文章信息
- 马元, 庄雪莹, 陈旭
- MA Yuan, ZHUANG Xueying, CHEN Xu
- 间充质干细胞外泌体调控血管生成机制的研究进展
- Advances in research regarding the mechanisms whereby mesenchymal stem cell-derived exosomes regulate angiogenesis
- 中国医科大学学报, 2021, 50(10): 944-947
- Journal of China Medical University, 2021, 50(10): 944-947
-
文章历史
- 收稿日期:2020-09-15
- 网络出版时间:2021-09-29 18:08
在受损组织的修复与再生过程中,血管网络能够为组织提供必要的氧气、营养物质、特定激素和生长因子等,并能清除代谢废物以满足局部代谢需求。间充质干细胞(mesenchymal stem cells,MSCs)是一类具有自我更新和多向分化潜能的多功能干细胞,主要通过旁分泌作用调控促血管生成因子和抗血管生成因子之间的平衡发挥作用[1],其中,MSCs来源的外泌体(exosomes derived from MSCs,MSC-Exo)是其旁分泌的重要物质之一。外泌体最早于1983年体外研究网织红细胞向成熟红细胞转化的过程中发现,直径为30~150 nm,在透射电镜下观察为脂质双分子层结构,通常呈杯状,是细胞间通讯过程中的重要物质,在细胞增殖、细胞迁移和细胞侵袭等多种生理和病理过程中扮演着重要角色[2]。本文就MSC-Exo促进血管生成机制的研究进展做一综述。
1 MSC-Exo通过细胞因子促进血管生成蛋白质组学分析发现,脂肪干细胞细胞外囊泡(extracellular vesicles derived from adipose mesenchymal stem cells,ADSC-EV)富含与血管生成有关的蛋白质,如血小板衍生生长因子-C、血管内皮生长因子(vascular endothelial growth factor,VEGF)和血管生成素样蛋白4等[3]。MSC-Exo可通过多种血管生成蛋白作用于内皮细胞,发挥促进血管生成的作用。
1.1 血小板衍生生长因子血小板衍生生长因子(platelet-derived growth factor,PDGF)家族由PDGF-A、PDGF-B、PDGF-C、PDGF-D组成,是多种间质细胞的强效有丝分裂原和趋化因子,在细胞生长、迁移、转化和血管生成中有重要作用[4]。蛋白激酶B(protein kinase B,pKB),又称Akt,其修饰的人脐带间充质干细胞来源的外泌体(exosomes derived from human umbilical cord mesenchymal stem cells,hucMSC-Exo)能够通过促进血管生成有效改善心肌功能,进一步分析发现,hucMSC-Exo中PDGF-D与其处理的大鼠心肌中PDGFR-β的表达水平均明显升高;在体外使用PDGF-D-siRNA转染hucMSC-Exo进行内皮细胞迁移和成管实验,EA.hy926细胞迁移和成管能力均降低,提示PDGF-D在hucMSC-Exo介导的血管生成中起重要作用[5]。
1.2 VEGFVEGF是具有高度特异性的促血管内皮细胞有丝分裂素,能直接作用于内皮细胞,促进其增殖和迁移,是血管生成过程中重要的调控因子[6]。在体外用MSC-Exo处理人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)后可见毛细血管网络形成,而应用抗VEGF抗体处理MSC-Exo后,外泌体诱导的HUVECs成管率降低,说明MSC-Exo的促血管生成机制部分由VEGF介导[7]。VEGF可激活HUVECs中的PKA信号通路上调内源性VEGF的表达。此外,在小鼠后肢缺血模型中,应用MSCs细胞外囊泡可以促进肢体的血管生成,并且通过激活内皮细胞中的VEGF受体发挥作用[8]。
1.3 其他细胞因子在小鼠皮瓣缺血再灌注模型中,脂肪干细胞来源的外泌体(exosomes derived from adipose mesenchymal stem cells,ADSC-Exo)中白细胞介素-6(interleukin-6,IL-6)通过信号转导与转录激活因子3(signal transducer and activator of transcription,STAT3)提高毛细血管密度,促进皮瓣的恢复[9]。另有研究[10]表明,MSCs中过表达低氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)能增加外泌体的分泌;HIF-1α可显著增强MSCs中Notch信号通路配体Jagged1的表达并将其包装入外泌体,通过改变Notch靶基因转录促进血管生成。
2 MSC-Exo通过微RNA(microRNA,miRNA)调节血管生成miRNA是目前在MSC-Exo中研究最为广泛的一类非编码RNA,可以从亲代细胞中“装载”至外泌体,进而调节受体细胞的功能和表型改变,是血管生成的重要调控因子。
