作为一类非常有代表性的非自伴算子,Toeplitz算子是算子理论和算子代数的重要研究对象,它将算子理论、函数论和Banach代数等理论紧密的联系在一起。如何利用符号函数的性质刻画Toeplitz算子的性质是Toeplitz算子理论中的重要课题。紧性作为Toeplitz算子最基本的性质之一受到广泛关注。
在单位圆盘加权Dirichlet空间D(D, dAα)上, R.Richard和吴志坚[1]在一定条件下刻画了以非负测度为符号的Toeplitz算子的紧性。当权系数α=0时,邓燕、潘根梅[2]在D(D, dA)上给出了以拟齐次函数为符号的Toeplitz算子是紧算子的等价条件。当符号函数为径向函数时,王晓峰和夏锦[3]利用Mellin变换给出了圆环Dirichlet空间D(Ω, dA)上Toeplitz算子紧的等价条件。最近, 陈建军和王晓峰[4]在圆环Dirichlet空间Dp(Ω, dA)上考虑以φ∈L∞, 1为符号的Toeplitz算子的紧性,证明了Tφ紧当且仅当Tφ的Berezin变换在圆环的两条边界上为零,其中L∞, 1={u∈Lp, 1:u,
设dσ是[0, 1)上有限正Borel测度,Nakazi Takahiko和Yoneda Rikio[5]在加权Bergman空间La2(D, dσdθ)上给出了以连续函数为符号的Toeplitz算子紧的充要条件。在加权Dirichlet空间D(D, dσdθ)上,当φ∈C1(D)且φ,
令{z∈D||z| < 1},Ω=D,ρ
$ \left\| f \right\| = {\left\{ {{{\left| {\int_\Omega {f{\rm{d}}\mu } } \right|}^2} + \int_\Omega {\left( {{{\left| {\frac{{\partial f}}{{\partial z}}} \right|}^2} + {{\left| {\frac{{\partial f}}{{\partial z}}} \right|}^2}} \right){\rm{d}}\mu } } \right\}^{\frac{1}{2}}} < \infty 。$ |
下的完备化空间,该空间是内积空间:
$ \left\langle {f,g} \right\rangle = \int_\Omega {f{\rm{d}}\mu } \int_\Omega {\bar g{\rm{d}}\mu } + {\left[ {\frac{{\partial f}}{{\partial z}},\frac{{\partial g}}{{\partial z}}} \right]_2} + {\left[ {\frac{{\partial f}}{{\partial \bar z}},\frac{{\partial g}}{{\partial \bar z}}} \right]_2}, $ |
其中〈·, ·〉2为L2(Ω, dμ)中的内积。称由S(Ω, dμ)中Laurent展式没有常数项的解析函数全体构成的空间为圆环上的加权Dirichlet空间, 记为D(Ω, dμ)。
令
当ρ=0时,La2(D, dμ)[5]和D(D, dμ)[6]是完备的;当0 < ρ < 1时,La2(Ω, rdrdθ)是完备的[8]。下面我们考虑La2(Ω, dμ)和D(Ω, dμ)的完备性。将这上述空间分别简记为S(dμ),La2(dμ)和D(dμ)。
令dσ0=rdr,根据Lebesgue-Radon-Nikodym定理可将σ分解为σ=σ1+σ2,其中σ1和σ2为正测度满足σ1≤σ0和σ2⊥σ0。于是存在非负可测函数h∈L1([ρ, 1))使得dσ1=h(r)dσ0。本文总设存在正数R0使得h在区间[ρ, ρ+R0)∪(1-R0, 1)上的本性下确界为β>0。
引理1.1 设f∈La2(dμ),则对Ω的任意紧子集K,存在与z无关的常数M>0使得
$ \left| {f\left( z \right)} \right| \le M{\left\| f \right\|_2},\forall z \in K。$ |
证明 令
F={z|ρ < |z| < ρ+R0}∪{z|1-R0 < |z| < 1},对∀a∈F,存在R>0使
$ {f^2}\left( z \right) = \frac{1}{{2{\rm{ \mathsf{ π} }}}}\int_0^{2{\rm{ \mathsf{ π} }}} {\frac{{{r^2} - {{\left| {z - a} \right|}^2}}}{{{{\left| {\zeta - z} \right|}^2}}}{f^2}\left( \zeta \right){\rm{d}}\theta } 。$ |
于是
从而
$ \int_{{r_1}}^R {{{\left| {f\left( z \right)} \right|}^2}r{\rm{d}}r} \le \frac{{R + {r_0}}}{{{\rm{ \mathsf{ π} }}\left( {{r_1} - {r_0}} \right)}}\int_{{r_1}}^R {\int_0^{2{\rm{ \mathsf{ π} }}} {{{\left| {f\left( {a + r{{\rm{e}}^{i\theta }}} \right)} \right|}^2}r{\rm{d}}r{\rm{d}}\theta } } 。$ |
令
$ \begin{array}{l} {\left| {f\left( z \right)} \right|^2} \le {M_0}\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}{\rm{d}}m\left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}h\left( r \right){\rm{d}}m\left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}{\rm{d}}\mu \left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\left\| f \right\|_2^2, \end{array} $ |
其中:
$ \left| {f\left( z \right)} \right| \le {M_1}{\left\| f \right\|_2} $ | (1) |
对任意
