中国医科大学学报  2021, Vol. 50 Issue (3): 193-197

文章信息

张晓琳, 邵秀丽, 朱荣利, 张瑞佳, 郝丽英, 封瑞
ZHANG Xiaolin, SHAO Xiuli, ZHU Rongli, ZHANG Ruijia, HAO Liying, FENG Rui
基于长QT综合征的钙调蛋白突变体CaMD130G与心肌钠通道NaV1.5 IQ基序的结合作用
Binding between the calmodulin mutant CaMD130G and the cardiac sodium channel NaV1.5 IQ motif in the context of long QT syndrome
中国医科大学学报, 2021, 50(3): 193-197
Journal of China Medical University, 2021, 50(3): 193-197

文章历史

收稿日期:2020-06-30
网络出版时间:2021-03-18 12:28
基于长QT综合征的钙调蛋白突变体CaMD130G与心肌钠通道NaV1.5 IQ基序的结合作用
中国医科大学药学院药物毒理学教研室, 沈阳 110122
摘要目的 制备并纯化心肌NaV1.5通道IQ蛋白,探讨钙调蛋白(CaM)突变体CaMD130G与IQ基序的结合作用,为后续体外实验明确长QT综合征的发病机制奠定基础。方法 采用同源建模和蛋白对接的方法预测突变体CaMD130G与IQ蛋白的结合,利用基因重组技术将重组质粒pGEX-6P-1/GST-IQ转化至原核表达载体大肠杆菌中,并诱导表达该蛋白,通过超声破碎方法提取蛋白并使用GS-4B孵育纯化IQ蛋白,SDS-PAGE确认蛋白的制备效果,Pull-down assay方法检测CaMD130G与IQ蛋白的结合作用。结果 蛋白对接结果显示,CaM/CaMD130G和心肌NaV1.5通道IQ蛋白建模成功且具有结合的可能性。SDS-PAGE凝胶电泳结果显示,制备的心肌NaV1.5通道IQ蛋白浓度和纯度均较高,且与CaMD130G有很好的结合活性。结论 本研究成功制备出浓度和纯度较高的心肌NaV1.5通道的IQ蛋白,并探讨了CaMD130G与心肌NaV1.5通道IQ基序的结合作用。
关键词长QT综合征    钙调蛋白    突变体    心肌NaV1.5    
Binding between the calmodulin mutant CaMD130G and the cardiac sodium channel NaV1.5 IQ motif in the context of long QT syndrome
Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
Abstract: Objective To prepare and purify cardiac NaV1.5 channel IQ protein and preliminarily explore its binding to CaMD130G. This study provides a foundation for further in vitro studies to clarify the pathogenesis of long QT syndrome. Methods Homology modeling and protein docking were conducted to predict the binding between the mutant CaMD130G and IQ proteins. The recombinant plasmid PGEX-6P-1/GST-IQ was transfected into Escherichia coli and to induce protein expression. The protein was extracted via ultrasonication and purified using the GS-4B incubation method. SDS-PAGE was used to assess IQ protein quality. The binding between CaMD130G and IQ proteins was detected using pull-down assays. Results The protein docking results indicated that CaM/CaMD130G and NaV1.5 channel IQ proteins were successfully modeled and predicted to bind to each other. SDS-PAGE results showed that the prepared cardiac NaV1.5 channel IQ protein had high concentration and purity and could bind to CaMD130G. Conclusion In the present study, the cardiac NaV1.5 channel IQ protein is successfully isolated with high concentration and purity and is demonstrated to bind to CaMD130G.
Keywords: long QT syndrome    calmodulin    mutant    cardiac NaV1.5    

长QT综合征(long QT syndrome,LQTs)是一种心律失常综合征,心电图检查具有QT间期延长、T波或U波异常等表征,临床易产生恶性心律失常[1-2]。LQTs不仅患病率较高,猝死率也很高[3]。目前,研究[4-5]已经明确LQTs与某些离子通道有关,例如L型钙通道,钠通道和钾通道。此外,许多调节通道的蛋白也被证实与LQTs的发生相关,如钙调蛋白(calmodulin,CaM)[6-8]

