中国医科大学学报  2019, Vol. 48 Issue (9): 841-844

文章信息

王敏, 石喻, 郭启勇
WANG Min, SHI Yu, GUO Qiyong
磁共振弹性成像评价肝脏疾病的研究进展
Research Progress of Magnetic Resonance Elastography for Evaluating Liver Diseases
中国医科大学学报, 2019, 48(9): 841-844
Journal of China Medical University, 2019, 48(9): 841-844

文章历史

收稿日期:2018-09-17
网络出版时间:2019-09-09 9:28
磁共振弹性成像评价肝脏疾病的研究进展
王敏 , 石喻 , 郭启勇     
中国医科大学附属盛京医院放射科, 沈阳 110004
摘要:磁共振弹性成像(MRE)是一种新型无创性磁共振诊断技术。MRE利用机械波定量测量组织弹性,是一种非侵入性评估组织硬度的成像方法,已在慢性肝病、肝脏纤维化检测和分期等临床研究中广泛应用。本文总结了现阶段MRE在肝脏疾病诊断中的研究进展。
关键词磁共振弹性成像    肝脏疾病    研究进展    
Research Progress of Magnetic Resonance Elastography for Evaluating Liver Diseases
WANG Min , SHI Yu , GUO Qiyong     
Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, China
Abstract: Magnetic resonance elastography(MRE)is a novel, noninvasive diagnostic technology that quantitatively evaluates tissue elasticity differences through mechanical waves. Shorter waves represent softer tissues and longer waves indicate harder tissues. MRE is particularly useful as a noninvasive imaging method to assess the tissue stiffness of the liver, and has been widely used for the detection and staging of chronic liver diseases and liver fibrosis, as well as in clinical research. This paper briefly describes the research advances of MRE for evaluating liver disease.

肝纤维化、肝硬化和肝脏肿瘤一直是临床研究的热点和难点。肝脏穿刺活检是肝脏疾病诊断的金标准,然而由于其存在有创性、出血、疼痛、针道转移等并发症限制了其临床应用,而且由于存在取样误差,容易导致疾病程度误判。近年来,医学影像技术飞速发展,磁共振弹性成像(magnetic resonance elastography,MRE)作为一种无创性评估组织机械属性的检查手段,可以用于全身许多器官的检查,如肝脏、心脏、大脑等。然而,MRE在肝脏疾病检查中的应用最为成熟。

MRE是一种新型无创性成像技术,可以将人体的弹性特征定量化,被称作“影像触诊”。MRE的成像原理是通过主动刺激器-塑料连接管道-被动刺激器将声波传递至肝脏,肝脏内质点产生微小位移;通过检测质点位移计算剪切波速度,从而得到组织弹性特征。良好的组织波传播是图像质量好坏的关键,由于肝脏的位置较浅,机械波往往有很好的传播,肝脏常用的刺激频率是60 Hz,MRE测量前常需要禁食4~6 h,正常志愿者肝脏的弹性值范围约2.05~2.44 kPa,且其测量值不受年龄、性别、体质量指数或脂肪含量及磁共振增强钆对比剂的影响[1-3],HINES等[4]通过多因素影响重复测量的混合线性回归模型证明,2次测量间的差异的容错在37%以内都属于正常测量误差。肝内铁含量会影响图像质量,但对弹性值的测量是否有影响还不清楚,同时为了获得良好的弹性图及波形图,需要患者呼吸的配合。既往研究表明MRE在肝脏疾病的评估方面应用广泛,本研究旨在归纳总结MRE在诊断及评估慢性肝病方面的现状,为肝脏疾病的预后和治疗提供参考依据。

