中国医科大学学报  2020, Vol. 49 Issue (12): 1086-1090

文章信息

李爽, 张丽艳, 李雪建, 周义, 金戈
LI Shuang, ZHANG Liyan, LI Xuejian, ZHOU Yi, JIN Ge
β淀粉样蛋白诱导的阿尔茨海默病小鼠模型中BDNF通过上调TRPC3发挥神经保护作用
Brain-derived neurotrophic factor plays a neuroprotective role by up-regulating TRPC3 expression in a mouse model of amyloid β-protein-induced Alzheimer disease
中国医科大学学报, 2020, 49(12): 1086-1090
Journal of China Medical University, 2020, 49(12): 1086-1090

文章历史

收稿日期:2019-12-30
网络出版时间:2020-12-03 12:17
β淀粉样蛋白诱导的阿尔茨海默病小鼠模型中BDNF通过上调TRPC3发挥神经保护作用
李爽1 , 张丽艳1 , 李雪建1 , 周义1 , 金戈2     
1. 沈阳医学院基础医学院病理生理学教研室, 沈阳 110034;
2. 沈阳医学院基础医学院药理学教研室, 沈阳 110034
摘要目的 通过给予脑源性神经营养因子(BDNF)特异性受体酪氨酸激酶受体B(TrkB)激动剂7,8-二羟基黄酮(7,8-DHF)、经典瞬时受体电位通道蛋白3(TRPC3)激动剂二酰基甘油类似物(OAG)和抑制剂吡唑化合物(Pyr3),研究BDNF对阿尔茨海默病(AD)小鼠的神经保护作用以及BDNF与TRPC3的相互关系。方法 将费城癌症研究所小鼠随机分为对照组、AD组、AD+7,8-DHF组、AD+OAG组和AD+7,8-DHF+Pyr3组,每组16只。小鼠侧脑室注射β淀粉样蛋白(Aβ)1-42制备AD小鼠模型;Morris水迷宫实验评估小鼠的空间学习记忆能力;Western blotting检测海马突触相关蛋白(synapsin-Ⅰ、CaMKⅡ-α)和TRPC3蛋白的表达;ELISA检测海马Aβ1-42的沉积程度。结果 与AD组相比,AD+7,8-DHF组和AD+OAG组小鼠学习记忆能力增强,Aβ沉积减轻,synapsin-Ⅰ、CaMKⅡ-α和TRPC3蛋白的表达增加;与AD+7,8-DHF组相比,AD+7,8-DHF+Pyr3组上述指标变化趋势相反。结论 BDNF通过上调TRPC3蛋白表达减轻Aβ异常沉积,进而改善AD小鼠的神经突触和认知功能。
Brain-derived neurotrophic factor plays a neuroprotective role by up-regulating TRPC3 expression in a mouse model of amyloid β-protein-induced Alzheimer disease
1. Department of Pathophysiology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China;
2. Department of Pharmacology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
Abstract: Objective To study the neuroprotective effects of brain-derived neurotrophic factor (BDNF) in a mouse model of Alzheimer disease (AD) and the relationship between BDNF and canonical transient receptor potential channel 3 (TRPC3) through administration of tyrosine kinase receptor B agonist 7, 8-dihydroxyflavone (7, 8-DHF), TRPC3 agonist 1-oleoyl-2-acetyl-sn-glycerol (OAG), and TRPC3 inhibitor pyrazole compound (Pyr3). Methods Institute of Cancer Research mice were randomly divided into control, AD, AD + 7, 8-DHF, AD + OAG, and AD + 7, 8-DHF + Pyr3 groups (n=16 in each group). Amyloid β-protein (Aβ) 1-42 was injected into the lateral ventricle of mice to generate the AD mouse model. Morris water maze test was performed to evaluate spatial learning and memory abilities of mice. Western blotting was performed to detect the expression of synapse-related proteins (synapsin-Ⅰ and CaMKⅡ-α) and TRPC3 in the hippocampus. The deposition level of hippocampal Aβ1-42 was detected via ELISA. Results The mice in the AD + 7, 8-DHF and AD + OAG groups showed greater learning and memory capabilities, less Aβ deposition, and higher expression of synapsin-Ⅰ, CaMKⅡ-α, and TRPC3 proteins than those in the AD group. Compared with the AD + 7, 8-DHF group, the above-mentioned parameters in the AD + 7, 8-DHF + Pyr3 group showed opposite trends. Conclusion BDNF reduces the abnormal deposition of Aβ by upregulating the expression of TRPC3 protein, thereby increasing the expression of synaptic proteins and improving cognitive function of AD mice.

