文章信息
- 李锐, 蔡平讨, 叶丽冰, 张宏宇, 肖健
- LI Rui, CAI Ping-tao, YE Li-bing, ZHANG Hong-yu, XIAO Jian
- [PEAD:肝素:NGF]生物材料促进大鼠坐骨神经损伤恢复
- Biomaterial of [PEAD: Heparin: NGF] Coacervate Promote Function Recovery of Sciatic Nerve Regeneration in Rats
- 中国生物工程杂志, 2016, 36(2): 68-72
- China Biotechnology, 2016, 36(2): 68-72
- http://dx.doi.org/10.13523/j.cb.20160210
-
文章历史
- 收稿日期: 2015-11-20
- 修回日期: 2015-11-30
由肿瘤切除,先天性畸形,压缩,或挫伤等原因导致的外周神经损伤发生在约2.8%的创伤患者[1],它可能会导致运动,感觉和自主神经功能的部分或完全丧失,因此,严重影响患者的生活质量。目前,临床上主要采用自体神经移植或直接缝合的方法进行治疗,但由于存在着供体神经有限及免疫排斥等缺陷导致该法应用受限。因此,寻找更有效的治疗方法成为医学工作者的终身奋斗目标。神经生长因子(nerve growth factor,NGF)是研究最透彻的神经营养因子之一。据报道,在神经细胞的增殖和分化中起着至关重要的作用,以及在神经损伤后神经纤维的生长和轴突髓鞘再生的调节亦有促进损伤神经再生和修复的作用[2]。但NGF有活性半衰期较短以及在生理条件下迅速灭活的缺点[3],从而限制了NGF的应用前景。故本实验采用新型凝聚体-聚乙烯精氨酸天冬氨酸甘油二酯(PEAD)与肝素通过静电相互作用包裹NGF,达到保持NGF的生物活性及缓控其释放,以取得长久治疗外周神经损伤的效果。
1 材料与方法 1.1 实验动物及分组200g左右的Wistar雄性大鼠24只,随机分成生理盐组、NGF组,NGF凝聚体三组,每组各8只。
1.2 坐骨神经损伤模型制作将三组实验大鼠制成坐骨神经损伤模型的具体制模步骤如下: 将在温州医科大学动物房饲养一周的各组Wistar雄性大鼠麻醉用10%水合氯醛(1g/ml)腹腔注射,剃净右侧后肢毛发并用消毒液擦洗。动物俯卧固定,沿大腿中部股骨外缘切开,钝性分离肌层,暴露坐骨神经,在坐骨神经分叉近端(约7mm),用静脉夹钳夹持坐骨神经并持续2min,造成中度挫伤,夹持处的神经损伤的宽度约为2~3 mm。术后可见大鼠手术侧后肢拖行,后肢三个关节均不能大幅度运动,脚趾并拢并不能展开,提示坐骨神经损伤模型制作成功。
1.3 术后干预方法NGF凝聚体制备方法见文献[4],NGF凝聚体组大鼠在移去夹持坐骨神经的静脉夹后,立即在神经损伤部位注射0.1ml(含500μg PEAD,100μg肝素,2.4 μg NGF)的NGF缓释制剂;NGF组每天沿坐骨结节肌注NGF 0.1ml(80ng NGF),连续30d;生理盐水组实验方法同NGF组,但给予生理盐水代替NGF。术后各组逐层缝合伤口,每只大鼠均单笼饲养,并于造模后的前3天连续腹腔注射头孢唑林钠(50毫克/公斤)以预防感染。
1.4 行为学指标与病理结构观察 1.4.1 脚步印迹法为了评估造模后运动功能的恢复,对所有的动物进行了术后每周追踪分析。整体的坐骨神经功能指数(SFI)用Bain等[5]提出的方法用来评估受伤的右后爪协调运动功能的恢复。大鼠行走的脚印是在白纸上留下的足印按以下公式计算SFI,SFI = -38.3 ×(EPL-NPL)/ NPL + 109.5 ×(ETS-NTS) /NTS + 13.3 ×(EIT-NIT) / NIT-8.8 其中PL代表足印长度,即第三脚趾和脚跟的距离;TS代表足趾宽度,即第一和第五脚趾的间距;IT代表中间足趾宽度,即第二和第四脚趾的间距。E为损伤侧,N为对侧。SFI值近-100表示完整的功能丧失,而接近0的值表示正常的运动功能。
1.4.2 标本制备(1)石蜡切片标本制备:将取出的神经切取1cm 放于4%多聚甲醛固定过夜,PBS漂洗多余的多聚甲醛,放于梯度酒精脱水,二甲苯透明,再放于软硬蜡浸透完全与石蜡包埋机上包埋,待石蜡完全冷却后,固定于石蜡包埋机并横切成5μm厚度的病理切片粘附于载玻片上,用于后面的HE染色及免疫荧光;(2)透射电镜标本制备及形态学观察: 于术后30d将取出的坐骨神经在钳夹处切取2 mm,经2. 5%戊二醛固定过夜、PBS清洗3次,再经锇酸及醋酸铀各固定1h,丙酮梯度脱水、Epon812环氧树脂包埋于65℃恒温箱烘烤48h,随后于超薄切片机下切取50nm的切片,并采用柠檬酸铅和醋酸双氧铀染色,将制作好的切片置于JEM-200 C型透射电镜下观察各组大鼠再生神经纤维超微结构的排布及髓鞘厚度及数量的变化情况。
1.4.3 HE染色将烘烤的病理切片放于二甲苯中2次各透明15min,置于梯度的酒精水化,双蒸水洗去多余的乙醇,苏木素,伊红各染5min,10min,再置于梯度的酒精中脱水,二甲苯透明,中性树脂封片,风干后在400倍视野的光学显微镜下观察各组神经结构的变化。
1.4.4 免疫荧光烘烤好的切片置于二甲苯透明,梯度酒精水化,在煮沸的枸橼酸钠缓冲液中抗原修复2min,5%BSA中封闭30min,滴加一抗(MBP 1∶100)过夜,PBS漂洗4次,各5min,滴加对应的二抗37℃孵育1h,抗荧光猝灭剂封片,最后于荧光显微镜下拍照。
