中国生物工程杂志  2016, Vol. 36 Issue (10): 1-7

文章信息

沈鹏飞, 王斌, 谢子康, 郑冲, 瞿玉兴.
SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing.
软骨寡聚基质蛋白过表达对BMP-2诱导骨髓间充质干细胞分化的影响
Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells
中国生物工程杂志, 2016, 36(10): 1-7
CHINA BIOTECHNOLOGY, 2016, 36(10): 1-7
http://dx.doi.org/DOI:10.13523/j.cb.20161001

文章历史

收稿日期: 2016-04-05
修回日期: 2016-04-25
软骨寡聚基质蛋白过表达对BMP-2诱导骨髓间充质干细胞分化的影响
沈鹏飞 , 王斌 , 谢子康 , 郑冲 , 瞿玉兴     
常州市中医医院 常州 213000
摘要: 目的 研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。 方法 BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。 结果 质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P < 0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P < 0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P < 0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P < 0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P < 0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P < 0.05), 结论 骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。
关键词: 骨髓间充质干细胞     软骨寡聚基质蛋白     骨形态发生蛋白质2     基因过表达     细胞分化    
Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells
SHEN Peng-fei , WANG Bin , XIE Zi-kang , ZHENG Chong , QU Yu-xing     
First Department of Orthopaedics, Changzhou TCM Hospital, Changzhou 213000, China
Abstract: Objective To study the effects of cartilage oligomeric matrix protein (COMP) overexpression on bone morphogenetic protein 2 (BMP-2) induced cell osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells (MSCs). Methods MSCs, transfected with plasmid DNA encoding recombinant human COMP, were induced to differentiate into osteocytes and chondrocytes by BMP-2. Western blotting and real-time PCR were used to detect the overexpression of COMP, the expression level changes of osteogenesis related genes collagen type Ⅰ, RUNX2, osteocalcin and chondrogenesis related genes collagen type Ⅱ, SOX9, aggrecan, collagen type X, respectively. Alizarin red staining for osteogenic differentiation and alcian blue staining for chondrogenic differentiation were conducted to evaluate the tendency of cell differentiation. Results Results of RT-PCR and Western blotting showed that the expression levels of COMP mRNA and protein were significantly increased in MSCs, which were transfected with plasmid DNA encoding recombinant human COMP (P < 0.05). The mRNA expression levels of RUNX2, Col1a1 and the protein expression levels of RUNX2, osteocalcin in overexpressed group all decreased significantly compared with that of control group (P < 0.05). However, the mRNA expression levels of SOX9, aggrecan and the protein expression levels of SOX9, Col2a1 in overexpressed group all increased significantly compared with that of control group (P < 0.05). Alizarin red staining were weakened while alcian blue staining was enhanced. The expression level of Col10a1 gene in overexpressed group was higher than that in control group (P < 0.05). Conclusion Conclusion: Overexpression of COMP gene in MSCs could inhibit BMP-2 induced osteogenic differentiation, promote BMP-2 induced chondrogenic differentiation and supress the chondrocyte hypertrophy and maturation, which may provide new insight for cartilage tissue engineering.
Key words: Mesenchymal stem cells     Cartilage oligomeric matrix protein     Bone morphogenetic protein 2     Gene overexpression     Cell differentiation    

软骨组织工程给软骨损伤治疗带来希望,其中,利用基因修饰技术干预干细胞增殖和成软骨分化,从而特异性、长效地调控软骨修复,在软骨组织工程领域具有广阔的应用前景[1]。软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)属于凝血酶敏感蛋白家族,是软骨、韧带、肌腱等组织细胞外基质中最主要的非胶原蛋白之一,在细胞黏附、增殖、分化中扮演重要角色[2-4]。BMP-2(bone morphogenetic protein 2)可诱导多种干细胞增殖及成软骨分化,促进软骨细胞增殖与成熟;同时也可诱导骨髓间充质干细胞(mesenchymal stem cells,MSCs)成骨分化,因此促进BMP-2诱导的干细胞成软骨分化、抑制其成骨分化,对于软骨修复至关重要[5-7]。本研究在体外通过脂质体转染含人COMP基因的质粒使MSCs过表达COMP,用BMP-2诱导骨髓MSCs分化,观察COMP过表达对MSCs成骨分化和成软骨分化的影响。