心肌细胞上主要表达的钠通道为NaV1.5通道,由1个α亚基和1个或多个β亚基组成。心肌NaV1.5受细胞内CaM等多种细胞因子的调节[9-12]。CaM某些位点发生突变,导致NaV1.5的调节异常,最终可引发心脏疾病[13]。本课题组早期的研究已经成功制备出CaMD130G(第130位天冬氨酸突变为甘氨酸)突变体蛋白,但其在LQTs发病过程中与心肌NaV1.5通道的结合及调节作用仍然未知。

本研究拟采用同源建模和分子对接的方法对CaM、CaMD130G与心肌NaV1.5通道IQ基序对接,初步探索结合可能性。同时拟构建、表达、制备与纯化IQ蛋白,并初步探索其与CaMD130G的结合活性,为相关疾病的研究提供新思路。

1 材料与方法 1.1 材料

pGEX-6P-1/GST-IQ质粒由北京擎科新业生物技术有限公司合成;胰蛋白胨和酵母提取物购自美国Oxid公司;异丙基硫代-β-D半乳糖苷(isopropyl-beta-D-thiogalactopyranoside,IPTG)、二硫苏糖醇(dithiothreitol,DTT)、氨苄西林(ampicillin,Amp)、溶菌酶(lysozyme,Lys)以及N-月桂酰肌氨酸(N-lauroylsarcosine sodium,N-lau)均购自美国Sigma公司;Triton X-100和磷酸盐缓冲液(phosphate bufer,PBS)粉末购自北京Solarbio公司;Glutathione-Sepharose 4B beads(GS-4B beads)购自英国GE Healthcare公司。

1.2 同源建模与蛋白对接

获得心肌NaV1.5通道IQ基序和CaM及其突变体CaMD130G氨基酸序列(图 1),采用SWISS MODEL数据库进行同源建模与分子对接。通过PyMOL软件读取,修饰并分析对接结果。

A, cardiac NaV1.5 channel; B, CaMD130G. 图 1 心肌Nav1.5通道及CaMD130G的模式图 Fig.1 Schematic diagram of the cardiac NaV1.5 channel and CaMD130G

1.3 融合蛋白GST-IQ的制备

1.3.1 诱导与表达

将重组pGEX-6P-1/GST-IQ质粒转化入大肠杆菌感受态细胞并放于含有Amp的1×LB培养液中进行培养,在90 r/min、37 ℃水浴的条件中振荡培养12~16 h。当光密度(optical density,OD)600处于0.6~1.2时向培养基中加入IPTG(终浓度为1 mmol/L),37 ℃、110 r/min振荡4 h,以诱导重组蛋白的表达。

1.3.2 蛋白提取

收集诱导表达重组IQ蛋白的菌液,4 000 r/min离心10 min,收集沉淀。向其中加入PBS缓冲液重悬沉淀,依次加入20 mg/mL Lys(终浓度为0.1 mg/mL)、N-Lau(终浓度为1.5%)和1 mol/L DTT(终浓度为5 mmol/L)并混匀,于冰上静置30 min。然后于冰上超声破碎30 min,加入30%TritonX-100至1%混匀后再次静置30 min,此后得到的细菌裂解液放入4 ℃恒温离心机中15 000 g高速离心10 min,得到IQ蛋白粗提液。

1.4 Pull-down结合实验

在15 mL EP管中用PBS清洗GS-4B beads 3次(每次800 r/min,3 min离心),将提取的IQ蛋白加入到洗好的beads中,于4 ℃条件下过夜孵育。次日,用Tris buffer清洗3次,获得GST-IQ蛋白。在2 mL EP管中加入GST-IQ蛋白40 μL,再依次加入相应浓度的CaM/CaMD130G,使终浓度分别为2.1,3.5,7.0,10.0 μmol/L,然后向其中加入CaCl2至钙离子(Ca2+)终浓度为10 μmol/L,再加入Tris Buffer至300 μL,然后于4 ℃的条件中缓慢旋转孵育4 h。孵育后,清洗2遍。最后加入loading buffer,煮沸5 min,将获得的结合蛋白进行15% SDS-PAGE电泳。