1.5 统计学分析本研究的数据采用SPSS 13.0 统计学软件包进行分析,组间比较采用t检验,并以均数±标准差(x±s) 表示,P<0. 05 表示差异具有统计学意义。
2 结 果 2.1 SFI的测定术后第1、2周各组均无统计学差异,在恢复治疗的第3周,NGF和NGF凝聚体组SFI值大于生理盐水组,并出现统计学差异,且NGF凝聚体组与NGF组相比,也出现统计学意义,而到第4周,这些统计学差异出现得更明显。从第4周测得的脚步印迹的角度,药物治疗组比生理盐水组,其脚印轮廓更清晰,脚趾间伸展得更开,其中NGF凝聚体组比NGF组的脚印更好。说明无论注射NGF或NGF凝聚体均可改善神经损伤后功能的恢复,且注射NGF凝聚体的效果更好(图 1)。
|
| 图 1 脚步印记法评价各组的功能恢复 Fig. 1 Functional recovery was evaluated in each group by walking track analysis (a)Graph of sciatic function index(SFI) value of rats in the three injured groups each week # P<0.05,##P< 0.01 vs NGF group; ** P<0.01,*** P<0.001 vs Saline group. The data are expressed as mean±SD,n=8 (b)Photographs of the rats’walking track prints in each group at 4 weeks |
由各组坐骨神经的HE染色结果看出,术后30d,生理盐水组神经纤维生长稀疏,轮廓不清,排列紊乱,NGF组可见神经由大小不等的神经束组成,外被有神经束膜和外膜,平直排列,可见稀疏的雪旺细胞的胞核,而NGF凝聚体组出现更多的再生神经纤维,轮廓清晰,排列整齐;从透射电镜的结果可知,生理盐水组再生的轴突数目较少,髓鞘厚度较薄,部分发育不完整,排列松散,NGF组有髓神经纤维密布于损伤神经中,排列较规整,轴突直径大小相差小、髓鞘厚薄一致,NGF凝聚体组虽然在再生的有髓神经纤数量上与NGF组相当,但具有更厚的髓鞘,轴突发育良好,排列有序。说明无论注射NGF或NGF凝聚体均可促进外周神经的再生,加速有髓神经纤维的成熟,且注射NGF凝聚体的效果更好(图 2)。
|
| 图 2 HE染色及透射电镜观察各组神经纤维的排布及轴突再生情况 Fig. 2 Analysis of regenerating cables by HE staining and transmission electron micrograph(TEM) at 30 days after injury (a) HE staining,light micrographs of transverse sections in the three groups magnification was 40× (b) TEM of regenerating nerve cables in each group Scale bar,2μm |
髓鞘碱性蛋白(myelin basic protein,MBP)是髓鞘的主要蛋白质,位于髓鞘浆膜面,维持PNS髓鞘结构和功能的稳定,具有神经组织特异性。术后30d大鼠坐骨神经MBP免疫荧光的检测结果发现生理盐水组其MBP的分布较少,荧光强度较弱,而给药组MBP的表达较多,分布均一,荧光变强,且NGF凝聚体由MBP标记组成髓鞘的厚度厚于NGF组,荧光强度更明显。说明给药后能促进损伤神经MBP的合成,从而加速损伤后的愈合,且注射NGF凝聚体的效果更好(图 3)。
|
| 图 3 MBP标记的免疫荧光(×400) Fig. 3 Representative micrographs showing immunofluorescence with MBP in each group |
PEAD是由赖氨酸和精氨酸通过缩聚反应合成的多价聚阳离子,该递送基质具有显著的缓释作用,安全无毒副作用,可简单地通过30G针头肌肉注射,持续时间至少可维持到第28d,显示出良好的组织相容性和治疗效果。细胞外生长因子通常结合于细胞外基质(ECM),ECM 的主要成分之一硫酸乙酰肝素是硫酸化的葡糖胺聚糖,肝素与乙酰肝素结构类似,因此可结合多种生长因子。基于上述原理,肝素对NGF的结合具有高亲和性,结合NGF后的肝素仍带有大量的负电荷,再与多聚阳离子PEAD之间通过多价静电相互作用建立生长因子的药物递送系统,从而达到缓控生长因子类药物释放的效果,已有报道对创面愈合[6],心肌梗死[7]等疾病具有很好的治疗效果。
神经生长因子(NGF)是最早发现的一种神经营养因子,目前研究最为透彻的具有神经元营养和促突起生长双重生物学功能的一种神经细胞生长调节因子,它对中枢及周围神经元的发育、分化、生长、再生和功能特性的表达均具有重要的调控作用。已有研究报道NGF对外周神经损伤具有良好的治疗效果[8, 9]。但NGF活性半衰期较短[10],在水溶液中活性丢失快,且易受湿度、酸碱度等多种因素的影响,全身应用将被快速灭活,局部穿刺分次给药又无法保证每次释药部位的准确,从而限制了NGF的应用前景。目前研究最广泛的就是用不同材料制成的神经导管内含神经生长因子包裹住离断的或缺损的外周神经,促使其生长发育,从而达到治疗效果[11, 12]。由于神经导管组织相容性差,不能被组织吸收,不宜在体内放置太久。长期观察发现神经导管会因变性而损伤新生神经,且易形成瘢痕和慢性压迫等缺陷,限制了其在临床的应用。