1 材料与方法 1.1 试剂与仪器

SD大鼠骨髓间充质干细胞、干细胞完全培养基购自广州赛业生物科技,载有人COMP基因的pIRES-hrGFP-1a质粒购自上海生工公司;10%胎牛血清、DMEM培养基(Gibco),real-time PCR试剂盒、质粒抽提试剂盒、2×Taq PCR MasterMix PCR扩增试剂(TaKaRa),人重组BMP-2(Peprotech,美国),COMP抗体(Abcam),RUNX2抗体、SOX9抗体(CST公司,美国),Ⅱ型胶原抗体、骨钙蛋白抗体(Millipore),β-actin抗体(博士德公司,武汉),羊抗兔二抗、羊抗鼠二抗、细胞裂解液(碧云天公司),茜素红和阿利新蓝染料(广州赛业生物科技公司),BCA蛋白浓度检测试剂盒、预染蛋白Marker(美国ThermoFisher Scientific公司),引物合成委托上海生工公司。

1.2 细胞转染与分组

实验设计为三个组别:对照组为正常培养的骨髓间充质干细胞,空载体组为转染空载质粒的骨髓间充质干细胞,过表达组为转染过表达COMP重组质粒的骨髓间充质干细胞。

培养在干细胞完全培养基中的第五代对数期骨髓间充质干细胞,于转染前12 h种植细胞培养六孔板,使细胞汇合度在转染时达到40%~50%,脂质体转染步骤严格按照说明书进行,转染时长为6 h,转染后三组均更换含50 ng/ml BMP-2、10 % FBS的DMEM培养基继续诱导分化培养至各后续实验检测所需的时间,每隔2~3天换液。

1.3 Real-time PCR分析mRNA表达水平

各组处理后收集细胞,六孔板每孔添加适量Trizol和氯仿,提取总RNA,去基因组后检测RNA纯度,纯度合格且无蛋白质污染,用MMLV逆转录酶进行逆转录。GAPDH上游引物:GAAGGTGAAGGTCGGAGTC,下游引物:GAAGATGGTGATGGGATTTC;COMP上游引物:CCCAACTCAGACCAGAAGGA,下游引物:GTCACAAGCATCTCCCACAA;SOX9上游引物:GACGTGCAAGCTGGGAAAGT,下游引物:CGGCAGGTATTGGTCAAACTC;RUNX2上游引物:GCGTCCTATCAGTTCCCAAT,下游引物:CAGCGTCAACACCATCATTC;蛋白聚糖上游引物:TGGCATTGAGGACAGCGAAG,下游引物:TCCAGTGTGTAGCGTGTGGAAATAG;Ⅰ型胶原上游引物:GACATGTTCAGCTTTGTGGACCTC,下游引物:GGGACCCTTAGGCCATTGTGTA;Ⅱ型胶原上游引物:CGCCACGGTCCTACAATGTC,下游引物:GTCACCTCTGGGTCCTTGTTCAC;X型胶原上游引物:CATGCCTGATGGCTTCATAAA,下游引物:AAGCAGACACGGGCATACCT。逆转录成cDNA后,进行定量分析,反应条件为预变性95 ℃,5 min,变性94 ℃,30 s,目的基因均退火60 ℃,30 s,(内参GAPDH退火55 ℃,30 s),延伸72 ℃,1 min,40个循环,72 ℃,6 min。PCR产物进行琼脂糖凝胶电泳,紫外灯下观察DNA条带,凝胶成像系统拍照保存。

1.4 Western blotting分析蛋白表达情况

各组处理后收集细胞,冰上加裂解液充分裂解细胞,离心收集上清,使用BCA法测定样品蛋白浓度,分装成30 μg每小管,加上样缓冲液后高温变性,样品经SDS-PAGE电泳后电转移至PVDF膜,TBST配制的5 %脱脂奶粉常温封闭1~2 h,TBST洗膜3次后孵育一抗,COMP、RUNX2、SOX9、Ⅱ型胶原、骨钙蛋白、X型胶原一抗稀释比例均为1:1 000,β-actin稀释比例为1:2 000,一抗4 ℃摇床孵育过夜,TBST洗膜3次后孵育对应的HRP标记的羊抗小鼠或羊抗兔二抗,稀释比例为1:5 000,常温孵育2 h;TBST洗膜后暗室添加适量ECL试剂后压片、显影、定影,胶片扫描后蛋白条带用Image J软件进行灰度分析,半定量检测蛋白表达。