$ E = \left\{ {z\left| {\rho + \frac{{{R_0}}}{2} < \left| z \right| < 1 - \frac{{{R_0}}}{2}} \right.} \right\} $ |
上成立。注意到
由引理1.1可知, 对任意z∈Ω,点赋值泛函l(f)=f(z)在La2(dμ)上有界,根据Riesz表示定理,存在唯一的Kz∈La2(dμ)使f(z)=[f, Kz]2,称Kz为La2(dμ)的再生核,设
$ {R_z}\left( \omega \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\overline {{e_n}\left( z \right)} {e_n}\left( \omega \right)} = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {c_n^2\overline {{z^n}} {\omega ^n}} 。$ | (2) |
定理1.1 La2(dμ)是L2(dμ)的完备子空间。
证明 任取La2(dμ)中Cauchy列{fn},由上面分析可得在Ω内的任意紧子集K上,存在正数M>0使得
$ \left| {{f_n}\left( z \right) - {f_m}\left( z \right)} \right| \le M{\left\| {{f_n} - {f_m}} \right\|_2}。$ |
于是{fn(z)}在∀z∈Ω处收敛。记f(z)=
定理1.2 D(dμ)是S(dμ)的完备子空间。
证明 任取D(dμ)中Cauchy列{fn},由于
利用定理1.1可得存在f, h∈La2(dμ),使得{fn}和{fn′}在Ω上分别内闭一致收敛于f和h。于是f′(z)=h(z)。任取r满足ρ < r < 1,从而f的Laurent展式的常数项
$ {c_0} = \int_{\left| \zeta \right| = r} {\frac{{f\left( \zeta \right)}}{\zeta }{\rm{d}}\zeta } = \mathop {\lim }\limits_{n \to \infty } \int_{\left| \zeta \right| = r} {\frac{{{f_n}\left( \zeta \right)}}{\zeta }{\rm{d}}\zeta } = 0。$ |
易证f∈D(dμ)且
利用dσ的严格正性可以证明以下引理,其证明借鉴了Takahiko Nakazi和Rikio Yoneda[5]在单位圆盘上的证明方法,不同的是,他们只需考虑n趋于正无穷, 而我们在圆环上需要分别考虑n趋于正无穷和趋于负无穷两种情况。
引理1.2 设ε>0,ρ>0且满足ρ+ε < 1,则有
$ \left( {\rm{i}} \right)\mathop {\lim }\limits_{n \to + \infty } \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} = 0,\left( {{\rm{ii}}} \right)\mathop {\lim }\limits_{n \to - \infty } \frac{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} = 0。$ |
证明 一方面,对于任意正整数n,有
$ \begin{array}{*{20}{c}} {0 \le \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} \le \frac{{{{\left( {\rho + \varepsilon } \right)}^n}\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} = }\\ {\frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon }^1 {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le \frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon + \delta }^1 {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le }\\ {{{\left( {\frac{{\rho + \varepsilon }}{{\rho + \varepsilon + \delta }}} \right)}^n}\frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\sigma \left( {\left[ {\rho + \varepsilon + \delta ,1} \right]} \right)}},} \end{array} $ |
其中δ>0且满足ρ+ε+δ < 1。又由于
另一方面,对任意负整数n,有
$ \begin{array}{*{20}{c}} {0 \le \frac{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} \le \frac{{{{\left( {\rho + \varepsilon } \right)}^n}\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} = }\\ {\frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon } {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le \frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon - \delta } {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le }\\ {{{\left( {\frac{{\rho + \varepsilon }}{{\rho + \varepsilon - \delta }}} \right)}^n}\frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon - \delta } \right]} \right)}},\forall 0 < \delta < \varepsilon 。} \end{array} $ |