1 慢性肝炎、肝纤维化的MRE诊断与评估

慢性肝病是一个全球性公共卫生问题,其早期主要病理改变是肝纤维化,纤维化的进一步进展将导致肝硬化,因此肝硬化的早期逆转对于肝病的治疗至关重要。近年来,研究[5-6]表明MRE对慢性肝病的临床治疗和预后随访有一定的临床意义。多项研究表明,对于肝纤维化分期的检测,MRE优于其他非侵入性检测,如肝功能的血清检测[7]、瞬态弹性成像(transient elastography,TE)[8]、弥散加权成像(diffusion weighted imaging,DWI)[9]、T1ρ值[10]、声脉冲辐射力成像[11]及其他磁共振参数指标。MRE常用的扫描序列包括二维梯度回波序列及三维平面回波序列。SHI等[12]在179例病理证实的慢性乙型及丙型肝炎的2种序列成像对比分析中发现,平面回波成像的失败率低,且对于不同纤维化分期的诊断效能两者均优于血清学指标,对于不同分期(≥F1期、≥F2期、≥F3期、F4期)的诊断效能平面回波成像优于梯度回波。可能由于患者入组标准的不同、进食状态的差异、不同测量者感兴趣区域选取的差异、实验MRE序列设置的差异,不同测量者测量的不同纤维化分级的弹性值有一定的差异,但均表明MRE测量的弹性值与肝纤维化分级呈正相关(P < 0.001)[13],即肝脏平均硬度随着肝纤维化程度的增加而增加。因此,认为MRE是一种可靠的测量肝弹性值及评估肝纤维化分期的方法。且MRE对于进展期纤维化(F3~F4期)诊断的曲线下面积达到0.94,高于TE、动态增强MRI、DWI、血清学标志物的曲线下面积,对于中晚期纤维化(F2~F4期)诊断的曲线下面积达到0.78,略低于TE(0.82)和DWI(0.79)[7]。另一项TE和MRE的对比研究[14]结果表明,对于F0~F1期或F2~F4期诊断的准确性达到64%和66%的TE界值分别是 < 5.2 kPa和≥8.9 kPa,MRE的界值分别是 < 1.66 kPa和≥2.18 kPa,对于TE不确定的病例,同时进行MRE检测,可将诊断的准确性提高到80%。另外,MRE对于慢性肝病复发的肝移植的晚期纤维化的检测有一定的诊断价值[15]。但值得注意的是,门静脉压力、心源性因素和胆道梗阻、组织学坏死性炎症[16]等因素都可能影响肝硬度,因此在行MRE测量时应该避免这些因素的影响。

2 非酒精性脂肪肝病的MRE诊断与评估

非酒精性脂肪肝病通常分为非酒精性脂肪肝和非酒精性脂肪性肝炎2种表型,在3年内约40%的非酒精性脂肪性肝炎患者可进展为进展期纤维化,非酒精性脂肪肝病与肝纤维化、肝硬化、肝细胞癌及其并发症的发病率和死亡率有关[17]。研究[18-19]表明,MRE和质子密度脂肪含量对于非酒精性脂肪肝患者肝纤维化、脂肪变性的无创性诊断效能优于TE和对照衰减参数。以2.74 kPa为诊断界值,对脂肪变性和非酒精性脂肪性肝炎鉴别诊断的准确性为0.93,灵敏度为94%,特异度为73%,且对进展期纤维化(F3~F4期)的诊断,MRE的准确性优于其他8个实验室检查指标[20]。SINGH等[21]的研究进一步证实了MRE可以准确、无创评估非酒精性脂肪肝病患者的肝纤维化分期,且研究结果不受年龄、性别、肥胖和炎症浸润程度的影响。

3 门静脉高压和食管静脉曲张的MRE诊断与评估

门静脉高压是肝纤维化的常见并发症和相关血管病变引起的病症。食管静脉曲张是门静脉高压的常见并发症,上消化道内镜检查是评估门静脉高压并发症的最好方法[6],但属有创性检查手段。因此,无创性诊断手段更加受到青睐。早期的动物研究[22]表明,门静脉压力与肝脏硬度、脾脏硬度之间呈高度正相关,故MRE可以成为一种无创性诊断和筛查门静脉高压的方法。门静脉的血流参数、肝硬度及灌注指标可作为预测慢性肝病患者食管胃底静脉曲张严重程度和门静脉高压的有用指标[23-24]。既往研究[25-26]表明,肝脏的弹性值与食管静脉曲张的严重程度及门静脉压力相关性良好。进一步的研究[27]表明,肝脏弹性值、脾脏弹性值及脾脏的长度与食管静脉曲张相关,且前两者的诊断性能优于脾脏长度,在预测食管静脉曲张和高危静脉曲张方面,MRE可与动态增强MRI相媲美,但联合评估的诊断敏感度更高。