1.5 成骨染色

培养至第21天时弃去培养基,PBS清洗细胞2遍,体积分数4 %的多聚甲醛固定30 min,用PBS清洗2遍,加人0.1 %茜素红染液,染色5 min,用PBS清洗2遍,置于倒置显微镜系统成像。

1.6 成软骨染色

培养至第21天时,弃去培养基,用PBS清洗细胞2遍,体积分数4 %的多聚甲醛固定30 min,加入l %阿利新蓝染液室温染色30 min,用PBS清洗2遍后置于倒置显微镜系统成像。

1.7 统计处理

数据以均数±标准差(x±s)表示,使用SPSS 16.0分析数据,多组间比较行单因素方差分析(One Way ANOVA),P < 0.05为差异具有统计学意义。

2 结果 2.1 骨髓间充质干细胞COMP基因过表达检测

细胞转染7天(168 h)后,过表达组目的基因COMP mRNA水平均显著高于对照组和空载体组(P < 0.05),COMP蛋白表达明显多于对照组和空载体组,见图 1

图 1 骨髓间充质干细胞中COMP过表达效果验证 Figure 1 The validation of COMP overexpression effect in MSCs by RT-PCR and Western blotting Compared with control group, * P < 0.05; Compared with empty vector group, # P < 0.05
2.2 成骨基因表达及细胞成骨染色

COMP过表达组细胞转染7天(168 h)后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组和空载体组(P < 0.05),见图 2;细胞转染后7天(168 h),Western blot结果显示过表达组细胞成骨标记基因RUNX2、骨钙蛋白(Osteocalcin)的蛋白表达水平均明显低于对照组和空载体组(P < 0.05),见图 3。茜素红染色反映矿化结节的生成情况,COMP过表达组细胞转染21天(504 h),茜素红染色深度明显弱于对照组和空载体组,见图 4。以上结果说明骨髓间充质干细胞COMP基因过表达抑制其成骨分化。

图 2 PCR分析COMP基因过表达对骨髓间充质干细胞成骨和成软骨标记基因表达的影响 Figure 2 The effects of COMP overexpression on osteogenesis and chondrogenesis related gene expression in MSCs by RT-PCR Compared with control group, * P < 0.05; Compared with empty vector group, # P < 0.05
图 3 Western blot检测COMP基因过表达对骨髓间充质干细胞成骨和成软骨标记基因表达的影响 Figure 3 The effects of COMP overexpression on osteogenesis and chondrogenesis related gene protein expression in MSCs by Western blotting Compared with control group, * P < 0.05; Compared with empty vector group, # P < 0.05
图 4 茜素红染色结果(×40) Figure 4 The results of alizarin red staining
2.3 成软骨基因表达及细胞成软骨染色

COMP过表达组细胞转染7天(168 h)后,成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组和空载体组(P < 0.05),见图 2;细胞转染后7天(168 h),Western blot结果显示过表达组细胞成软骨标记基因SOX9、Ⅱ型胶原(Col2a1)的蛋白表达均明显多于对照组和空载体组(P < 0.05),见图 3。阿利新蓝染色反映细胞基质蛋白多糖的合成情况,COMP过表达组细胞转染21天(504 h),阿利新蓝染色深度、密度明显强于对照组和空载体组,见图 5。结果说明骨髓间充质干细胞COMP基因过表达诱导其成软骨分化。

图 5 阿利新蓝染色结果(×100) Figure 5 The results of alcian blue staining
2.4 晚期成软骨标志物X型胶原(Col10a1)基因表达

COMP过表达组细胞转染14天(336 h)后,基因Col10a1 mRNA水平均显著低于对照组和空载体组(P < 0.05),Col10a1蛋白表达也明显少于对照组和空载体组,见图 6。结果提示骨髓间充质干细胞COMP基因过表达可抑制软骨细胞的成熟与肥大,维持软骨细胞表型。

图 6 RT-PCR和Western blotting分析Col10a1基因表达 Figure 6 The gene expression of Col10a1 in MSCs by RT-PCR and Western blotting Compared with control group, * P < 0.05; Compared with empty vector group, # P < 0.05
3 讨论

