[1] |
Rabiee MH, Mahmoudi A, Siahsarvie R, et al. Rodent-borne diseases and their public health importance in Iran[J]. PLoS Negl Trop Dis, 2018, 12(4): e0006256. DOI:10.1371/journal.pntd.0006256 |
|
[2] |
Griffiths J, Yeo HL, Yap G, et al. Survey of rodent-borne pathogens in Singapore reveals the circulation of Leptospira spp., Seoul hantavirus, and Rickettsia typhi[J]. Sci Rep, 2022, 12(1): 2692. DOI:10.1038/s41598-021-03954-w |
|
[3] | |
|
[4] | |
|
[5] |
刘丽, 汪巨峰, 李波. 鼠疫疫苗的研究现状和进展[J]. 中国药学杂志, 2013, 48(12): 945-949. Liu L, Wang JF, Li B. Current status and progress of research on plague vaccine[J]. Chin Pharm J, 2013, 48(12): 945-949. DOI:10.11669/cpj.2013.12.001 |
|
[6] |
Fitts EC, Andersson JA, Kirtley ML, et al. New insights into autoinducer-2 signaling as a virulence regulator in a mouse model of pneumonic plague[J]. mSphere, 2016, 1(6): e00342-16. DOI:10.1128/mSphere.00342-16 |
|
[7] |
Zauberman A, Vagima Y, Tidhar A, et al. Host iron nutritional immunity induced by a live Yersinia pestis vaccine strain is associated with immediate protection against plague[J]. Front Cell Infect Microbiol, 2017, 7: 277. DOI:10.3389/fcimb.2017.00277 |
|
[8] |
Demeure CE, Derbise A, Carniel E. Oral vaccination against plague using Yersinia pseudotuberculosis[J]. Chem Biol Interact, 2017, 267: 89-95. DOI:10.1016/j.cbi.2016.03.030 |
|
[9] |
Quenee LE, Ciletti NA, Elli D, et al. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines[J]. Vaccine, 2011, 29(38): 6572-6583. DOI:10.1016/j.vaccine.2011.06.119 |
|
[10] |
Hu JL, Jiao L, Hu YM, et al. One year immunogenicity and safety of subunit plague vaccine in Chinese healthy adults: An extended open-label study[J]. Hum Vaccin Immunother, 2018, 14(11): 2701-2705. DOI:10.1080/21645515.2018.1486154 |
|
[11] |
李学荣, 余新炳. 核酸疫苗及其免疫机制研究[J]. 中国人兽共患病杂志, 2000, 16(6): 82-86. Li XR, Yu XB. Research on nucleic acid vaccine and its immunization mechanism[J]. Chin J Zoonoses, 2000, 16(6): 82-86. DOI:10.3969/j.issn.1002-2694.2000.06.029 |
|
[12] |
焦磊, 吴智远, 王婷, 等. 鼠疫疫苗Ⅱa期临床血清对小鼠的被动保护水平及其与抗体效价的相关性分析[J]. 微生物学免疫学进展, 2017, 45(6): 9-12. Jiao L, Wu ZY, Wang T, et al. F1 and V antibody levels in correlation to mice protection passively adopted from human serum immunized by plague vaccine[J]. Prog Microbiol Immunol, 2017, 45(6): 9-12. DOI:10.13309/j.cnki.pmi.2017.06.002 |
|
[13] |
陈化新. 中国肾综合征出血热疫苗大规模应用研究[J]. 中华流行病学杂志, 2002, 23(2): 145-147. Chen HX. Large-scale application study of hemorrhagic fever vaccine for renal syndrome in China[J]. Chin J Epidemiol, 2002, 23(2): 145-147. DOI:10.3760/j.issn:0254-6450.2002.02.019 |
|
[14] |
Sohn YM, Rho HO, Park MS, et al. Primary humoral immune responses to formalin inactivated hemorrhagic fever with renal syndrome vaccine (Hantavax ®): Consideration of active immunization in South Korea[J]. Yonsei Med J, 2001, 42(3): 278-284. DOI:10.3349/ymj.2001.42.3.278 |
|
[15] |
张锦鹏, 张冠文, 宣国云, 等. 溶酶体靶向的汉坦病毒包膜糖蛋白DNA疫苗的体液免疫评价和攻毒保护效果[J]. 中国免疫学杂志, 2018, 34(3): 331-334. Zhang JP, Zhang GW, Xuan GY, et al. Humoral immunity evaluation and virual challenge of lysosomal targeted hantavirus envelope glycoprotein DNA vaccine[J]. Chin J Immunol, 2018, 34(3): 331-334. DOI:10.3969/j.issn.1000-484X.2018.03.003 |
|
[16] |
Brown KS, Safronetz D, Marzi A, et al. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus[J]. J Virol, 2011, 85(23): 12781-12791. DOI:10.1128/JVI.00794-11 |
|
[17] |
Hooper J, Paolino KM, Mills K, et al. A phase 2a randomized, double-blind, dose-optimizing study to evaluate the immunogenicity and safety of a bivalent DNA vaccine for hemorrhagic fever with renal syndrome delivered by intramuscular electroporation[J]. Vaccines, 2020, 8(3): 377. DOI:10.3390/vaccines8030377 |
|
[18] | |
|
[19] | |
|
[20] |
Srikram A, Zhang KK, Bartpho T, et al. Cross-protective immunity against leptospirosis elicited by a live, attenuated lipopolysaccharide mutant[J]. J Infect Dis, 2011, 203(6): 870-879. DOI:10.1093/infdis/jiq127 |