利用
引理1.3 设l为非负整数,则有
$ \left( {\rm{i}} \right)\mathop {\lim }\limits_{n \to + \infty } \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} = 1,\left( {{\rm{ii}}} \right)\mathop {\lim }\limits_{n \to - \infty } \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} = {\rho ^l}。$ |
证明(ⅰ)当n>0时,∀0 < ε < 1-ρ,适当放缩得
$ \begin{array}{l} \int_\rho ^1 {{r^n}{\rm{d}}\sigma } - \int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } \le \\ \int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } + \int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } - {\left( {\rho + \varepsilon } \right)^l}\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } \le \\ \int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } + l\left( {1 - \rho - \varepsilon } \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } , \end{array} $ |
所以
$ 0 \le 1 - \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} \le \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} + l\left( {1 - \rho - \varepsilon } \right)。$ |
由引理1.2中结论(ⅰ)和ε的任意性可证得等式(ⅰ)。
(ⅱ)当n < 0时,适当的放缩有:
$ \begin{array}{l} 0 \le \int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } - {\rho ^l}\int_\rho ^1 {{r^n}{\rm{d}}\sigma } = \\ \left( {{{\left( {\rho + \varepsilon } \right)}^l} - {\rho ^l}} \right)\int_\rho ^{\rho + \varepsilon } {{r^{n + l}}{\rm{d}}\sigma } + \left( {1 - {\rho ^l}} \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } \le \\ l\varepsilon \int_\rho ^{\rho + \varepsilon } {{r^{n + l}}{\rm{d}}\sigma } + \left( {1 - {\rho ^l}} \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } , \end{array} $ |
再利用引理1.2中结论(ⅱ)和ε的任意性可得
在本节,我们主要考虑紧Toeplitz算子必要性。首先,给出空间上Toeplitz算子的定义及基本性质。
设P是从L2(dμ)到La2(dμ)上的正交投影,Q是从S(dμ)到D(dμ)上的正交投影,则
$ Pf\left( z \right) = {\left[ {f,{K_z}} \right]_2},Q\varphi \left( z \right) = \left[ {\varphi ,{R_z}} \right], $ |
其中f∈L2(dμ), φ∈S(dμ)。
令
$ {\left\| u \right\|_{\infty ,1}} = \max \left\{ {{{\left\| u \right\|}_\infty },{{\left\| {\frac{{\partial u}}{{\partial z}}} \right\|}_\infty },{{\left\| {\frac{{\partial u}}{{\partial \bar z}}} \right\|}_\infty }} \right\}。$ |
由于Ω有界且有局部Lipschitz边界,利用Sobolev嵌入定理[10,定理5.4]可知任意的u∈L都可以延拓为闭圆环
$ {T_u}f = Q\left( {uf} \right),\forall f \in D\left( {{\rm{d}}\mu } \right), $ |
称Tu为D(dμ)上以u∈L为符号的Toeplitz算子。
引理2.1 设f∈L是解析函数且u∈S(dμ),则
证明 对任意z∈Ω,由(2)知
$ \begin{array}{l} \mathop {\lim }\limits_{n \to + \infty } \left| {\frac{{{b_{n + 1}}}}{{{b_n}}}} \right| = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma \left| z \right|} }}{{{{\left( {n + 1} \right)}^2}\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } }} = \left| z \right| < 1,\\ \mathop {\lim }\limits_{n \to - \infty } \left| {\frac{{{b_n}}}{{{b_{n + 1}}}}} \right| = \mathop {\lim }\limits_{n \to - \infty } \frac{{{{\left( {n + 1} \right)}^2}\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } }}{{{n^2}\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}\frac{1}{{\left| z \right|}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rho ^2}\frac{1}{{\left| z \right|}} < \rho < 1。\end{array} $ |