组织移植是治疗软骨损伤的主要方法之一,它可在短期内改善临床症状,但长期疗效还不明确。软骨供给不足及对供体产生损害,且再生能力有限,这些缺点限制了软骨移植等组织移植的应用[1, 8]。应用MSCs的软骨组织工程技术治疗软骨损伤与退变是目前的研究热点,多种生长因子在MSCs分化中发挥重要作用,但作用有限且无特异性[9]。COMP为软骨特异的胞外基质蛋白,研究表明,通过基因修饰技术过表达COMP有利于维持软骨表型[10];COMP可通过C端与BMP-2结合,抑制其成骨诱导作用,进而减少血管内皮细胞钙化[11],这些研究提示COMP对细胞命运产生作用,且该作用可能与BMP-2有关[12-13]。BMP-2具有诱导干细胞成骨分化和成软骨分化的双重作用。目前研究较少关注BMP-2双面效应的调节,且关于COMP过表达是否会对BMP-2诱导干细胞分化的方向产生影响,也还不清楚。本研究将两者结合起来,探讨COMP过表达对BMP-2诱导MSCs分化的影响。

结果显示,COMP过表达组目的基因COMP mRNA和蛋白表达水平明显高于对照组,说明目的基因成功转染并顺利表达。RUNX2是与成骨分化相关的关键转录因子,在调节骨细胞成熟过程中发挥重要作用;BMP-2可促进RUNX2表达,后者又能上调成骨相关基因的表达,如I型胶原、骨钙蛋白等[14-15]。本研究结果还显示,过表达COMP在成骨诱导中晚期,COMP过表达组成骨基因的表达较对照组均显著下调,这可能与过表达COMP减弱BMP-2成骨诱导作用,抑制RUNX2及下游成骨相关基因表达有关。为观察成骨分化过程中矿化程度,使用茜素红对钙结节进行染色了解骨化进程,本研究中细胞转染21天后,COMP过表达组茜素红染色强度明显弱于对照组,提示COMP过表达使干细胞成骨分化进程中钙结节形成受到抑制。

SOX9是BMP-2诱导干细胞成软骨分化进程中的关键转录因子,可被BMP-2信号通路活化,促进其诱导的成软骨分化,同时抑制其诱导的成骨分化[16-17]。Ⅱ型胶原和蛋白聚糖是细胞外基质的重要成分,被认为是软骨分化的重要分子指标[18]。BMP-2诱导干细胞成软骨分化过程中,晚期阶段会出现软骨细胞的肥大、凋亡及基质钙化,破坏正常软骨细胞表型,X型胶原为晚期软骨分化标记物[19-20]。本研究结果显示,过表达COMP在诱导成软骨分化过程中,成软骨相关指标SOX9、Ⅱ型胶原及蛋白聚糖的基因表达水平显著上升。COMP本身可以活化BMP-2促进其成软骨诱导作用,上调成软骨相关基因表达;SOX9单独作用可促进蛋白聚糖基因表达,另一方面,COMP上调SOX9表达后,也进一步促进蛋白聚糖表达。阿利新蓝染色结果同样说明过表达COMP可促进细胞外基质蛋白多糖的合成。此外,本文研究指出过表达COMP可显著下调X型胶原的mRNA和蛋白表达水平,抑制诱导生成的软骨细胞成熟和肥大,维持软骨细胞表型。

综上所述,过表达骨髓间充质干细胞COMP基因可抑制BMP-2诱导MSCs成骨分化,促进BMP-2诱导MSCs成软骨分化,这可能为软骨组织工程提供一个新的方向和靶点。