有学者发现在大鼠心肌梗死动物模型中应用子宫内膜间充质干细胞(endometrium-derived MSCs,EnMSCs),治疗后的心肌组织微血管密度显著增高;分析外泌体miRNA谱发现,miR-21在EnMSCs组中选择性增加,可通过磷酸酶和张力蛋白同源物(gene of phosphate and tension homology deleted on chromsome ten,PTEN)/Akt途径促进血管生成,是EnMSCs治疗的潜在介质[11]。进一步分析发现,miR-21可能是通过PTEN/Akt增加促血管生成因子HIF-1α和VEGF的表达而发挥作用[12]。此外,在ADSC-Exo中,miR-125a,miR-423-5p,miR-181b已被证实具有血管生成的潜力[13-15]。其中,miR-125a可以靶向抑制Delta样配体4(Delta-like ligand 4,DLL4)的表达,促进内皮尖端细胞的形成来促进内皮细胞的血管生成[13];富含miR-423-5p的ADSC-Exo可以抑制内皮细胞中丝氨酸激酶抑制剂(suppressor of fused,Sufu)的mRNA和蛋白表达[14];过表达miR-181b的ADSC-Exo能促进氧葡萄糖剥夺后的脑微血管内皮细胞(brain microvascular endothelial cells,BMECs)的迁移和血管生成,ADSC-Exo处理的BMECs中TRPM7的mRNA和蛋白表达下降,同时HIF-1α和VEGF的表达量上调,而过表达TRPM7会逆转ADSC-Exo对BMECs的促血管生成能力[15]。
然而,MSC-Exo中的部分miRNA也可通过抑制血管生成而发挥对疾病的治疗作用。在胶原诱导关节炎小鼠模型中,MSC-Exo中的miR-150-5p可下调基质金属蛋白酶14和VEGF的表达抑制血管生成,减少对关节的损伤[16]。在小鼠口腔潜在恶性病变模型中,MSC-Exo中miR-18能减轻炎症反应,抑制细胞增殖和血管生成,诱导细胞凋亡[17]。另有研究[18]表明MSC-Exo中高表达miR-100,转移到乳腺癌细胞中miR-100通过调节mTOR/HIF-1α通路呈剂量依赖性地减少VEGF的表达,从而抑制血管生成和肿瘤生长。
3 MSC-Exo通过脂质成分促进血管生成外泌体的外膜主要含有鞘磷脂,胆固醇,磷脂酰胆碱,磷脂酰丝氨酸,磷脂酰乙醇胺,神经酰胺和甘油磷脂等,在外泌体结构稳定性方面发挥着重要作用[19]。
在亚油酸和油酸存在下培养的骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMMSCs)促进了血管生成介质IL-6、VEGF和一氧化氮(nitric oxide,NO)的分泌,表明脂肪酸可能影响BMMSCs分泌调节局部细胞对损伤反应的细胞因子和生长因子,从而提高BMMSCs对受损组织的治疗效果[20]。此外,当MSCs在脂质补充的培养物中获取外泌体时,伤口愈合实验表明细胞迁移率明显升高[21]。这些研究表明生物活性脂质在MSCs旁分泌中具有促进血管生成的重要作用。
4 增强MSC-Exo促血管生成性能的方法 4.1 低氧刺激低氧是组织损伤常见的一类病理过程。低氧刺激MSCs不仅会促进外泌体释放,还会使外泌体的成分发生变化[22]。研究[23]表明,在大鼠骨折模型中,经过低氧处理BMMSCs提取的外泌体显示出更佳的治疗效果,体外实验证实,低氧预刺激通过激活HIF-1α介导MSC-Exo中miR-126的产生,miR-126可转移至内皮细胞中,通过SPRED1/Ras/Erk通路发挥促血管生成作用。也有研究[24]表明低氧刺激下MSC-Exo中miR-126可靶向抑制内皮细胞中PTEN表达,诱导PI3K/Akt通路的激活,促进内皮细胞增殖和迁移。
4.2 NO刺激NO是一种自由气体,是机体的重要信使分子和生物活性物质。有研究[25]表明,MSCs移植治疗可通过增加NO的产生来诱导血管生成并增强内皮依赖性血管舒张。YAO等[26]发现,在NO存在的情况下,MSCs能显著提高促血管生成因子VEGF和基质细胞衍生因子-1α(stromal cel1 derived factor-1α,SDF-1α)的分泌;将合成的NO水凝胶与ADSCs共移植到心肌梗死小鼠中,梗死边缘区毛细血管密度明显提高,心脏功能得到改善。进一步研究[27]显示,NO处理的人胚胎MSCs中VEGF和miR-126显著提高,并能转移到外泌体中,促进内皮细胞VEGFR2和血管生成素-1的表达。
4.3 蓝光照射光源或某些药物刺激也能增强MSC-Exo促进血管生成的活性。YANG等[29]发现经蓝光照射的MSC-Exo使内皮细胞在基质胶中的成管能力显著增强;在烧伤小鼠皮肤模型中发现,蓝光照射MSC-Exo组中内皮细胞标记物CD31和α-SMA的表达量上调,其机制与miR-135b-5p和miR-499a-3p的表达水平升高有关。
此外,有学者用新生小鼠血清外泌体处理BMMSCs,提取其外泌体局部注射小鼠皮肤创面时,发现显著促进了皮肤创面的愈合,内皮细胞中磷酸化的Akt和一氧化氮合酶蛋白表达增加,表明其是通过参与了Akt介导的VEGF信号通路促进了血管生成[30]。
5 结论MSC-Exo可通过蛋白质、脂质和核酸等活性成分作用于内皮细胞,促进其增殖迁移和成管,从而调节血管生成过程。特定的条件如低氧和血管生长因子的刺激下,有利于释放更具血管生成潜力的外泌体。随着高通量测序和蛋白组学技术的不断成熟,MSC-Exo递送的各种分子在血管生成中的作用机制将更加明确,也将为缺血性疾病的治疗和组织修复与再生提供新策略。
[1] |
庄雪莹, 刘尧, 陈旭. 牙源性干细胞促进血管生成研究进展[J]. 中国实用口腔科杂志, 2019, 12(1): 50-53. DOI:10.19538/j.kq.2019.01.011 |