从而
同理可证
$ {{R'}_z}\left( \omega \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\frac{{{\omega ^{n - 1}}{{\bar z}^n}}}{{n\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}} = \overline {{E_\omega }\left( z \right)} , $ |
其中
$ {{E'}_\omega }\left( z \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\frac{{{z^{n - 1}}{{\bar \omega }^{n - 1}}}}{{n\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}} = {K_\omega }\left( z \right)。$ |
因此对于φ∈S(dμ),有
$ \begin{array}{*{20}{c}} {Q\left( \varphi \right)\left( z \right) = \left\langle {\varphi ,{R_z}} \right\rangle = \int_\Omega {\frac{{\partial \varphi \left( \omega \right)}}{{\partial \omega }}{E_\omega }\left( z \right){\rm{d}}\mu } ,}\\ {\forall z \in \Omega ,} \end{array} $ |
从而,
$ Q{\left( \varphi \right)^\prime }\left( z \right) = \int_\Omega {\frac{{\partial \varphi \left( \omega \right)}}{{\partial \omega }}{K_\omega }\left( z \right){\rm{d}}\mu } = P\left( {\frac{{\partial \varphi }}{{\partial \omega }}} \right)\left( z \right)。$ | (3) |
于是
接下来我们对L2(dμ)进行分解。令Rk=eikθR,其中
$ {L^2}\left( {{\rm{d}}\mu } \right) = { \oplus _{k \in Z}}{{\rm{R}}_k}。$ |
特别地,对于任意的φ∈L
$ \phi \left( {r{{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{\phi _j}\left( r \right){{\rm{e}}^{ij\theta }}} , $ |
其中
引理2.2 若
$ \left\langle {{T_{{\mathit{\Phi }_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = \left\langle {{r^{\left| j \right|}}\varphi \left( r \right){{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle 。$ |
引理2.3 若
下面,给出本节的主要定理。
定理2.1 若f∈L,Tf是D(dμ)上的紧算子,则f|∂Ω=0。
证明 定义
$ f\left( {{{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{f_j}\left( 1 \right){{\rm{e}}^{ij\theta }}} ,f\left( {\rho {{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{f_j}\left( 1 \right){{\rm{e}}^{ij\theta }}} 。$ |
我们只需证明对任意整数j下面两式成立
$ \begin{array}{l} {f_j}\left( 1 \right) = \mathop {\lim }\limits_{n \to + \infty } \left\langle {{T_{{{\rm{\Phi }}_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = 0,{\rho ^{\left| j \right|}}{f_j}\left( \rho \right) = \\ \mathop {\lim }\limits_{n \to - \infty } \left\langle {{T_{{{\rm{\Phi }}_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = 0。\end{array} $ |
由引理2.2知
$ \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {{r^{\left| j \right| + 2n - 1}}{{f'}_j}\left( r \right){\rm{d}}\sigma \left( r \right)} } \right| \le \\ \mathop {\lim }\limits_{n \to \infty } \frac{M}{{2n}} \cdot \frac{{\int_\rho ^1 {{r^{\left| j \right| + 2n - 1}}{\rm{d}}\sigma \left( r \right)} }}{{\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = 0。\end{array} $ |