2 结果 2.1 CaMD130G蛋白与心肌NaV1.5通道IQ的同源建模与蛋白对接

在SWISS-MODEL网站中对心肌NaV1.5通道的IQ蛋白、CaM及其突变体CaMD130G蛋白成功建模,其中IQ蛋白和CaM的模型与目标序列完全一致,同源性高达100%。而CaMD130G因为第130位点突变,只有1个氨基酸序列发生变化,所以模型同源性为99.45%。虽然CaMD130G在建模时空间结构与CaM一致,但其结合Ca2+的数量减少。本研究结果显示,正常CaM结合4个Ca2+,但突变体CaMD130G只结合3个Ca2+,在靠近C末端第130位氨基酸位点处丢失了1个Ca2+的结合。同时,研究发现无论是CaM还是CaMD130G在蛋白对接中都能与IQ蛋白对接上,预测CaMD130G可与心肌NaV1.5有结合活性。见图 2

A, CaM-IQ docking diagram; B, CaMD130G-IQ docking diagram; C, sequences of CaM, CaMD10130G, and IQ, 4ovn.1.A, CaM; 4ovn.1.B, IQ. 图 2 CaM/CaMD130G-IQ蛋白对接图 Fig.2 CaM/CaMD130G-IQ protein docking diagram

2.2 重组心肌NaV1.5通道IQ质粒和蛋白的制备

质粒载体pGEX-6P-1碱基长约4 900 bp,酶切位点BamHⅠ和XhoⅠ之间的碱基全长约20 bp,IQ的碱基序列大小为135 bp,经3’端和5’端双酶切并插入IQ基因后整个重组质粒pGEX-6P-1/IQ全长约5 015 bp。重组质粒EcoRⅤ和XhoⅠ双酶切后获得1个大分子量DNA(约为3 100 bp)和1个小分子量DNA(约为1 900 bp)。琼脂糖凝胶电泳(图 3A)结果显示,泳道1中约5 000 bp处的条带是重组质粒pGEX-6P-1/IQ的碱基大小。泳道2中3 100 bp和2 900 bp处均可看到明显的条带,质粒制备结果与理论值一致,证明心肌NaV1.5通道IQ质粒构建成功。将质粒转化入大肠杆菌,再由IPTG诱导IQ蛋白的表达,采用超声破碎法提取IQ蛋白并进行15% SDS-PAGE电泳,得到纯度和浓度较高的IQ蛋白片段,见图 3B

A, plasmid preparation; B, protein preparation.1, plasmid DNA; 2, plasmid digested by EcoR V/Xho I; M, DNA marker. 图 3 重组心肌NaV1.5通道IQ质粒与蛋白制备 Fig.3 Recombinant cardiac NaV1.5 channel IQ plasmid and protein

2.3 心肌NaV1.5通道IQ蛋白与CaMD130G结合作用的鉴定

Pull-down结合实验结果显示,在10.0 μmol/L Ca2+情况下,CaM和CaMD130G与心肌NaV1.5通道IQ蛋白均能结合,并且这种结合作用具有CaM和CaMD130G浓度依赖性,证明CaM和CaMD130G与心肌NaV1.5通道IQ蛋白具有很好的结合活性,见图 4

1, CaM 2.1 μmol/L; 2, CaMD130G 2.1 μmol/L; 3, CaM 3.5 μmol/L; 4, CaMD130G 3.5 μmol/L; 5, CaM 7.0 μmol/L; 6, CaMD130G 7.0 μmol/L; 7, CaM.10.0 μumol/L; 8, CaMD130G 10.0 pumol/L. 图 4 CaM及CaMD130G与GST-IQ结合的SDS-PAGE电泳图 Fig.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the binding between CaM/CaMD130G and GST-IQ