本实验采用新型凝聚体PEAD结合肝素包裹NGF来治疗外周神经损伤。NGF凝聚体本身具有有良好释放曲线,同时保证释放的NGF具有较强的生物活性。由上述的研究结果可知,经NGF凝聚体治疗外周神经损伤的大鼠在行为功能、显微结构及蛋白表达上均优于NGF组,而且只注射一次,说明[PEAD∶肝素]不仅能够保护NGF免受体内各种蛋白酶的降解,而且能将NGF运送到靶组织并连续不断控释着NGF。这些优势填补了其它材料的不足,为临床完善周围神经损伤患者的康复治疗提供了参考依据。
| [1] | Noble J,Munro C A, Prasad V S,et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma,1998,45(1):116-122. |
| [2] | Petruska J C,Mendell L M. The many functions of nerve growth factor:multiple actions on nociceptors. Neurosci Lett,2001,361(1-3):168-171. |
| [3] | Tria M A,Fusco M,Vantini G,et al. Pharmacokinetics of nerve growth factor(NGF) following different routes of administration to adult rats. Exp Neurol,1994,127(2):178-183. |
| [4] | Chu H,Johnson N R,Mason N S,et al. A complex releases growth factors with enhanced bioactivity. J Control Release,2011,150(2):157-163. |
| [5] | Bain J R,Mackinnon S E,Hunter D A. Functional evaluation of complete sciatic,peroneal,and posterior tibial nerve lesions in the rat. Plast Reconstr Surg,1989,83(1):129-138. |
| [6] | Johnson N R,Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release,2013,166(2):124-129. |
| [7] | Chu H,Chen C W,Huard J,et al. The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials,2013,34(6):1747-1756. |
| [8] | Gravvanis A I,Tsoutsos D A,Tagaris G A,et al. Beneficial effect of nerve growth factor-7S on peripheral nerve regeneration through inside-out vein grafts:an experimental study. Microsurgery,2004,24(5):408-415. |
| [9] | Kemp S W,Webb A A,Dhaliwal S,et al. Dose and duration of nerve growth factor(NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Exp Neurol,2011,229(2):460-470. |
| [10] | Tsai C C,Lu M C,Chen Y S,et al. Locally administered nerve growth factor suppresses ginsenoside Rb1-enhanced peripheral nerve regeneration. Am J Chin Med,2003,31(5):665-673. |
| [11] | Yu H,Peng J,Guo Q,et al. Improvement of peripheral nerve regeneration in acellular nerve grafts with local release of nerve growth factor. Microsurgery,2009,29(4):330-336. |
| [12] | Kemp S W,Syed S,Walsh W,et al. Collagen nerve conduits promote enhanced axonal regeneration,schwann cell association,and neovascularization compared to silicone conduits. Tissue Eng Part A,2009,15(8):1975-1988. |
2016, Vol. 36


