MARINO A, et al. MiR-216a: a link between endothelial dysfunction and autophagy[J]. Cell Death Dis, 2014, 5: e1029. DOI:10.1038/cddis.2013.556
[12]
MA K, ZHANG H, WEI G, et al. Identification of key genes, pathways, and miRNA/mRNA regulatory networks of CUMS-induced depression in nucleus accumbens by integrated bioinformatics analysis[J]. Neuropsychiatr Dis Treat, 2019, 15: 685-700. DOI:10.2147/ndt.s200264
[13]
LIU ZB, HUA YZ, LIU C, et al. miRNa-494 inhibits apoptosis and promotes autophagy of acute myeloid leukemia cells by downregulating FGFR2[J]. Minerva Endocrinol, 2019, 44(4): 410-413. DOI:10.23736/S0391-1977.19.03062-1
[14]
尚晋, 陈志忠, 王志红, 等. miRNA-132、miRNA-125b、miRNA-143和miRNA-145表达对多发性骨髓瘤细胞自噬及凋亡的影响[J]. 中国实验血液学杂志, 2018, 26(6): 1688-1694. DOI:10.7534/j.issn.1009-2137.2018.06.018
[15]
HOANG B, BENAVIDES A, SHI Y, et al. Effect of autophagy on multiple myeloma cell viability[J]. Mol Cancer Ther, 2009, 8(7): 1974-1984. DOI:10.1158/1535-7163.mct-08-1177
[16]
GOCKE CB, MCMILLAN R, WANG Q, et al. IQGAP1 scaffold-MAP kinase interactions enhance multiple myeloma clonogenic growth and self-renewal[J]. Mol Cancer Ther, 2016, 15(11): 2733-2739. DOI:10.1158/1535-7163.mct-16-0323
[17]
ZHENG Z, FAN S, ZHENG J, et al. Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma[J]. J Hematol Oncol, 2018, 11(1): 29. DOI:10.1186/s13045-018-0575-7
[18]
SPRINGER MZ, MACLEOD KF. In brief: mitophagy: mechanisms and role in human disease[J]. J Pathol, 2016, 240(3): 253-255. DOI:10.1002/path.4774
[19]
ZHANG W, MA Q, SIRAJ S, et al. Nix-mediated mitophagy regulates platelet activation and life span[J]. Blood Adv, 2019, 3(15): 2342-2354. DOI:10.1182/bloodadvances.2019032334
[20]
BOWLING JL, SKOLFIELD MC, RILEY WA, et al. Temporal integration of mitochondrial stress signals by the PINK1:parkin pathway[J]. BMC Mol Cell Biol, 2019, 20(1): 33. DOI:10.1186/s12860-019-0220-5
[21]
GALLUZZI L, MORSELLI E, VITALE I, et al. miR-181a and miR-630 regulate cisplatin-induced cancer cell death[J]. Cancer Res, 2010, 70(5): 1793-1803. DOI:10.1158/0008-5472.can-09-3112
[22]
PEKARSKY Y, SANTANAM U, CIMMINO A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181[J]. Cancer Res, 2006, 66(24): 11590-11593. DOI:10.1158/0008-5472.can-06-3613
[23]
ZHUANG XX. Expression characteristics and prognosissignificance of miRNA-181a in acute myeloid leukemia with normal karyotype[J]. China Med Abstr Intern Med, 2017, 34(4): 231.
[24]
MARCUCCI G, RADMACHER MD, MAHARRY K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia[J]. N Engl J Med, 2008, 358(18): 1919-1928. DOI:10.1056/nejmoa074256
[25]
ROCCARO AM, SACCO A, THOMPSON B, et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma[J]. Blood, 2009, 113(26): 6669-6680. DOI:10.1182/blood-2009-01-198408
[26]
YYUSNITA, NORSIAH, ZAKIAH I, et al. MicroRNA (miRNA) expression profiling of peripheral blood samples in multiple myeloma patients using microarray[J]. Malays J Pathol, 2012, 34(2): 133-143.
[27]
YUAN RL, LIU N, YANG JY, et al. The expression and role of miR-181a in multiple myeloma[J]. Medicine, 2018, 97(35): e12081. DOI:10.1097/MD.0000000000012081
[28]
CHEN L, HU N, WANG C, et al. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression[J]. Cell Cycle, 2018, 17(3): 319-329. DOI:10.1080/15384101.2017.1407893
[29]
SHEN X, BAI H, ZHU H, et al. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate HOXA11 expression by sponging miR-181a in multiple myeloma[J]. Cell Physiol Biochem, 2018, 49(1): 87-100. DOI:10.1159/000492846
[30]
LIU N, YANG JY, YUAN RL, et al. Effects of miR-181a on the biological function of multiple myeloma[J]. Oncol Rep, 2019, 42(1): 291-300. DOI:10.3892/or.2019.7160