3 讨论

CaM作为一类胞内高度保守的Ca2+结合蛋白,不仅参与体内多种信号传导,在Ca2+依赖性的信号转导途径中更是起着至关重要的作用。Ca2+对CaM具有重要的调节作用,CaM对Ca2+具有依赖性,是动态多功能Ca2+传感器[14]。CaM有2个球型末端,每个末端含有2个Ca2+结构域,每个结构域能结合1个Ca2+,因此,每个CaM可以结合4个Ca2+。当CaM与Ca2+结合后自身构象发生改变,从而与目标蛋白结合,调控靶蛋白的活性使其发挥相应的生物学功能[15]。最近的研究[16-18]发现CaM基因的某些位点突变在多种心血管系统疾病中扮演着重要角色,严重威胁人类生命健康。

NaV1.5通道由SCN5A基因编码,结构复杂,是决定心肌细胞兴奋的关键因素,主要参与动作电位上升支形成和电冲动在心肌细胞间的传导。研究[10, 16, 19]报道,CaM主要与NaV1.5通道的IQ基序相互作用,从而对通道功能进行调节。CaM某些位点发生突变,破坏了NaV1.5失活状态的电压依赖性和稳定性,导致钠电流异常,引起LQTs等疾病,可导致心脏骤停甚至出现心源性猝死等不良事件。目前,与LQTs有关的CaM的多个突变位点已经被报道,如CaMD96V、CaME141G和CaMD130G等。有研究[20]证明CaME141G对心肌NaV1.5的调节的影响在LQTs中发挥重要作用。而对于CaMD130G与心肌NaV1.5的相互作用研究较少,探寻CaMD130G与心肌NaV1.5的结合作用对于研究LQTs等心脏疾病具有重要意义。本研究采用同源建模的方法对CaMD130G突变体进行建模,结果显示,CaMD130G模型可能因为第130位氨基酸突变导致结合的Ca2+减少了1个,此结果提示该位点的突变可能会影响CaMD130G的Ca2+依赖性,改变CaMD130G对Ca2+的亲和力,推测CaMD130G对心肌NaV1.5通道IQ基序的调节作用发生改变,最终可能导致LQTs等心脏疾病的发生。

以往研究[20]提示CaM与Ca2+结合特性的变化可能是CaM突变体引发LQTs的病理机制之一。本研究结果证明CaMD130G与心肌NaV1.5的IQ基序具有很好的结合活性,但是对其结合的Ca2+浓度依赖性和CaM浓度依赖性还不了解,需要进一步的实验明确其详细的结合模式,从而深入探讨LQTs发病可能的详细分子机制。本研究初步探索了CaMD130G与心肌NaV1.5的IQ的相互结合作用,为未来的深入研究奠定了坚实的基础,并为探讨LQTs的病理机制提供理论依据。