阿尔茨海默病(Alzheimer disease,AD)是一种以记忆力减退、认知功能障碍以及神经元受损为特征的神经退行性疾病,病理表现为老年斑、神经纤维缠结形成和突触功能障碍等[1]。AD发病机制复杂,在众多假说里,β淀粉样蛋白(amyloid β-protein,Aβ)异常沉积占主导地位[2-3]。最近有研究表明,在多种疾病模型中,脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)通过参与神经元成熟和突触重塑发挥神经营养作用[4-5]。在APP/PS1双转基因型AD小鼠中,大脑皮层和海马区BDNF的表达量低于野生型小鼠,并伴随着神经元凋亡和空间学习记忆能力减弱[6]。在本课题组的前期研究[7]中,Aβ诱导的AD大鼠模型BDNF表达下降,外源性给予BDNF后认知功能改善。这些数据表明,BDNF在AD模型中发挥神经营养作用,但其作用机制尚不清楚。经典瞬时受体电位通道(canonical transient receptor potential channel,TRPC)家族成员TRPC3在平滑肌、大脑和小脑组织高度表达。有研究[8]报道,在小鼠胚胎干细胞的分化过程中,TRPC3对神经元的存活、多能性和分化方面有重要作用。在癫痫大鼠海马神经元原代培养中,发现BDNF和TRPC3的表达增加,减轻了癫痫引起的细胞损伤和癫痫发作[9]。在心肌梗死大鼠模型中,BDNF/酪氨酸激酶受体B (tyrosine kinase receptor B,TrkB)通过调控TRPC3/6通道,减轻心肌缺血损伤,抑制心肌细胞凋亡[10]。这些数据表明,BDNF可能通过TRPC3通路发挥神经营养作用。本课题组的前期研究[7]表明,在Aβ诱导的AD大鼠模型中,外源性给予BDNF后TRPC3表达增加且认知功能改善,但BDNF与TRPC3的相互关系尚需进一步确定。本研究通过建立AD小鼠模型,内源性激活BDNF,上调、下调TRPC3的表达,观察小鼠的行为学和神经突触功能,明确BDNF是否通过TRPC3改善AD小鼠的认知功能。

1 材料与方法 1.1 材料

1.1.1 实验动物分组和处理

80只5周龄雄性费城癌症研究所小鼠(购自辽宁长生生物技术有限公司),体质量20~24 g,适应性喂养5 d,随机分为对照组、AD组、AD+TrkB受体激动剂7,8-二羟基黄酮(7,8-dihydroxyflavone,7,8-DHF)组(AD+7,8-DHF组)、AD+TRPC3激动剂二酰基甘油类似物(1-oleoyl-2-acetyl-sn-glycerol,OAG)组(AD+OAG组)和AD+7,8-DHF+TRPC3抑制剂吡唑化合物(pyrazole compound,Pyr3)组(AD+7,8-DHF+Pyr3组),每组16只。第6天对照组小鼠给予灭菌生理盐水侧脑室注射,其他4组小鼠给予Aβ1-42侧脑室注射,建立动物模型。待小鼠恢复体力后,AD+7,8-DHF组、AD+OAG组和AD+7,8-DHF+Pyr3组分别给予7,8-DHF (5 mg/kg)、OAG (0.6 mg/kg)、7,8-DHF (5 mg/kg)和Pyr3 (0.1 mg/kg)腹腔注射[11-13],每日给药1次,连续给药21 d后分离小鼠的海马组织和全脑。TrkB受体激动剂7,8-DHF用于内源性激活BDNF信号传导途径[14],TRPC3激动剂OAG和TRPC3抑制剂Pyr3分别用于上调和下调TRPC3的表达。

