文章信息
- 马亚楠, 王宁宁, 孙明丽, 李亚虹, 胡嘉晋, 刘洋, 闻德亮
- MA Yanan, WANG Ningning, SUN Mingli, LI Yahong, HU Jiajin, LIU Yang, WEN Deliang
- 羟基酪醇对细颗粒物2.5暴露所致肥胖及胰岛素抵抗的保护作用
- Protective mechanism of hydroxytyrosol against PM2.5 exposure-induced obesity and insulin resistance
- 中国医科大学学报, 2021, 50(3): 258-261, 272
- Journal of China Medical University, 2021, 50(3): 258-261, 272
-
文章历史
- 收稿日期:2020-12-08
- 网络出版时间:2021-03-18 15:30
2. 中国医科大学健康科学研究院, 沈阳 110122;
3. 大连医科大学公共卫生学院营养与食品卫生学教研室, 辽宁 大连 116044;
4. 中国医科大学第二临床学院2017级, 沈阳 110122
2. Institute of Health Sciences, China Medical University, Shenyang 110122, China;
3. Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China;
4. The Class of 2017, The Second Clinical College of China Medical University, Shenyang 110122, China
目前,空气污染是全球公共卫生面临的一大问题,也是包括中国在内的许多发展中国家所面对的主要环境危害之一[1]。细颗粒物(particulate matter,PM)2.5是指大气中空气动力学直径≤2.5 µm的颗粒物。随着城市发展,PM2.5急剧增加[2]。PM2.5暴露与肥胖、高血糖等代谢性疾病相关。代谢综合征的发病率通常与肥胖和2型糖尿病的发病率的变化趋势相一致。2018年,全世界受到代谢综合征影响的人群超过10亿[3]。但目前PM2.5暴露引起代谢性疾病的具体机制尚不明确。肥胖是一种慢性氧化应激的状态[4],而氧化应激通常被认为是2型糖尿病发病的重要因素[5]。羟基酪醇(hydroxytyrosol,HT)是初榨橄榄油中的小分子多酚类物质,具有抗炎、抗氧化的作用,HT对肥胖、2型糖尿病和代谢综合征等疾病具有很好的防治作用。本文针对HT对PM2.5暴露所致的肥胖和胰岛素抵抗(insulin resistance,IR)的改善作用及其机制进行综述。
1 PM2.5暴露与肥胖及IR 1.1 PM2.5暴露与肥胖及IR有关的流行病学证据流行病学研究[6]表明,PM2.5暴露与肥胖及其相关并发症密切相关。基于FRAMINGHAM队列的多项研究[7]发现,PM2.5暴露和体质量指数过高、腹型肥胖及血糖紊乱相关。MAZIDI等[8]发现,PM2.5暴露与美国大陆人口的肥胖和2型糖尿病患病率均相关。ZHANG等[9]通过对全国中老年人群进行研究发现,空气污染会使老年人(特别是残疾老年人)的肥胖风险增加;同时,中国老年人肥胖风险的增加与暴露于PM2.5和PM10的持续时间显著相关。YANG等[10]分析了来自中国辽宁省33个社区的参与者的相关数据发现,暴露于PM2.5等空气颗粒物可能会影响葡萄糖稳态,从而使糖尿病的患病风险增加。年轻人和超重/肥胖人群更易受到空气污染的致糖尿病作用。虽然阴性结果发表比较少见,但有一项出生队列研究[11]认为PM2.5暴露与儿童超重/肥胖及血脂、腹型肥胖都无明显相关性,该结果可能是由于样本量较小所致。
1.2 PM2.5暴露引起肥胖及IR的可能机制 1.2.1 PM2.5参与核因子κB(nuclear transcription factor-κB,NF-κB)通路介导的氧化应激越来越多的研究[12-13]利用转基因小鼠揭示了氧化应激及其引起的炎症反应是PM2.5诱发肥胖和糖代谢紊乱的驱动因素。因此,目前认为PM2.5引起的脏器及全身氧化应激是启动肥胖和IR的早期事件之一,且炎症级联反应为其中介途径[14-15],而氧化应激和促炎反应是扰乱诸多糖脂代谢关键通路的启动因子。最近的证据显示,PM2.5对组织的氧化应激损伤可能由NF-κB通路介导[16-17]。同时,已有确凿证据表明,在营养过剩状态下,NF-κB活化及其下游细胞因子的产生在调节肝脏炎症和IR方面发挥着关键作用[18]。动物实验进一步发现,PM2.5也能通过氧化应激依赖的NF-κB活化介导小鼠IR的发生[19]。
1.2.2 PM2.5激活肺组织中活性氧(reactive oxygen species,ROS)研究[20]表明,PM2.5能激活肺组织中ROS生成。机体暴露于PM2.5后,可出现全身性氧化应激,但这些研究[21-22]往往只检测了反映机体氧化应激状态的某种单一氧化应激产物,如丙二醛(malondialdehyde,MDA)、8-羟基脱氧鸟苷(8-hydroxydeoxyguanosine,8-OHdG)或谷胱甘肽(glutathione,GSH)等。
1.2.3 PM2.5激活c-Jun氨基端激酶(c-Jun N-terminal kinase,JNK)通路介导的炎症反应动物研究[23]表明,PM2.5暴露可能通过内脏脂肪炎症浸润加剧内脏脂肪沉积和IR;还可能通过激活炎症通路引起肝脏脂肪变性、炎症和纤维化,导致胰岛素信号受阻和肝脏糖代谢受损[24]。PM2.5暴露后,小鼠肝糖原存储受损,葡萄糖耐量降低,产生IR。研究表明,暴露于PM2.5会激活通过JNK、Toll样受体4(Toll-like receptor 4,TLR4)介导的炎症反应途径,同时抑制胰岛素受体底物1(insulin receptor substrate 1,IRS1)介导的信号传导。此外,PM2.5暴露还能抑制肝脏中过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)γ和PPARα的表达。
