中国海洋大学学报自然科学版  2018, Vol. 48 Issue (S2): 209-214  DOI: 10.16441/j.cnki.hdxb.20180049

引用本文  

王存, 石岩月. Dirichlet空间上Toeplitz算子的紧性[J]. 中国海洋大学学报(自然科学版), 2018, 48(S2): 209-214.
WANG Cun, SHI Yan-Yue. Compactness of Toeplitz Operators on the Dirichlet Spaces[J]. Periodical of Ocean University of China, 2018, 48(S2): 209-214.

基金项目

国家自然科学基金项目(11701537)资助
Supported by the National Natural Science Foundation of China (11701537)

作者简介

王存(1992-),女,硕士生。E-mail:wangcunfield@163.com

文章历史

收稿日期:2018-01-10
修订日期:2018-06-02
Dirichlet空间上Toeplitz算子的紧性
王存 , 石岩月     
中国海洋大学数学科学学院,山东 青岛 266100
摘要:本文主要考虑圆环加权Dirichlet空间上Toeplitz算子的紧性。设φ为圆环上连续函数,在一定条件下,本文证明了以φ为符号的Toeplitz算子是紧算子当且仅当φ|Ω=0。
关键词Dirichlet空间    Toeplitz算子    紧算子    

作为一类非常有代表性的非自伴算子,Toeplitz算子是算子理论和算子代数的重要研究对象,它将算子理论、函数论和Banach代数等理论紧密的联系在一起。如何利用符号函数的性质刻画Toeplitz算子的性质是Toeplitz算子理论中的重要课题。紧性作为Toeplitz算子最基本的性质之一受到广泛关注。

在单位圆盘加权Dirichlet空间D(D, dAα)上, R.Richard和吴志坚[1]在一定条件下刻画了以非负测度为符号的Toeplitz算子的紧性。当权系数α=0时,邓燕、潘根梅[2]D(D, dA)上给出了以拟齐次函数为符号的Toeplitz算子是紧算子的等价条件。当符号函数为径向函数时,王晓峰和夏锦[3]利用Mellin变换给出了圆环Dirichlet空间D(Ω, dA)上Toeplitz算子紧的等价条件。最近, 陈建军和王晓峰[4]在圆环Dirichlet空间Dp(Ω, dA)上考虑以φL∞, 1为符号的Toeplitz算子的紧性,证明了Tφ紧当且仅当Tφ的Berezin变换在圆环的两条边界上为零,其中L∞, 1={uLp, 1:u, $\frac{{\partial u}}{{\partial z}}$, $\frac{{\partial u}}{{\partial \bar z}}$L}。

是[0, 1)上有限正Borel测度,Nakazi Takahiko和Yoneda Rikio[5]在加权Bergman空间La2(D, dσdθ)上给出了以连续函数为符号的Toeplitz算子紧的充要条件。在加权Dirichlet空间D(D, dσdθ)上,当φC1(D)且φ, $\frac{{\partial \varphi }}{{\partial z}}, \frac{{\partial \varphi }}{{\partial \bar z}}$均为D上有界函数时,卢玉峰、胡寅寅和刘浏[6]利用φ的边值性质刻画了Toeplitz算子Tφ的紧性。最近,Young Joo Lee和Kyunguk Na[7]利用符号函数的边值性质给出了Toeplitz算子的有限乘积的有限和是紧算子的充要条件。本文中,我们在圆环加权Dirichlet空间D(Ω, dσdθ)上考虑上述问题,利用φ的边值性质给出了Tφ是紧算子的充分必要条件。

1 预备

令{zD||z| < 1},Ω=D,ρ${{\rm{\bar D}}}$其中0≤ρ < 1。dσ是[ρ, 1)上的单位化的严格正Borel测度,设dμ=dθdσ/2π,La2(Ω, dμ)为L2(Ω, dμ)中全体解析函数构成的空间。记Sobolev空间S(Ω, dμ)为圆环Ω上全体光滑函数在范数

$ \left\| f \right\| = {\left\{ {{{\left| {\int_\Omega {f{\rm{d}}\mu } } \right|}^2} + \int_\Omega {\left( {{{\left| {\frac{{\partial f}}{{\partial z}}} \right|}^2} + {{\left| {\frac{{\partial f}}{{\partial z}}} \right|}^2}} \right){\rm{d}}\mu } } \right\}^{\frac{1}{2}}} < \infty 。$

下的完备化空间,该空间是内积空间:

$ \left\langle {f,g} \right\rangle = \int_\Omega {f{\rm{d}}\mu } \int_\Omega {\bar g{\rm{d}}\mu } + {\left[ {\frac{{\partial f}}{{\partial z}},\frac{{\partial g}}{{\partial z}}} \right]_2} + {\left[ {\frac{{\partial f}}{{\partial \bar z}},\frac{{\partial g}}{{\partial \bar z}}} \right]_2}, $

其中〈·, ·〉2L2(Ω, dμ)中的内积。称由S(Ω, dμ)中Laurent展式没有常数项的解析函数全体构成的空间为圆环上的加权Dirichlet空间, 记为D(Ω, dμ)。