1.1.2 试剂

Aβ1-42和钙/钙调素依赖性蛋白激酶Ⅱ-α (calcium/calmodulin-dependent protein kinase Ⅱ-α,CaMKⅡ-α)兔单克隆抗体(英国Abcam公司);7,8-DHF (大连美伦生物);OAG和Pyr3 (美国Cayman公司);BCA蛋白浓度测定试剂盒和SDS-PAGE凝胶配制试剂盒(上海碧云天公司);TRPC3兔多克隆抗体(台湾Arigo公司);synapsin-Ⅰ兔单克隆抗体(美国Cell公司);β-actin小鼠单克隆抗体和辣根酶标记山羊抗兔IgG (中国Boster生物公司)。

1.2 方法

1.2.1 AD模型制备

将Aβ1-42溶于DMSO中,终浓度控制在0.3% (用无菌生理盐水稀释),然后在37 ℃温箱中孵育120 h。根据小鼠脑立体定位图谱(第2版)确定侧脑室注射位点为前囟后0.5 mm,中线向右旁开1.1 mm。用微量注射器缓慢注射Aβ1-42 3 μL,注射速度为0.6 μL/min,留针5 min。

1.2.2 Morris水迷宫实验

Morris水迷宫是评估小鼠空间学习和记忆的经典测试[15]。水迷宫实验(中国上海吉良软件技术有限公司)从造模后第16天开始,持续6 d。圆形水池中装满黑色墨水,平台固定在水池的第三象限,水位在平台上1 cm处,水温保持在(25±1) ℃。水迷宫实验包括定位航行实验(前5 d)和空间探索实验(第6天),分别测量小鼠的学习和记忆能力。前5 d,将小鼠面对水池壁于不同的象限放入水中,寻找隐藏的平台,每日3次。第6天,将平台移走,观察小鼠在1 min内的动作轨迹。

1.2.3 ELISA

使用ELISA试剂盒(台湾Arigo公司),利用酶标仪测量海马中Aβ1-42的浓度(n = 6)。Aβ1-42浓度(ng/mL) =样品浓度×稀释倍数。

1.2.4 Western blotting

海马组织中加入含磷酸酶抑制剂的RIPA裂解液吹打混匀后进行超声处理,处理完后冰上静置0.5 h,高速离心10 min。取少量上清液,采用BCA法测定蛋白浓度,剩余上清液加蛋白缓冲液进行100 ℃沸水浴变性。取30 μg变性后的蛋白溶液上样于5%SDS-聚丙烯凝胶中,室温下电泳2 h,4 ℃下用转膜仪(中国天能公司)将蛋白转移到硝酸纤维素膜1 h。将膜浸泡在含有5%脱脂牛奶的TBST中,摇床上室温封闭1.5 h,TBST漂洗3次,每次15 min。之后分别与TRPC3小鼠多克隆抗体(1:500)、synapsin-Ⅰ (1:2 000)、CaMKⅡ-α (1:10 000)和β-actin (1:1 500) 4 ℃孵育过夜。第2天,TBST漂洗3次,4 ℃摇床上与辣根过氧化酶标记的山羊抗小鼠IgG (1:5 000)孵育2 h,TBST漂洗3次。最后,用化学发光成像系统(中国天能公司)进行ECL显影并用Image J软件进行条带灰度的定量分析。