因为fj在[ρ, 1]上连续,存在三角多项式列{pjk}在[ρ, 1]上一致逼近fj。所以我们只需验证对任意三角多项式
$ p\left( 1 \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}p\left( r \right){\rm{d}}\sigma \left( r \right)} , $ |
$ \begin{array}{l} {\rho ^{\left| j \right|}}p\left( \rho \right) = \mathop {\lim }\limits_{n \to - \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + } \right.} \\ \left. {2n} \right){r^{\left| j \right| + 2n - 2}}f\left( r \right){\rm{d}}\sigma \left( r \right)。\end{array} $ |
事实上
$ \begin{array}{l} \mathop {\lim }\limits_{n \to + \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}\sum\limits_{k = - m}^n {{a_k}{r^k}{\rm{d}}\sigma \left( r \right)} } = \\ \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {\left| j \right| + 2n} \right)\sum\limits_{k = - m}^n {{a_k}{r^k}\int_\rho ^1 {{r^{\left| j \right| + 2n - 2}}{\rm{d}}\sigma \left( r \right)} } }}{{\int_\rho ^1 {2n{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = \\ \sum\limits_{k = - m}^n {{a_k}} = p\left( 1 \right), \end{array} $ |
同理,
$ \begin{array}{l} \mathop {\lim }\limits_{n \to - \infty } \frac{{n{{\left| {{c^n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}\sum\limits_{k = - m}^n {{a_k}{r^k}{\rm{d}}\sigma \left( r \right)} } = \\ \mathop {\lim }\limits_{n \to - \infty } \frac{{\left( {\left| j \right| + 2n} \right)\sum\limits_{k = - m}^n {{a_k}{r^k}\int_\rho ^1 {{r^{\left| j \right| + 2n - 2}}{\rm{d}}\sigma \left( r \right)} } }}{{\int_\rho ^1 {2n{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = \\ \sum\limits_{k = - m}^n {{a_k}{\rho ^{k + \left| j \right|}}} = {\rho ^{\left| j \right|}} \cdot p\left( \rho \right)。\end{array} $ |
本节,考虑主要定理的充分性,首先证明Bergman空间中以f∈L为符号的Toeplitz算子为紧算子的充分条件,然后转化到圆环Dirichlet空间上。
设u∈L, 空间La2(dμ)上以u为符号的Toeplitz算子定义为:Suf=P(uf),∀f∈La2(dμ)。
引理3.1 若{hn}⊂La2(dμ)弱收敛到零,则{hn}在Ω上内闭一致收敛于零。
证明 只需证明在对∀a∈Ω,{hn}在a的某个小邻域上内闭一致收敛于零。由{hn}弱收敛到零知, 存在常数C>0使得
$ \mathop {\lim }\limits_{n \to + \infty } {h_n}\left( z \right) = \mathop {\lim }\limits_{n \to + \infty } {\left[ {{h_n},{K_z}} \right]_2} = 0。$ |
由引理1.1得,任取
令
$ {\left| {{g_n}\left( a \right)} \right|^{{b_1}}} \le \left| {{g_n}\left( z \right)} \right| \le {\left| {{g_n}\left( a \right)} \right|^{{b_2}}}, $ |
其中
$ \mathop {\lim }\limits_{n \to + \infty } {\left| {{g_n}\left( a \right)} \right|^{{b_1}}} = \mathop {\lim }\limits_{n \to + \infty } {\left| {{g_n}\left( a \right)} \right|^{{b_2}}} = 0, $ |
从而{hn}在B(a, R)上内闭一致收敛于零。
定理3.1 设f(z)∈L且f|∂Ω=0,则Sf是La2(dμ)上的紧算子。
证明 首先令
由f连续且f|∂Ω=0知En为有界闭集,进而gn(z)具有紧支集且在支集上连续。设{hm}m=1+∞为La2(dμ)中弱收敛到零的列,由引理3.1知{hm}在supp gn上一致收敛到零。又由于
$ \begin{array}{l} \left\| {{S_{{g_n}}}{h_m}} \right\|_2^2 \le \left\| {{g_n}{h_m}} \right\|_2^2 = \int_\Omega {{{\left| {{g_n}\left( z \right)} \right|}^2}{{\left| {{h_m}\left( z \right)} \right|}^2}{\rm{d}}\mu } = \\ \int_{\mathit{supp}\;\;\;{\mathit{g}_n}} {{{\left| {{g_n}\left( z \right)} \right|}^2}{{\left| {{h_m}\left( z \right)} \right|}^2}{\rm{d}}\mu } , \end{array} $ |