4 代偿和失代偿性肝硬化的MRE诊断与评估

肝硬化患者根据有无相关并发症(静脉曲张出血、腹水、肝性脑病)及肝功能是否衰竭,进一步分为代偿和失代偿性肝硬化。从纤维化到代偿和失代偿性肝硬化进展的风险和速度决定了肝病的预后,因此早期发现和预防策略对患者预后意义重大。肝脏的弹性值与失代偿性肝病独立相关[28],SINGH等[29]的研究表明,采用MRE测量的肝弹性值与失代偿风险增加、肝细胞癌的发生和死亡相关。失代偿性病患者的平均肝脏剪切硬度为6.8 kPa,显著高于代偿性肝病患者(5.2 kPa),代偿期肝病且平均肝脏剪切硬度≥5.8 kPa的患者肝功能失代偿的风险性为4.96%[28]。另有研究[30]表明,MRE评估的代偿性肝硬化患者的肝弹性值与疾病进展为原发性肝癌之间并无系统性联系。

5 肝局灶性病变的MRE诊断与评估

MOTOSUGI等[31]的研究发现,慢性肝病患者中,肝癌患者肝脏硬度明显高于无肝癌患者[5.0(2.3~9.3)kPa和3.9(1.8~8.8)kPa,P = 0.002 5],但两者的弹性值有一定程度的重叠。ANAPARTHY等[30]也对肝纤维化背景下患有肝癌和不患有肝癌的患者进行对比研究,结果表明肝癌患者非瘤肝组织的硬度与非肝癌患者的肝组织硬度相近[(6.1±2.0)kPa和(6.3±2.5)kPa,P = 0.7]。这些研究结果表明,MRE的肝脏硬度对于肝癌评估的独立危险因素尚存在争议,可能需要大样本的数据、规范化的测量、统一规范化的序列设置,才能得出更有信服力的结果。而对于肝脏良恶性病变的评估,研究表明[32],以5.08 kPa为界值可鉴别良恶性肝肿瘤和正常肝实质,优于DWI对肝良恶性病变的鉴别[33]。且有研究[34]表明,对于良恶性病变的鉴别诊断,弹性值的相关参数中损失模量比储能模量或剪切模量更有意义,但由于不同肿瘤的弹性之间有一定的重叠区域,因此MRE并不能作为定性诊断手段,但可以辅助鉴别诊断肝脏肿瘤。对于肿瘤的弹性值,研究[35]表明肿瘤的弹性值与肿瘤的大小及肝脏的弹性值无明显的相关性,高中分化的肿瘤[(6.5±1.2)kPa]较低分化的肿瘤[(4.9±1.2)kPa]弹性值高。且经MRE检测的肿瘤组织的弹性值与T1加权肿瘤增强和坏死有显著相关性,尤其是经过放射栓塞处理的肝癌患者[36]。MRE还可以有效评估肝癌患者的肝功能储备[37]

6 总结与展望

综上所述,MRE在各种肝病的诊断中均发挥一定的优势,有望作为一种无创性影像学诊断手段取代病理诊断在肝病中应用。然而,最优参数拟合模型、图像信噪比的提高、更好的序列设置、合适的刺激频率、患者的配合等多因素仍然是影响研究结果和辅助诊断的重要因素。统一规范化的扫描序列设置是标准规范化的前提,尽早将MRE加入到MRI肝脏扫描的常规序列,增加微小病灶的检测,从而提高诊断的敏感度和特异度,为疾病的早期诊断和检出提供更有利的工具,从而改善肝病患者的预后。