1.3 统计学分析

采用Graphpad Prism 7.0软件进行统计学处理,数据以x±s表示,组间比较采用单因素方差分析,P < 0.05为差异有统计学意义。

2 结果 2.1 激活BDNF和TRPC3对AD小鼠空间学习记忆能力的改善作用

水迷宫实验结果显示,与对照组小鼠相比,AD组小鼠第5天逃避潜伏期延长(P < 0.001),第6天目标象限停留时间减少(P < 0.001),第6天穿越平台次数减少(P < 0.05),结果表明,AD组小鼠的空间学习记忆能力下降。与AD组小鼠相比,AD+7,8-DHF组和AD+OAG组小鼠第5天逃避潜伏期缩短(P < 0.01),第6天目标象限停留时间增加(P < 0.01),第6天穿越平台次数增加(P < 0.05),结果表明,内源性激活BDNF和上调TRPC3后,AD小鼠空间学习记忆能力得到明显改善。见表 1

表 1 Morris水迷宫实验中各组小鼠行为学检测结果 Tab.1 Behavioral results of mice in each group in the Morris water maze test
Group n Escape latency (s) Target quadrant occupancy (s) Number of platform crossing
1 d 2 d 3 d 4 d 5 d
Control 6 48.27±9.02 34.89±9.56 33.38±7.48 25.21±4.59 11.19±2.06 26.50±2.70 3.67±0.82
AD 6 59.83±0.41 53.49±5.21 46.41±7.81 40.09±8.171) 36.53±6.571) 12.47±1.272) 1.33±1.031)
AD+OAG 6 49.68±10.97 41.30±4.05 34.49±4.18 25.94±2.163) 15.11±1.424) 21.51±1.364) 3.17±0.983)
AD+7,8-DHF 6 55.81±5.00 45.29±9.33 35.71±3.90 26.66±3.753) 15.08±2.474) 20.92±1.524) 3.33±1.213)
AD+7,8-DHF+Pyr3 6 56.67±5.25 49.44±8.76 49.76±5.28 44.43±1.556) 33.71±8.287) 11.09±0.637) 1.16±0.675)
Compared with control group,1) P < 0.01,2) P < 0.001;compared with AD group,3) P < 0.05,4) P < 0.001;compared with AD + 7,8-DHF group,5) P < 0.05,6) P < 0.01,7) P < 0.001. AD,Alzheimer disease;7,8-DHF,7,8-dihydroxyflavone;OAG,1-oleoyl-2-acetyl-sn-glycerol;Pyr3,pyrazole compound.

2.2 激活BDNF和TRPC3能够减轻Aβ1-42异常沉积

采用ELISA检测各组海马Aβ1-42浓度,对照组、AD组小鼠、AD+OAG组、AD+7,8-DHF组和AD+7,8-DHF+Pyr3组小鼠Aβ1-42浓度分别为(271.1±34.03)、(837.9±66.09)、(523.6±79.29)、(458.7±59.37)、(954.8±23.19) pg/mL。与对照组相比,AD组小鼠Aβ1-42浓度增高(P < 0.001);与AD组小鼠相比,AD+7,8-DHF组和AD+OAG组小鼠Aβ1-42浓度降低(均P < 0.01)。结果表明,激活BDNF和TRPC3减轻了Aβ1-42的异常沉积。

2.3 激活BDNF和TRPC3促进突触相关蛋白synapsin-Ⅰ和CaMKⅡ-α的表达

Western blotting结果显示,与对照组小鼠相比,AD组小鼠TRPC3、突触相关蛋白(synapsin-Ⅰ、CaMKⅡ-α)表达均降低(分别为P < 0.01,P < 0.001,P < 0.001),表明AD组小鼠神经突触功能受损。与AD组小鼠相比,AD+7,8-DHF组和AD+OAG组小鼠TRPC3、突触相关蛋白(synapsin-Ⅰ、CaMKⅡ-α)表达均增加(分别为P < 0.01,P < 0.001,P < 0.01),表明激活BDNF和TRPC3明显改善神经突触功能。见图 1表 2