|
[21] |
Conrad NL, McBride FWC, Souza JD, et al. LigB subunit vaccine confers sterile immunity against challenge in the hamster model of leptospirosis[J]. PLoS Negl Trop Dis, 2017, 11(3): e0005441. DOI:10.1371/journal.pntd.0005441 |
|
[22] |
Forster KM, Hartwig DD, Seixas FK, et al. A conserved region of leptospiral immunoglobulin-like A and B proteins as a DNA vaccine elicits a prophylactic immune response against leptospirosis[J]. Clin Vaccine Immunol, 2013, 20(5): 725-731. DOI:10.1128/CVI.00601-12 |
|
[23] |
da Cunha CEP, Bettin EB, Bakry AFAAY, et al. Evaluation of different strategies to promote a protective immune response against leptospirosis using a recombinant LigA and LigB chimera[J]. Vaccine, 2019, 37(13): 1844-1852. DOI:10.1016/j.vaccine.2019.02.010 |
|
[24] |
Garba B, Bahaman AR, Zakaria Z, et al. Antigenic potential of a recombinant polyvalent DNA vaccine against pathogenic leptospiral infection[J]. Microb Pathog, 2018, 124: 136-144. DOI:10.1016/j.micpath.2018.08.028 |
|
[25] |
Shen AK, Mead PS, Beard CB. The Lyme disease vaccine: A public health perspective[J]. Clin Infect Dis, 2011, 52(Suppl 3): S247-252. DOI:10.1093/cid/ciq115 |
|
[26] |
Dattwyler RJ, Gomes-Solecki M. The year that shaped the outcome of the OspA vaccine for human Lyme disease[J]. npj Vaccines, 2022, 7(1): 10. DOI:10.1038/s41541-022-00429-5 |
|
[27] |
Hahn BL, Padmore LJ, Ristow LC, et al. Live attenuated Borrelia burgdorferi targeted mutants in an infectious strain background protect mice from challenge infection[J]. Clin Vaccine Immunol, 2016, 23(8): 725-731. DOI:10.1128/CVI.00302-16 |
|
[28] |
Ding W, Huang XL, Yang XH, et al. Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA[J]. J Mol Biol, 2000, 302(5): 1153-1164. DOI:10.1006/jmbi.2000.4119 |
|
[29] |
Vogt NA, Sargeant JM, Mackinnon MC, et al. Efficacy of Borrelia burgdorferi vaccine in dogs in North America: A systematic review and meta-analysis[J]. J Vet Intern Med, 2019, 33(1): 23-36. DOI:10.1111/jvim.15344 |
|
[30] |
Guibinga GH, Sahay B, Brown H, et al. Protection against Borreliella burgdorferi infection mediated by a synthetically engineered DNA vaccine[J]. Hum Vaccin Immunother, 2020, 16(9): 2114-2122. DOI:10.1080/21645515.2020.1789408 |
|
[31] |
贺琪楠, 尹家祥. 鼠型斑疹伤寒流行现状及其影响因素[J]. 中国热带医学, 2019, 19(8): 790-793. He QN, Yin JX. Epidemic situation and influential factors of murine typhus[J]. China Trop Med, 2019, 19(8): 790-793. DOI:10.13604/j.cnki.46-1064/r.2019.08.19 |
|
[32] | |
|
[33] | |
|
[34] |
Choi S, Jeong HJ, Hwang KJ, et al. A recombinant 47-kDa outer membrane protein induces an immune response against Orientia tsutsugamushi strain Boryong[J]. Am J Trop Med Hyg, 2017, 97(1): 30-37. DOI:10.4269/ajtmh.15-0771 |
|
[35] |
Kim HI, Ha NY, Kim G, et al. Immunization with a recombinant antigen composed of conserved blocks from TSA56 provides broad genotype protection against scrub typhus[J]. Emerg Microbes Infect, 2019, 8(1): 946-958. DOI:10.1080/22221751.2019.1632676 |
|
[36] |
Cho H, Lee WH, Kim YK, et al. Extracellular vesicle-associated antigens as a new vaccine platform against scrub typhus[J]. Biochem Biophys Res Commun, 2020, 523(3): 602-607. DOI:10.1016/j.bbrc.2020.01.014 |
|
[37] |
Song SW, Kim KT, Ku YM, et al. Clinical role of interstitial pneumonia in patients with scrub typhus: A possible marker of disease severity[J]. J Korean Med Sci, 2004, 19(5): 668-673. DOI:10.3346/jkms.2004.19.5.668 |
|
[38] |
Park SM, Gu MJ, Ju YJ, et al. Intranasal vaccination with outer-membrane protein of Orientia tsutsugamushi induces protective immunity against Scrub Typhus[J]. Immune Netw, 2021, 21(2): e14. DOI:10.4110/in.2021.21.e14 |
|
[39] |
Liu RR, Ma HW, Shu JY, et al. Vaccines and therapeutics against Hantaviruses[J]. Front Microbiol, 2020, 10: 2989. DOI:10.3389/fmicb.2019.02989 |
|
[40] | |
|