1.2.4 PM2.5暴露引起肠道微生物群落紊乱将小鼠全身暴露在PM2.5的环境中,12个月后的粪便微生物群分析表明,葡萄糖稳态的异常与粪便细菌群落丰富度降低同时发生,而所有粪便真菌α多样性估计量均无显著变化。相关分析表明,细菌丰富度估计值与葡萄糖和胰岛素耐受性相关;中介分析显示,通过细菌群落丰富度估计值的改变,PM2.5暴露诱导的葡萄糖耐量显著下降[25]。
2 HT与肥胖及IR 2.1 HT与肥胖及IR的流行病学证据HT具有抗炎和调节糖脂代谢等有益作用,且对2型糖尿病和代谢综合征等疾病起保护作用,故近年来日益受到关注[26]。MATEOS等[27]通过随机双盲试验发现,食用富含橄榄果渣的饼干(含有HT 5.25 mg)的人群餐后氧化型低密度脂蛋白水平降低,说明HT在食物中具有一定的生物利用度。PEYROL等[28]研究发现,HT能改善胰岛素敏感性,并具有抗氧化和抑制炎症因子的作用。
2.2 HT对肥胖及IR的可能的作用机制 2.2.1 HT抑制NF-κB通路介导的氧化应激一项HT对炎症条件下的脂肪细胞基因和微小RNA(microRNA,miRNA)表达调节作用的研究发现,HT能抑制炎性巨噬细胞极化,并阻止NF-κB的活化和ROS的产生,还能显著抑制miR-34a-5p和miR-155-5p上调及let-7c-5p下调。miR-34a-5p能诱导脂肪组织中促炎性巨噬细胞的活化,并与肥胖和糖尿病有关,miR-155-5p则能够促进脂肪细胞功能障碍和炎症,let-7c-5p可在3T3-L1细胞中发挥抗脂肪形成作用。HT可通过减少氧化应激和抑制NF-κB通路调节脂肪细胞基因表达谱,减少巨噬细胞募集,改善脂肪组织炎症,从而防止肥胖相关疾病的相关通路失控[29]。
2.2.2 HT调节JNK通路内质网是负责能量和营养管理的主要细胞器,在肥胖和相关的糖脂代谢疾病中可见内质网功能障碍。当内质网因蛋白错误折叠积累而受到压力时,未折叠蛋白反应(unfolded protein response,UPR)通过3个分支的典型传感器被激活,即PKR样内质网激酶(PKR-like endoplasmic reticulum kinase,PERK)、肌醇需要酶1(inositol-requiring enzyme 1,IRE1)和激活转录因子-6(activating transcription factor 6,ATF6),它们可与多种信号系统交叉。同时,UPR通过触发JNK和胰岛素受体信号的抑制,建立了一个潜在的炎症反应和异常的胰岛素作用之间的联系。研究[30]证实,HT可以通过对内质网应激和下游JNK通路的调节作用,改善肥胖小鼠的慢性炎症反应和IR。
2.2.3 HT通过抑制SREBP-1c/FAS通路减少高脂饮食(high fat diet,HFD)诱导的脂质沉积在肝脏和骨骼肌组织中,HT可以通过抑制SREBP-1c/FAS通路减少HFD诱导的脂质沉积,并可通过增强抗氧化物酶活性减轻HFD诱导的氧化应激[31]。连续灌胃HT 10周可以显著改善饮食诱导肥胖小鼠的葡萄糖稳态和慢性炎症,并减少肝脂肪变性。在分子水平上,HT可以纠正HFD诱导的胰岛素敏感组织中的内质网应激和IR。HT能抑制由HFD引起的与肝脂肪生成相关的基因SREBP1、ACC、FAS、SCD1的异常表达。
2.2.4 HT调节肠道菌群越来越多新的研究结果显示,HT对肥胖相关并发症的保护作用可能还得益于对肠道菌群的调节作用。研究发现,肾衰小鼠喂养8周后,肠道菌群发生改变,肠道屏障功能受损,血中内毒素释放增加,炎症因子(肿瘤坏死因子α、白细胞介素-1β、白细胞介素-6)表达增强,肝脏脂质蓄积,从而导致肥胖,并可通过JNK/IRs(Ser307)途径加重IR。对肾衰小鼠灌胃HT则可以逆转这些效应,且HT的有益作用可以通过粪便微生物区系移植来转移。研究[32]结果显示,HT可通过改变肠道菌群的组成和保护肠壁的完整性来改善肥胖和IR,还能改善PM2.5暴露引起的小鼠肠道菌群失调[19]。
3 HT对PM2.5暴露所致肥胖及IR的可能的作用机制 3.1 HT可能抑制PM2.5诱导的抑制NF-κB通路介导的氧化应激,清除PM2.5激活的ROS氧化应激已被公认为是PM2.5导致心脏代谢风险的主要启动途径[33-34],PM2.5能激活全身脏器组织中ROS生成。PM2.5暴露可使HepG2细胞内GSH耗竭减少,MDA增加,并呈剂量依赖性,胰岛素刺激的葡萄糖摄取量也呈剂量依赖性下降。HT的化学结构决定了它具有与氢捐赠相关的强大抗氧化作用[35]。既往的体外研究[36-38]和饮食诱导肥胖小鼠实验研究[31]结果表明,HT可以通过清除过氧化产物和增强抗氧化活性来纠正氧化还原失衡,从而改善有毒物质或HFD暴露所致的肥胖及IR。
3.2 HT可能改善PM2.5引起的微生物群落紊乱,调节肥胖相关代谢紊乱膳食多酚对机体的代谢益处在很大程度上取决于其生物利用度,但HT的生物利用度较低,其血浆浓度范围在纳摩尔水平[28],因此,HT在被吸收前可能直接在胃肠道中发挥一定的生物活性。对肠道菌群的调节作用是HT最可能发挥的局部效应,HT可以通过改变肠道微生物区系的组成和保护肠壁的完整性来改善肥胖和IR。值得注意的是,最近的研究[25]表明,PM2.5可导致肠道微生态环境紊乱,从而引起糖脂代谢异常。因此,HT可能通过改善PM2.5引起的微生物群落紊乱而调节肥胖相关代谢紊乱。