参考文献
[1]
SHAH SR, PARK K, ALWEIS R. Long QT syndrome: a comprehensive review of the literature and current evidence[J]. Curr Probl Cardiol, 2019, 44(3): 92-106. DOI:10.1016/j.cpcardiol.2018.04.002
[2]
ADAMOS G, IACOVIDOU N, XANTHOS T. Medical therapy for long QT syndrome[J]. Mini-Rev Med Chem, 2018, 18(6): 495-506. DOI:10.2174/1389557517666170707110000
[3]
GIUDICESSI JR, ACKERMAN MJ. Genotype-and phenotype-guided management of congenital long QT syndrome[J]. Curr Probl Cardiol, 2013, 38(10): 417-455. DOI:10.1016/j.cpcardiol.2013.08.001
[4]
BOHNEN MS, PENG G, ROBEY SH, et al. Molecular pathophysiology of congenital long QT syndrome[J]. Physiol Rev, 2017, 97(1): 89-134. DOI:10.1152/physrev.00008.2016
[5]
BOHANNON BM, CRUZ ADL, WU XA, et al. Polyunsaturated fatty acid analogues differentially affect cardiac NaV, CaV, and KV channels through unique mechanisms[J]. Elife, 2020, 9: e51453. DOI:10.7554/eLife.51453
[6]
PIPILAS DC, JOHNSON CN, WEBSTER G, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes[J]. Heart Rhythm, 2016, 13(10): 2012-2019. DOI:10.1016/j.hrthm.2016.06.038
[7]
REED GJ, BOCZEK NJ, ETHERIDGE SP, et al. CALM3 mutation associated with long QT syndrome[J]. Heart Rhythm, 2015, 12(2): 419-422. DOI:10.1016/j.hrthm.2014.10.035
[8]
CHAZIN WJ, JOHNSON CN. Calmodulin mutations associated with heart arrhythmia: a status report[J]. Int J Mol Sci, 2020, 21(4): 1418. DOI:10.3390/ijms21041418
[9]
PITT GS, LEE SY. Ca2+/CaM interaction with voltage-gated Na+ channels[J]. PNAS, 2019, 116(52): 26150-26151. DOI:10.1073/pnas.1909835116
[10]
BOCZEK NJ, GOMEZ-HURTADO N, YE D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G[J]. Circ Cardiovasc Genet, 2016, 9(2): 136-146. DOI:10.1161/circgenetics.115.001323
[11]
GARDILL BR, RIVERA-ACEVEDO RE, TUNG CC, et al. Crystal structures of Ca2+-calmodulin bound to NaV C-terminal regions suggest role for EF-hand domain in binding and inactivation[J]. Proc Natl Acad Sci USA, 2019, 116(22): 10763-10772. DOI:10.1073/pnas.1818618116
[12]
BALSE E, EICHEL C. The cardiac sodium channel and its protein partners[J]. Handb Exp Pharmacol, 2018, 246: 73-99. DOI:10.1007/164_2017_45
[13]
胡金柱, 洪葵. 心脏Nav1.5相互作用蛋白与心律失常[J]. 中华心血管病杂志, 2011, 39(7): 682-685. DOI:10.3760/cma.j.issn.0253-3758.2011.07.019
[14]
SHAIK NA, AWAN ZA, VERMA PK, et al. Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms[J]. J Cell Biochem, 2018, 119(10): 8233-8248. DOI:10.1002/jcb.26834
[15]
WANG KQ, HOLT C, LU J, et al. Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel[J]. PNAS, 2018, 115(45): E10556-E10565. DOI:10.1073/pnas.1808733115
[16]
CROTTI L, JOHNSON CN, GRAF E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants[J]. Circulation, 2013, 127(9): 1009-1017. DOI:10.1161/CIRCULATIONAHA.112.001216
[17]
JIMÉNEZ-JÁIMEZ J, PALOMINO DOZA J, ORTEGA Á, et al. Calmodulin 2 mutation N98S is associated with unexplained cardiac arrest in infants due to low clinical penetrance electrical disorders[J]. PLoS One, 2016, 11(4): e0153851. DOI:10.1371/journal.pone.0153851
[18]
LIMPITIKUL WB, DICK IE, JOSHI-MUKHERJEE R, et al. Calmodulin mutations associated with long QT syndrome prevent inactivation of cardiac L-type Ca2+ currents and promote proarrhythmic behavior in ventricular myocytes[J]. J Mol Cell Cardiol, 2014, 74: 115-124. DOI:10.1016/j.yjmcc.2014.04.022
[19]
SU JY, GAO QH, YU LF, et al. The LQT-associated calmodulin mutant E141G induces disturbed Ca2+-dependent binding and a flickering gating mode of the CaV1.2 channel[J]. Am J Physiol-Cell Physiol, 2020, 318(5): C991-C1004. DOI:10.1152/ajpcell.00019.2020
[20]
苏敬阳, 王蓉蓉, 袁媛, 等. CaM突变体质粒的构建、表达纯化及活性鉴定[J]. 中国医科大学学报, 2018, 47(2): 97-101. DOI:10.12007/j.issn.02584646.2018.02.001