参考文献
[1] 虞冀哲, 董学海, 陈海丹, 等. 间充质干细胞应用于软骨组织工程的研究进展. 生物骨科材料与临床研究 , 2015, 12 (4) : 60–64. Yu J Z, Dong X H, Chen H D, et al. Reviewed the research progress of cartilage tissue engineering using mesenchymal stem cells. Orthop Biomech Mater Clin Study , 2015, 12 (4) : 60–64.
[2] Liang Y, Fu Y, Qi R, et al. Cartilage oligomeric matrix protein is a natural inhibitor of thrombin. Blood , 2015, 126 (7) : 905–914. DOI:10.1182/blood-2015-01-621292
[3] Kluzek S, Bay-Jensen A C, Spector T, et al. Higher serum levels of cartilage oligomeric matrix protein (comp) are associated with self-reported knee pain. Osteoarthr Cartilage , 2014, 22 (3) : S74.
[4] Kluzek S, Bay-Jensen A C, Judge A, et al. Serum cartilage oligomeric matrix protein and development of radiographic and painful knee osteoarthritis. A community-based cohort of middle-aged women. Biomarkers , 2015, 20 (8) : 557–564. DOI:10.3109/1354750X.2015.1105498
[5] Kim M J, Lee B, Yang K, et al. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials , 2013, 34 (30) : 7236–7246. DOI:10.1016/j.biomaterials.2013.06.019
[6] Barati D, Shariati S R, Moeinzadeh S, et al. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J Controll Release , 2016, 223 : 126–136. DOI:10.1016/j.jconrel.2015.12.031
[7] Guzzo R M, Gibson J, Xu R H, et al. Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. J Cell Biochem , 2013, 114 (2) : 480–490. DOI:10.1002/jcb.v114.2
[8] 朱瑜琪, 王金荣, 王智耀. 间充质干细胞促进关节软骨的修复与再生. 中国组织工程研究 , 2015, 19 (50) : 8195–8200. Zhu Y Q, Wang J R, Wang Z Y. Mesenchymal stem cells promote articular cartilage repair and regeneration. Chin J Tissue Eng Res , 2015, 19 (50) : 8195–8200.
[9] 曲峰, 袁邦拓, 齐玮, 等. Wnt3a对骨髓间充质干细胞成软骨分化的影响. 中国矫形外科杂志 , 2016, 24 (2) : 155–159. Qu F, Yuan B T, Qi W, et al. Effect of Wnt3a on chondrogenic differentiation of nesenchymal stem cells. Orthop J China , 2016, 24 (2) : 155–159.
[10] Dharmavaram R M, Liu G, Tuan R S, et al. Stable transfection of human fetal chondrocytes with a type II procollagen minigene: expression of the mutant protein and alterations in the structure of the extracellular matrix in vitro. Arthritis Rheum , 1999, 42 (7) : 1433–1442. DOI:10.1002/(ISSN)1529-0131
[11] Du Y, Wang Y, Wang L, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res , 2011, 108 (8) : 917–928. DOI:10.1161/CIRCRESAHA.110.234328
[12] Ishida K, Acharya C, Christiansen B A, et al. Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone , 2013, 55 (1) : 23–35. DOI:10.1016/j.bone.2013.03.007
[13] Guo P, Shi Z L, Liu A, et al. Effects of cartilage oligomeric matrix protein on bone morphogenetic protein-2-induced differentiation of mesenchymal stem cells. Orthop Surg , 2014, 6 (4) : 280–287. DOI:10.1111/os.12135
[14] Wang W J, Sun C, Liu Z, et al. Transcription factor Runx2 in the low bone mineral density of girls with adolescent idiopathic scoliosis. Orthop Surg , 2014, 6 (1) : 8–14. DOI:10.1111/os.2014.6.issue-1
[15] Ge C, Cawthorn W P, Li Y, et al. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARγ transcription factors. J Cell Physiol , 2016, 231 (3) : 587–596. DOI:10.1002/jcp.v231.3
[16] Liu C F, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res , 2015, 43 (17) : 8183–8203. DOI:10.1093/nar/gkv688
[17] Gurusinghe S, Young P, Michelsen J, et al. Suppression of differentiation and hypertrophy in canine chondrocytes through lentiviral vector expression of Sox9 and induced pluripotency stem cell factors. Biotechnol Lett , 2015, 37 (7) : 1495–1504. DOI:10.1007/s10529-015-1805-5
[18] 王冠, 陈星星, 薛鑫, 等. Ⅱ型胶原体外促进大鼠骨髓间充质干细胞向软骨细胞分化. 第三军医大学学报 , 2015, 37 (9) : 886–890. Wang G, Chen X X, Xue X, et al. Collagen Ⅱ promotes differentiation of rat bone marrow mesenchymal stem cells into chondrocytes in vitro. J Third Mil Med Univ , 2015, 37 (9) : 886–890.
[19] Lu Y, Ding M, Li N, et al. Col10a1-Runx2 transgenic mice with delayed chondrocyte maturation are less susceptible to developing osteoarthritis. Am J Transl Res , 2014, 6 (6) : 736–745.
[20] Gu J, Lu Y, Li F, et al. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation. Cell Death Dis , 2014, 5 (10) : e1469. DOI:10.1038/cddis.2014.444