利用控制收敛定理可得
利用文献[7]中的方法,建立空间D(dμ)和La2(dμ)之间的嵌入映射,得到下面引理。
引理3.2 设{ψk}在D(dμ)中弱收敛到零, 则
证明 建立嵌入算子i:D(dμ)→La2(dμ),
$ i\left( {{e_n}} \right) = \frac{{\sqrt {\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } } }}{{n\sqrt {\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } } }}{e_n}, - \infty < n < + \infty ,n \ne 0。$ |
由
$ \mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt {\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } } }}{{n\sqrt {\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } } }} = 0. $ |
于是算子i在{en}下的矩阵表示为对角线元素趋于0的对角阵, 于是i是紧算子,从而定理得证。
定理3.2 设f∈L,若f|∂Ω=0,则Tf是D(dμ)上的紧算子。
证明 设{ψk}D(dμ)弱收敛到零,易证{ψk}在La2(dμ)中弱收敛于零。由定理3.1知Sf是La2(dμ)上的紧算子,因此当k→+∞时,
综上,得到本文的主要结论
定理3.3 设f∈L,则Tf是D(dμ)上的紧算子当且仅当f|∂Ω=0。
[1] |
Richard R, WU Z J. Toeplitz operators on Dirichlet spaces[J]. Integral Equations and Operator Theory, 1992, 17(2): 325-342.
( ![]() |
[2] |
邓燕, 潘根梅. Dirichlet空间上一类特殊符号的Toeplitz算子[J]. 吉林师范大学学报(自然科学版), 2010, 31(2): 15-17. Deng Yan, Pan Genmei. A class of Toeplitz operator with specical symbols on the Dirichlet space[J]. Journal of Normal University(Natural Science Edition), 2010, 31(2): 15-17. DOI:10.3969/j.issn.1674-3873.2010.02.004 ( ![]() |
[3] |
王晓峰, 夏锦. 圆环上Dirichlet空间中一类Toeplitz算子[J]. 广州大学学报, 2006, 5(3): 9-11. Wang Xiaofeng, Xia Jin. A class of Toeplitz operatiors on Dirichlet spaces of annulus[J]. Journal of Guangzhou University (Natural Science Edition), 2006, 5(3): 9-11. ( ![]() |
[4] |
陈建军, 王晓峰. 圆环上Dirichlet空间中的Toeplitz算子及其代数性质[J]. 数学物理学报, 2014, 34(4): 890-904. Chen Jianjun, Wang Xiaofeng. Toeplitz operator and its algebra on Dirichlet spaces of the annulus domain[J]. Acta Mathematica Scientia, 2014, 34(4): 890-904. ( ![]() |
[5] |
Nakazi T, Yoneda R. Compact Toeplitz operators with continuous symbols on weighted Bergman spaces[J]. Glasgow Math, 2000, 42(1): 31-35. DOI:10.1017/S0017089500010053
( ![]() |
[6] |
LU Y F, HU Y Y, LIU L. Compact Toeplitz operators on the weighted Dirichlet space[J]. Acta Mathematica Sinica, English Series, 2015, 31(1): 35-43. DOI:10.1007/s10114-015-3380-z
( ![]() |
[7] |
Lee Y J, Na K. Compact sums of Toeplitz products on weighted Bergman and Dirichlet spaces[J]. Complex Analysis and Operator Theory, 2016, 10(8): 1799-1809. DOI:10.1007/s11785-016-0576-x
( ![]() |
[8] |
李德生, 罗生英. 圆环上的Bergman空间、Bergman度量及圆环的分解[J]. 河池学院学报, 1995(2): 38-42. Li Desheng, Luo Shengying. Bergman space, Bergman metric and the ring decomposition on the annulus[J]. Journal of Hechi Teachers college, 1995(2): 38-42. ( ![]() |
[9] |
Rudin W. Real and Complex Analysis[M]. Beijing: China Machine Press, 2004.
( ![]() |
[10] |
Adams R. Sobolev Space[M]. NewYork: Academic Press, 1975.
( ![]() |