A, TRPC3 protein expression; B, synapsin-Ⅰ protein expression; C, CaMKⅡ-α protein expression. 1, control group; 2, AD group; 3, AD+7, 8-DHF group; 4, AD+OAG group; 5, AD+7, 8-DHF+Pyr3 group. 图 1 Western blotting检测各组小鼠海马区TRPC3、synapsin-Ⅰ和CaMKⅡ-α蛋白表达 Fig.1 Expression of TRPC3, synapsin-Ⅰ, and CaMKⅡ-α proteins in the hippocampus of mice in each group detected using Western blotting

表 2 各组小鼠海马区TRPC3、synapsin-Ⅰ和CaMKⅡ-α蛋白的相对表达量 Tab.2 Relative expression of TRPC3, synapsin-Ⅰ, and CaMKⅡ-α proteins in the hippocampus of mice in each group
Protein Control group (n = 5) AD group (n = 5) AD+OAG group (n = 5) AD+7,8-DHF group (n = 5) AD+7,8-DHF+Pyr3 group (n = 5)
TRPC3 1.05±0.16 0.51±0.161) 1.06±0.283) 0.96±0.173) 0.56±0.125)
Synapsin-Ⅰ 0.78±0.09 0.12±0.022) 0.58±0.064) 0.47±0.054) 0.30±0.076)
CaMKⅡ-α 0.76±0.08 0.27±0.032) 0.67±0.033) 0.57±0.063) 0.38±0.105)
Compared with control group,1) P < 0.01,2) P < 0.001;compared with AD group,3) P < 0.01,4) P < 0.001;compared with AD + 7,8-DHF group,5) P < 0.05,6) P < 0.01.

2.4 BDNF通过上调TRPC3减轻Aβ沉积进而改善AD小鼠的认知和神经突触功能

水迷宫实验结果显示,与AD+7,8-DHF组小鼠相比,AD+7,8-DHF+Pyr3组小鼠第5天逃避潜伏期延长(P < 0.001),第6天目标象限停留时间减少(P < 0.01),第6天穿越平台次数减少(P < 0.05),结果表明,抑制TRPC3表达降低了BDNF对AD小鼠认知功能的改善作用。见表 1

ELISA结果显示,与AD+7,8-DHF组小鼠相比,AD+7,8-DHF+Pyr3组小鼠Aβ1-42浓度显著降低(P < 0.001),结果表明,抑制TRPC3表达降低了BDNF对AD小鼠中Aβ1-42沉积的清除作用。

Western blotting结果显示,与AD+7,8-DHF组小鼠相比,AD+7,8-DHF+Pyr3组小鼠TRPC3、synapsin-Ⅰ和CaMKⅡ-α蛋白表达均降低(分别为P < 0.05,P < 0.01,P < 0.05),结果表明,抑制TRPC3表达降低了BDNF对AD小鼠神经突触功能改善作用。见表 2

以上结果表明,BDNF通过上调TRPC3的表达减轻了Aβ异常沉积,进而改善AD小鼠的认知和神经突触功能。

3 讨论

已有研究[16-17]报道,BDNF在AD模型中表达下降,上调BDNF后AD模型认知和神经突触功能得到改善,但TRPC3对AD的认知和神经突触功能的作用未见报道。本课题组的前期研究[7]发现,AD大鼠中BDNF和TRPC3蛋白表达降低,侧脑室注射BDNF后TRPC3表达增加,认知功能得到改善。本研究中,AD小鼠TRPC3表达降低,给予7,8-DHF (内源性激活BDNF)后TRPC3表达增加,与之前的研究结果一致。给予OAG (激活TRPC3)后TRPC3表达增加,AD小鼠认知和神经突触功能改善,说明TRPC3具有改善AD小鼠认知和神经突触功能的作用。另外,上调BDNF后AD小鼠的认知和神经突触功能得到改善,但抑制TRPC3通道后再上调BDNF,AD小鼠认知和神经突触功能并未得到改善,说明BDNF通过上调TRPC3的表达来发挥神经保护作用。