总之,PM2.5空气污染是全球公共卫生的主要环境危害之一,其暴露与肥胖及IR联系密切,预防PM2.5所致慢性代谢性疾病的发生和进展也是营养预防工作的重点。HT作为具有强抗氧化作用的初榨橄榄油中的小分子多酚类物质,可对心血管疾病、2型糖尿病和代谢综合征等疾病发挥保护作用。然而,HT是否在生物吸收前在胃肠道中通过调节肠道微生物群落来调节PM2.5暴露所致氧化应激、肥胖和糖代谢紊乱,以及HT如何改善PM2.5暴露所致肥胖及IR作用的机制,这些关键性的科学问题还有待进一步研究和阐明。
| [1] |
RAJAGOPALAN S, AL-KINDI SG, BROOK RD. Air pollution and cardiovascular disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2018, 72(17): 2054-2070. DOI:10.1016/j.jacc.2018.07.099 |
| [2] |
LORELEI DE JESUS A, THOMPSON H, KNIBBS LD, et al. Long-term trends in PM2.5 mass and particle number concentrations in urban air: the impacts of mitigation measures and extreme events due to changing climates[J]. Environ Pollut, 2020, 263(Pt A): 114500. DOI:10.1016/j.envpol.2020.114500 |
| [3] |
SAKLAYEN MG. The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20(2): 12. DOI:10.1007/s11906-018-0812-z |
| [4] |
ABDALI D, SAMSON SE, GROVER AK. How effective are antioxidant supplements in obesity and diabetes?[J]. Med Princ Pract, 2015, 24(3): 201-215. DOI:10.1159/000375305 |
| [5] |
MARITIM AC, SANDERS RA, WATKINS JB. Diabetes, oxidative stress, and antioxidants: a review[J]. J Biochem Mol Toxicol, 2003, 17(1): 24-38. DOI:10.1002/jbt.10058 |
| [6] |
GARIAZZO C, CARLINO G, SILIBELLO C, et al. A multi-city air pollution population exposure study: combined use of chemical-transport and random-Forest models with dynamic population data[J]. Sci Total Environ, 2020, 724: 138102. DOI:10.1016/j.scitotenv.2020.138102 |
| [7] |
LI WY, DORANS KS, WILKER EH, et al. Ambient air pollution, adipokines, and glucose homeostasis: The Framingham Heart Study[J]. Environ Int, 2018, 111: 14-22. DOI:10.1016/j.envint.2017.11.010 |
| [8] |
MAZIDI M, SPEAKMAN JR. Ambient particulate air pollution (PM2.5) is associated with the ratio of type 2 diabetes to obesity[J]. Sci Rep, 2017, 7(1): 9144. DOI:10.1038/s41598-017-08287-1 |
| [9] |
ZHANG N, WANG L, ZHANG M, et al. Air quality and obesity at older ages in China: the role of duration, severity and pollutants[J]. PLoS One, 2019, 14(12): e0226279. DOI:10.1371/journal.pone.0226279 |
| [10] |
YANG BY, QIAN ZM, LI SS, et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study[J]. Lancet Planet Health, 2018, 2(2): e64-e73. DOI:10.1016/S2542-5196(18)30001-9 |
| [11] |
FIORAVANTI S, CESARONI G, BADALONI C, et al. Traffic-related air pollution and childhood obesity in an Italian birth cohort[J]. Environ Res, 2018, 160: 479-486. DOI:10.1016/j.envres.2017.10.003 |