[2] |
HE CJ, ZHENG S, LUO Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1): 237-255. DOI:10.7150/thno.21945 |
[3] |
EIRIN A, ZHU XY, PURANIK AS, et al. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells[J]. Sci Rep, 2016, 6: 36120. DOI:10.1038/srep36120 |
[4] |
ZHANG J, ZHANG H, CHEN Y, et al. Platelet-derived growth factor D promotes the angiogenic capacity of endothelial progenitor cells[J]. Mol Med Rep, 2019, 19(1): 125-132. DOI:10.3892/mmr.2018.9692 |
[5] |
MA J, ZHAO Y, SUN L, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D[J]. Stem Cells Transl Med, 2017, 6(1): 51-59. DOI:10.5966/sctm.2016-0038 |
[6] |
SAHARINEN P, EKLUND L, PULKKI K, et al. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis[J]. Trends Mol Med, 2011, 17(7): 347-362. DOI:10.1016/j.molmed.2011.01.015 |
[7] |
BRAUN RK, CHETTY C, BALASUBRAMANIAM V, et al. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia[J]. Biochem Biophys Res Commun, 2018, 503(4): 2653-2658. DOI:10.1016/j.bbrc.2018.08.019 |
[8] |
GANGADARAN P, RAJENDRAN RL, LEE HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia[J]. J Control Release, 2017, 264: 112-126. DOI:10.1016/j.jconrel.2017.08.022 |
[9] |
PU CM, LIU CW, LIANG CJ, et al. Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via IL-6 expression[J]. J Invest Dermatol, 2017, 137(6): 1353-1362. DOI:10.1016/j.jid.2016.12.030 |
[10] |
GONZALEZ-KING H, GARCÍA NA, ONTORIA-OVIEDO I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J]. Stem Cells, 2017, 35(7): 1747-1759. DOI:10.1002/stem.2618 |
[11] |
WANG K, JIANG Z, WEBSTER KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21[J]. Stem Cells Transl Med, 2017, 6(1): 209-222. DOI:10.5966/sctm.2015-0386 |
[12] |
AN Y, ZHAO J, NIE F, et al. Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells[J]. Sci Rep, 2019, 9(1): 12861. DOI:10.1038/s41598-019-49339-y |
[13] |
LIANG XL, ZHANG LN, WANG SH, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129(11): 2182-2189. DOI:10.1242/jcs.170373 |
[14] |
XU F, XIANG Q, HUANG J, et al. Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu[J]. Stem Cell Res Ther, 2019, 10(1): 106. DOI:10.1186/s13287-019-1196-y |
[15] |
YANG YJ, CAI Y, ZHANG Y, et al. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in Vitro through microRNA-181b/TRPM7 axis[J]. J Mol Neurosci, 2018, 65(1): 74-83. DOI:10.1007/s12031-018-1071-9 |