Aβ是由β淀粉样蛋白前体蛋白水解而成,其在脑内异常沉积形成老年斑。老年斑是AD的主要病理变化,也是神经元死亡的关键因素[18]。本研究中,上调BDNF和TRPC3均使AD小鼠Aβ沉积减轻,而使用TRPC3抑制剂上调BDNF并没有减轻Aβ沉积,说明BDNF可能通过TRPC3清除Aβ沉积,从而达到神经保护作用。但TRPC3通过何种途径清除Aβ沉积,具体机制并不清楚。目前,Aβ主要通过血脑屏障和脑血管周隙-淋巴2种途径进行清除[19-20]。但有研究[21]报道,缺氧模型中TRPC通过钙离子内流导致血脑屏障受损。因此,TRPC3是否影响血脑屏障以及是否通过血脑屏障清除Aβ沉积,尚需进一步研究证明。

已有研究报道,在急性心肌梗死大鼠模型中BDNF/TrkB通过TRPC3通道抑制缺血引起的心肌细胞凋亡[10]。嗅鞘细胞的迁移对神经再生和嗅觉发育至关重要。WANG等[22]发现BDNF通过TRPC3促进嗅鞘细胞的迁移。然而,ARAVAMUDAN等[23]认为,TRPC3/6正向调控BDNF的释放,在哮喘患者气道平滑肌细胞中,以RNA干扰技术检测到TRPC3/6通过调控BDNF的分泌来调节气道平滑肌的变化。这些证据说明,BDNF和TRPC3具有协同作用,但具体机制有待进一步探讨。

综上所述,本研究表明,BDNF/TrkB通过调节AD小鼠海马中TRPC3的表达,减轻Aβ的沉积,从而发挥其对AD小鼠认知功能和突触功能障碍的改善作用。BDNF和TRPC3激动剂可能成为AD治疗的候选药物。