| [12] |
XU ZB, XU XH, ZHONG MH, et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues[J]. Part Fibre Toxicol, 2011, 8: 20. DOI:10.1186/1743-8977-8-20 |
| [13] |
XU XH, YAVAR ZB, VERDIN M, et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox[J]. Arterioscler Thromb Vasc Biol, 2010, 30(12): 2518-2527. DOI:10.1161/ATVBAHA.110.215350 |
| [14] |
LIU CQ, XU XH, BAI YT, et al. Air pollution-mediated susceptibility to inflammation and insulin resistance: influence of CCR2 pathways in mice[J]. Environ Health Perspect, 2014, 122(1): 17-26. DOI:10.1289/ehp.1306841 |
| [15] |
AROOR AR, DEMARCO VG. Oxidative stress and obesity: the chicken or the egg?[J]. Diabetes, 2014, 63(7): 2216-2218. DOI:10.2337/db14-0424 |
| [16] |
HABERZETTL P, MCCRACKEN JP, BHATNAGAR A, et al. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis[J]. Am J Physiol Heart Circ Physiol, 2016, 310(11): H1423-H1423-38. DOI:10.1152/ajpheart.00369.2015 |
| [17] |
XU MX, ZHU YF, CHANG HF, et al. Nanoceria restrains PM2.5-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice[J]. Free Radic Biol Med, 2016, 99: 259-272. DOI:10.1016/j.freeradbiomed.2016.08.021 |
| [18] |
ARKAN MC, HEVENER AL, GRETEN FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance[J]. Nat Med, 2005, 11(2): 191-198. DOI:10.1038/nm1185 |
| [19] |
WANG NN, MA YN, LIU ZQ, et al. Hydroxytyrosol prevents PM2.5-induced adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a murine model[J]. Free Radic Biol Med, 2019, 141: 393-407. DOI:10.1016/j.freeradbiomed.2019.07.002 |
| [20] |
SQUADRITO GL, CUETO R, DELLINGER B, et al. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter[J]. Free Radic Biol Med, 2001, 31(9): 1132-1138. DOI:10.1016/s0891-5849(01)00703-1 |
| [21] |
ROMIEU I, GARCIA-ESTEBAN R, SUNYER J, et al. The effect of supplementation with Omega-3 polyunsaturated fatty acids on markers of oxidative stress in elderly exposed to PM (2.5)[J]. Environ Health Perspect, 2008, 116(9): 1237-1242. DOI:10.1289/ehp.10578 |
| [22] |
CHUANG KJ, CHAN CC, SU TC, et al. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults[J]. Am J Respir Crit Care Med, 2007, 176(4): 370-376. DOI:10.1164/rccm.200611-1627OC |
| [23] |
SUN QH, YUE PB, DEIULIIS JA, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity[J]. Circulation, 2009, 119(4): 538-546. DOI:10.1161/CIRCULATIONAHA.108.799015 |
| [24] |
ZHENG Z, XU XH, ZHANG XB, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model[J]. J Hepatol, 2013, 58(1): 148-154. DOI:10.1016/j.jhep.2012.08.009 |