参考文献
[1]
VENKATESH SK, WANG G, TEO LL, et al. Magnetic resonance elastography of liver in healthy Asians:normal liver stiffness quantification and reproducibility assessment[J]. J Magn Reson Imaging, 2014, 39(1): 1-8. DOI:10.1002/jmri.24084
[2]
HINES CD, LINDSTROM MJ, VARMA AK, et al. Effects of postprandial state and mesenteric blood flow on the repeatability of MR elastography in asymptomatic subjects[J]. J Magn Reson Imaging, 2011, 33(1): 239-244. DOI:10.1002/jmri.22354
[3]
HALLINAN JT, ALSAIF HS, WEE A, et al. Magnetic resonance elastography of liver:influence of intravenous gadolinium administration on measured liver stiffness[J]. Abdom Imaging, 2015, 40(4): 783-788. DOI:10.1007/s00261-014-0275-x
[4]
HINES CD, BLEY TA, LINDSTROM MJ, et al. Repeatability of magnetic resonance elastography for quantification of hepatic stiffness[J]. J Magn Reson Imaging, 2010, 31(3): 725-731. DOI:10.1002/jmri.22066
[5]
VENKATESH SK, YIN M, EHMAN RL. Magnetic resonance elastography of liver:technique, analysis, and clinical applications[J]. J Magn Reson Imaging, 2013, 37(3): 544-555. DOI:10.1002/jmri.23731
[6]
VENKATESH SK, XU S, TAI D, et al. Correlation of MR elastography with morphometric quantification of liver fibrosis (Fibro-C-Index) in chronic hepatitis B[J]. Magn Reson Med, 2014, 72(4): 1123-1129. DOI:10.1002/mrm.25002
[7]
DYVORNE HA, JAJAMOVICH GH, BANE O, et al. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection[J]. Liver Int, 2016, 36(5): 659-666. DOI:10.1111/liv.13058
[8]
HUWART L, SEMPOUX C, VICAUT E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis[J]. Gastroenterology, 2008, 135(1): 32-40. DOI:10.1053/j.gastro.2008.03.076
[9]
HENNEDIGE TP, GANG W, LEUNG FP, et al. Magnetic resonance elastography and diffusion weighted imaging in the evaluation of hepatic fibrosis in chronic hepatitis B[J]. Gut Liver, 2017, 11(3): 401-408. DOI:10.5009/gnl16079
[10]
邹立秋, 江锦赵, 钟文新, 等. MR弹性成像与T1ρ成像诊断肝脏纤维化分期的对比实验研究[J]. 中华放射学杂志, 2017, 51(6): 460-463. DOI:10.3760/cma.j.issn.1005-1201.2017.06.013
[11]
GUO Y, PARTHASARATHY S, GOYAL P, et al. Magnetic resonance elastography and acoustic radiation force impulse for staging hepatic fibrosis:a meta-analysis[J]. Abdom Imaging, 2015, 40(4): 818-834. DOI:10.1007/s00261-014-0137-6
[12]
SHI Y, XIA F, LI QJ, et al. Magnetic resonance elastography for the evaluation of liver fibrosis in chronic hepatitis B and C by using both gradient-recalled echo and spin-echo echo planar imaging:a prospective study[J]. Am J Gastroenterol, 2016, 111(6): 823-833. DOI:10.1038/ajg.2016.56
[13]
石喻, 郭启勇, 张兰, 等. 3.0T MR弹性成像评价健康者及慢性肝病患者肝弹性值的初步研究[J]. 中华放射学杂志, 2013, 47(11): 1005-1008. DOI:10.3760/cma.j.issn.1005-1201.2013.11.012
[14]
BOHTE AE, DE NIET A, JANSEN L, et al. Non-invasive evaluation of liver fibrosis:a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C[J]. Eur Radiol, 2014, 24(3): 638-648. DOI:10.1007/s00330-013-3046-0
[15]
CRESPO S, BRIDGES M, NAKHLEH R, et al. Non-invasive assessment of liver fibrosis using magnetic resonance elastography in liver transplant recipients with hepatitis C[J]. Clin Transplant, 2013, 27(5): 652-658. DOI:10.1111/ctr.12180
[16]
SHI Y, GUO Q, XIA F, et al. MR elastography for the assessment of hepatic fibrosis in patients with chronic hepatitis B infection:does histologic necroinflammation influence the measurement of hepatic stiffness?[J]. Radiology, 2014, 273(1): 88-98. DOI:10.1148/radiol.14132592
[17]
DULAI PS, SIRLIN CB, SLOOMBA R. MRI and MRE for noninvasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH:clinical trials to clinical practice[J]. J Hepatol, 2016, 65(5): 1006-1016. DOI:10.1016/j.jhep.2016.06.005
[18]
IMAJO K, KESSOKU T, HONDA Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography[J]. Gastroenterology, 2016, 150(3): 626-637. DOI:10.1053/j.gastro.2015.11.048
[19]
PARK CC, NGUYEN P, HERNANDEZ C, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(3): 598-607. DOI:10.1053/j.gastro.2016.10.026
[20]