参考文献
[1]
HONIG LS, VELLAS B, WOODWARD M, et al. Trial of solanezumab for mild dementia due to Alzheimer's disease[J]. N Engl J Med, 2018, 378(4): 321-330. DOI:10.1056/nejmoa1705971
[2]
MUSIEK ES, HOLTZMAN DM. Three dimensions of the amyloid hypothesis:time, space and 'wingmen'[J]. Nat Neurosci, 2015, 18(6): 800-806. DOI:10.1038/nn.4018
[3]
SELKOE DJ, HARDY J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6): 595-608. DOI:10.15252/emmm.201606210
[4]
YOSHⅡ A, CONSTANTINE-PATON M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease[J]. Devel Neurobio, 2010, 70(5): 304-322. DOI:10.1002/dneu.20765
[5]
MOHAMMADI A, AMOOEIAN VG, RASHIDI E. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, Parkinson's and Alzheimer's diseases[J]. Curr Gene Ther, 2018, 18(1): 45-63. DOI:10.2174/1566523218666180302163029
[6]
郝继伟, 李莺歌, 王来, 等. BDNF在APP/PS1转基因小鼠皮层和海马内的表达及其对学习记忆能力的影响[J]. 中国病理生理杂志, 2019, 35(5): 858-864. DOI:10.3969/j.issn.1000-4718.2019.05.014
[7]
张利华, 张丽艳, 张小康, 等. β-淀粉样蛋白诱导的阿尔茨海默病大鼠模型中BDNF与TRPC3的关系[J]. 中国医科大学学报, 2018, 47(3): 217-221. DOI:10.12007/j.issn.0258-4646.2018.03.006
[8]
HAO HB, WEBB SE, YUE J, et al. TRPC3 is required for the survival, pluripotency and neural differentiation of mouse embryonic stem cells (mESCs)[J]. Sci China Life Sci, 2018, 61(3): 253-265. DOI:10.1007/s11427-017-9222-9
[9]
YANG ZW, WU F, ZHANG SL. Effects of ganoderic acids on epileptiform discharge hippocampal neurons:insights from alterations of BDNF, TRPC3 and apoptosis[J]. Die Pharmazie, 2016, 71(6): 340-344.
[10]
HANG P, ZHAO J, CAI B, et al. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents[J]. Int J Biol Sci, 2015, 11(5): 536-545. DOI:10.7150/ijbs.10754
[11]
AGRAWAL R, NOBLE E, TYAGI E, et al. Flavonoid derivative 7, 8-DHF attenuates TBI pathology via TrkB activation[J]. Biochim Biophys Acta, 2015, 1852(5): 862-872. DOI:10.1016/j.bbadis.2015.01.018
[12]
KIYONAKA S, KATO K, NISHIDA M, et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound[J]. Proc Natl Acad Sci U S A, 2009, 106(13): 5400-5405. DOI:10.1073/pnas.0808793106
[13]
KITAJIMA N, WATANABE K, MORIMOTO S, et al. TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts[J]. Biochem Biophys Res Commun, 2011, 409(1): 108-113. DOI:10.1016/j.bbrc.2011.04.124
[14]
LIU X, OBIANYO O, CHAN CB, et al. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7, 8-dihydroxyflavone in the binding and activation of the TrkB receptor[J]. J Biol Chem, 2014, 289(40): 27571-27584. DOI:10.1074/jbc.M114.562561
[15]
BARNHART CD, YANG D, LEIN PJ. Using the Morris water maze to assess spatial learning and memory in weanling mice[J]. PLoS One, 2015, 10(4): e0124521. DOI:10.1371/journal.pone.0124521
[16]
ZHANG L, FANG Y, LIAN Y, et al. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer's disease induced by Aβ1-42[J]. PLoS One, 2015, 10(4): e0122415. DOI:10.1371/journal.pone.0122415
[17]
JIAO SS, SHEN LL, ZHU C, et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease[J]. Transl Psychiatry, 2016, 6(10): e907. DOI:10.1038/tp.2016.186
[18]
WEI Z, CHEN XC, SONG Y, et al. Amyloid β protein aggravates neuronal senescence and cognitive deficits in 5XFAD mouse model of Alzheimer's disease[J]. Chin Med J (Engl), 2016, 129(15): 1835-1844. DOI:10.4103/0366-6999.186646
[19]
HICKS K, O'NEIL RG, DUBINSKY WS, et al. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress[J]. Am J Physiol Cell Physiol, 2010, 298(6): C1583-C1593. DOI:10.1152/ajpcell.00458.2009
[20]
ZUROFF L, DALEY D, BLACK KL, et al. Clearance of cerebral Aβ in Alzheimer's disease:reassessing the role of microglia and monocytes[J]. Cell Mol Life Sci, 2017, 74(12): 2167-2201. DOI:10.1007/s00018-017-2463-7
[21]
ŠIMIĆ G, ŠPANIĆ E, LANGER HORVAT L, et al. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease[J]. Prog Mol Biol Transl Sci, 2019, 168: 99-145. DOI:10.1016/bs.pmbts.2019.06.003
[22]
WANG Y, TENG HL, GAO Y, et al. Brain-derived neurotrophic factor promotes the migration of olfactory ensheathing cells through TRPC channels[J]. Glia, 2016, 64(12): 2154-2165. DOI:10.1002/glia.23049
[23]
ARAVAMUDAN B, THOMPSON MA, PABELICK CM, et al. Mechanisms of BDNF regulation in asthmatic airway smooth muscle[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(2): L270-L279. DOI:10.1152/ajplung.00414.2015