| [25] |
WANG WJ, ZHOU J, CHEN MJ, et al. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model[J]. Part Fibre Toxicol, 2018, 15: 17. DOI:10.1186/s12989-018-0252-6 |
| [26] |
POUDYAL H, LEMONAKIS N, EFENTAKIS P, et al. Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation[J]. Pharmacol Res, 2017, 117: 32-45. DOI:10.1016/j.phrs.2016.12.002 |
| [27] |
MATEOS R, MARTÍNEZ-LÓPEZ S, ARÉVALO GB, et al. Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans[J]. Food Chem, 2016, 205: 248-256. DOI:10.1016/j.foodchem.2016.03.011 |
| [28] |
PEYROL J, RIVA C, AMIOT MJ. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders[J]. Nutrients, 2017, 9(3): 306. DOI:10.3390/nu9030306 |
| [29] |
SCODITTI E, CARPI S, MASSARO M, et al. Hydroxytyrosol modulates adipocyte gene and miRNA expression under inflammatory condition[J]. Nutrients, 2019, 11(10): 2493. DOI:10.3390/nu11102493 |
| [30] |
WANG NN, LIU Y, MA YN, et al. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice[J]. J Nutr Biochem, 2018, 57: 180-188. DOI:10.1016/j.jnutbio.2018.03.018 |
| [31] |
CAO K, XU J, ZOU X, et al. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice[J]. Free Radic Biol Med, 2014, 67: 396-407. DOI:10.1016/j.freeradbiomed.2013.11.029 |
| [32] |
LIU ZQ, WANG NN, MA YN, et al. Hydroxytyrosol improves obesity and insulin resistance by modulating gut microbiota in high-fat diet-induced obese mice[J]. Front Microbiol, 2019, 10: 390. DOI:10.3389/fmicb.2019.00390 |
| [33] |
KAMPFRATH T, MAISEYEU A, YING ZK, et al. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways[J]. Circ Res, 2011, 108(6): 716-726. DOI:10.1161/CIRCRESAHA.110.237560 |
| [34] |
武美琼. 煤烟型大气污染物诱导线粒体凋亡通路及纤维化分子机制研究[D]. 太原: 山西大学, 2019.
|
| [35] |
CICERALE S, LUCAS LJ, KEAST RS. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil[J]. Curr Opin Biotechnol, 2012, 23(2): 129-135. DOI:10.1016/j.copbio.2011.09.006 |
| [36] |
LIU ZB, SUN LJ, ZHU L, et al. Hydroxytyrosol protects retinal pigment epithelial cells from acrolein-induced oxidative stress and mitochondrial dysfunction[J]. J Neurochem, 2007, 103(6): 2690-2700. DOI:10.1111/j.1471-4159.2007.04954.x |
| [37] |
PENG SJ, ZHANG BX, YAO J, et al. Dual protection of hydroxytyrosol, an olive oil polyphenol, against oxidative damage in PC12 cells[J]. Food Funct, 2015, 6(6): 2091-2100. DOI:10.1039/c5fo00097a |
| [38] |
袁霄. 膳食丙烯酰胺暴露对神经系统的影响及黑果枸杞多酚的保护作用[D]. 银川: 宁夏医科大学, 2020.
|
2021, Vol. 50