[16] |
CHEN Z, WANG HQ, XIA Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF[J]. J Immunol, 2018, 201(8): 2472-2482. DOI:10.4049/jimmunol.1800304 |
[17] |
WANG L, YIN P, WANG J, et al. Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 2481-2491. DOI:10.1080/21691401.2019.1623232 |
[18] |
PAKRAVAN K, BABASHAH S, SADEGHIZADEH M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells[J]. Cell Oncol (Dordr), 2017, 40(5): 457-470. DOI:10.1007/s13402-017-0335-7 |
[19] |
SKOTLAND T, SANDVIG K, LLORENTE A. Lipids in exosomes: current knowledge and the way forward[J]. Prog Lipid Res, 2017, 66: 30-41. DOI:10.1016/j.plipres.2017.03.001 |
[20] |
SMITH AN, MUFFLEY LA, BELL AN, et al. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators[J]. J Cell Physiol, 2012, 227(9): 3225-3233. DOI:10.1002/jcp.24013 |
[21] |
CAVALLINI C, ZANNINI C, OLIVI E, et al. Restoring in vivo-like membrane lipidomics promotes exosome trophic behavior from human placental mesenchymal stromal/stem cells[J]. Cell Transplant, 2018, 27(1): 55-69. DOI:10.1177/0963689717723016 |
[22] |
LIU W, RONG Y, WANG J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1): 47. DOI:10.1186/s12974-020-1726-7 |
[23] |
LIU W, LI L, RONG Y, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater, 2020, 103: 196-212. DOI:10.1016/j.actbio.2019.12.020 |
[24] |
DING J, WANG X, CHEN B, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J]. Biomed Res Int, 2019, 2019: 9742765. DOI:10.1155/2019/9742765 |
[25] |
MIKAMI S, NAKASHIMA A, NAKAGAWA K, et al. Autologous bone-marrow mesenchymal stem cell implantation and endothelial function in a rabbit ischemic limb model[J]. PloS one, 2013, 8(7): e67739. DOI:10.1371/journal.pone.0067739 |
[26] |
YAO X, LIU Y, GAO J, et al. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction[J]. Biomaterials, 2015, 60: 130-140. DOI:10.1016/j.biomaterials.2015.04.046 |
[28] |
DU W, ZHANG K, ZHANG S, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer[J]. Biomaterials, 2017, 133: 70-81. DOI:10.1016/j.biomaterials.2017.04.030 |
[29] |
YANG K, LI D, WANG M, et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2019, 10(1): 358. DOI:10.1186/s13287-019-1472-x |
[30] |
LIANG B, LIANG JM, DING JN, et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway[J]. Stem Cell Res Ther, 2019, 10(1): 335. DOI:10.1186/s13287-019-1410-y |