CUI J, ANG B, HAUFE W, et al. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease:a prospective study[J]. Aliment Pharmacol Ther, 2015, 41(12): 1271-1280. DOI:10.1111/apt.13196
[21]
SINGH S, VENKATESH SK, LOOMBA R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease:a diagnostic accuracy systematic review and individual participant data pooled analysis[J]. Eur Radiol, 2016, 26(5): 1431-1440. DOI:10.1007/s00330-015-3949-z
[22]
YIN M, KOLIPAKA A, WOODRUM DA, et al. Hepatic and splenic stiffness augmentation assessed with MR elastography in an in vivo porcine portal hypertension model[J]. J Magn Reson Imaging, 2013, 38(4): 809-815. DOI:10.1002/jmri.24049
[23]
MORISAKA H, MOTOSUGI U, ICHIKAWA T, et al. MR-based measurements of portal vein flow and liver stiffness for predicting gastroesophageal varices[J]. Magn Reson Med Sci, 2013, 12(2): 77-86. DOI:10.2463/mrms.2012-0052
[24]
WAGNER M, HECTORS S, BANE O, et al. Noninvasive prediction of portal pressure with MR elastography and DCE-MRI of the liver and spleen:preliminary results[J]. J Magn Reson Imaging, 2018, 48(4): 1091-1103. DOI:10.1002/jmri.26026
[25]
SUN HY, LEE JM, HAN JK, et al. Usefulness of MR elastography for predicting esophageal varices in cirrhotic patients[J]. J Magn Reson Imaging, 2014, 39(3): 559-566. DOI:10.1002/jmri.24186
[26]
GHARIB AM, HAN MAT, MEISSNER EG, et al. Magnetic resonance elastography shear wave velocity correlates with liver fibrosis and hepatic venous pressure gradient in adults with advanced liver disease[J]. Biomed Res Int, 2017, 2017: 2067479. DOI:10.1155/2017/2067479
[27]
SHIN SU, LEE JM, YU MH, et al. Prediction of esophageal varices in patients with cirrhosis:usefulness of three-dimensional MR elastography with echo-planar imaging technique[J]. Radiology, 2014, 272(1): 143-153. DOI:10.1148/radiol.14130916
[28]
ASRANI SK, TALWALKAR JA, KAMATH PS, et al. Role of magnetic resonance elastography in compensated and decompensated liver disease[J]. J Hepatol, 2014, 60(5): 934-939. DOI:10.1016/j.jhep.2013.12.016
[29]
SINGH S, FUJⅡ LL, MURAD MH, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases:a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2013, 11(12): 1573-1584. DOI:10.1016/j.cgh.2013.07.034
[30]
ANAPARTHY R, TALWALKAR JA, YIN M, et al. Liver stiffness measurement by magnetic resonance elastography is not associated with developing hepatocellular carcinoma in subjects with compensated cirrhosis[J]. Aliment Pharmacol Ther, 2011, 34(1): 83-91. DOI:10.1111/j.1365-2036.2011.04673.x
[31]
MOTOSUGI U, ICHIKAWA T, KOSHⅡSHI T, et al. Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma:a preliminary case-control study[J]. Eur Radiol, 2013, 23(1): 156-162. DOI:10.1007/s00330-012-2571-6
[32]
何浩强, 许桂晓, 刘辉明, 等. 磁共振弹性成像对肝脏局灶性良恶性肿瘤鉴别价值的初步研究[J]. 实用放射学杂志, 2017, 33(2): 230-233. DOI:10.3969/j.issn.1002-1671.2017.02.017
[33]
HENNEDIGE TP, HALLINAN JT, LEUNG FP, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions[J]. Eur Radiol, 2016, 26(2): 398-406. DOI:10.1007/s00330-015-3835-8
[34]
GARTEISER P, DOBLAS S, DAIRE JL, et al. MR elastography of liver tumours:value of viscoelastic properties for tumour characterization[J]. Eur Radiol, 2012, 22(10): 2169-2177. DOI:10.1007/s00330-012-2474-6
[35]
THOMPSON SM, WANG J, CHANDAN VS, et al. MR elastography of hepatocellular carcinoma:correlation of tumor stiffness with histopathology features-preliminary findings[J]. Magn Reson Imaging, 2017, 37: 41-45. DOI:10.1016/j.mri.2016.11.005
[36]
GORDIC S, AYACHE JB, KENNEDY P, et al. Value of tumor stiffness measured with MR elastography for assessment of response of hepatocellular carcinoma to locoregional therapy[J]. Abdom Radiol (NY), 2017, 42(6): 1685-1694. DOI:10.1007/s00261-017-1066-y
[37]
LI B, MIN J, LIANG WR, et al. Use of magnetic resonance elastography for assessing liver functional reserve:a clinical study[J]. World J Gastroenterol, 2015, 21(24): 7522-7528. DOI:10.3748/wjg.v21.i24.7522