$f\left(z \right) = \sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {{a_n}{z^n} \in D(\Omega, {\rm{d}}\mu)} $,容易验证$\left\| f \right\|_2^2 = \sum\limits_n {{{\left| {{a_n}} \right|}^2}} \int_\rho ^1 {{r^{2n}}} {\rm{d}}\sigma \le \sum\limits_n {{{\left| {{a_n}} \right|}^2}} {n^2}\int_\rho ^1 {{r^{2n-2}}} {\rm{d}}\sigma = {\left\| f \right\|^2}$

ρ=0时,La2(D, dμ)[5]D(D, dμ)[6]是完备的;当0 < ρ < 1时,La2(Ω, rdrdθ)是完备的[8]。下面我们考虑La2(Ω, )和D(Ω, )的完备性。将这上述空间分别简记为S(),La2()和D()。

0=rdr,根据Lebesgue-Radon-Nikodym定理可将σ分解为σ=σ1+σ2,其中σ1σ2为正测度满足σ1σ0σ2σ0。于是存在非负可测函数hL1([ρ, 1))使得1=h(r)0。本文总设存在正数R0使得h在区间[ρ, ρ+R0)∪(1-R0, 1)上的本性下确界为β>0。

引理1.1  设fLa2(),则对Ω的任意紧子集K,存在与z无关的常数M>0使得

$ \left| {f\left( z \right)} \right| \le M{\left\| f \right\|_2},\forall z \in K。$

证明 令

F={z|ρ < |z| < ρ+R0}∪{z|1-R0 < |z| < 1},对∀aF,存在R>0使$\overline {B(a, R)} \subseteq \Omega $,其中B(a, R)为以a为圆心R为半径的开圆盘。任取0 < r0 < r1 < R,对任意z: |z-a|≤r0,任取简单闭曲线|ζ-a|=r满足r1 < r < R,利用Poisson积分得

$ {f^2}\left( z \right) = \frac{1}{{2{\rm{ \mathsf{ π} }}}}\int_0^{2{\rm{ \mathsf{ π} }}} {\frac{{{r^2} - {{\left| {z - a} \right|}^2}}}{{{{\left| {\zeta - z} \right|}^2}}}{f^2}\left( \zeta \right){\rm{d}}\theta } 。$

于是${\left| {f\left(z \right)} \right|^2} \le \frac{{r + \left| {z-a} \right|}}{{2{\rm{ \mathsf{ π} }}\left({r-|z-a|} \right)}}\int_0^{2{\rm{ \mathsf{ π} }}} {|f(a + r{{\rm{e}}^{i\theta }}){|^2}} {\rm{d}}\theta \le $$\frac{{R + {r_0}}}{{2{\rm{ \mathsf{ π} }}({r_1}-{r_0})}}\int_0^{2{\rm{ \mathsf{ π} }}} {|f(a + r{{\rm{e}}^{i\theta }}){|^2}} {\rm{d}}\theta $

从而

$ \int_{{r_1}}^R {{{\left| {f\left( z \right)} \right|}^2}r{\rm{d}}r} \le \frac{{R + {r_0}}}{{{\rm{ \mathsf{ π} }}\left( {{r_1} - {r_0}} \right)}}\int_{{r_1}}^R {\int_0^{2{\rm{ \mathsf{ π} }}} {{{\left| {f\left( {a + r{{\rm{e}}^{i\theta }}} \right)} \right|}^2}r{\rm{d}}r{\rm{d}}\theta } } 。$

${M_0} = \frac{{R + {r_0}}}{{{\rm{ \mathsf{ π} }}({r_1}{\rm{-}}{r_0})({R^2}-{r_1}^2)}}$,则

$ \begin{array}{l} {\left| {f\left( z \right)} \right|^2} \le {M_0}\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}{\rm{d}}m\left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}h\left( r \right){\rm{d}}m\left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\int_{B\left( {a,R} \right)} {{{\left| {f\left( \xi \right)} \right|}^2}{\rm{d}}\mu \left( \xi \right)} \le \\ \frac{{{M_0}}}{\beta }\left\| f \right\|_2^2, \end{array} $

其中:${\rm{d}}m\left(\xi \right) = r{\rm{d}}r{\rm{d}}\theta, \xi = r{{\rm{e}}^{i\theta }}$。于是可证存在常数M1>0使得

$ \left| {f\left( z \right)} \right| \le {M_1}{\left\| f \right\|_2} $ (1)

对任意$z \in \{ z\left| {\left| z \right|} \right. = 1-\frac{{{R_0}}}{2}\} \cup \{ z\left| {\left| z \right|} \right. = \rho + \frac{{{R_0}}}{2}\} $成立。再利用极大模原理可得(1)式在

$ E = \left\{ {z\left| {\rho + \frac{{{R_0}}}{2} < \left| z \right| < 1 - \frac{{{R_0}}}{2}} \right.} \right\} $

上成立。注意到$E \cup (\mathop \cup \limits_{a \in F} B(a, {r_a}))$是紧集K的一个开覆盖,利用其有限子覆盖,容易证得所需结论。

由引理1.1可知, 对任意z∈Ω,点赋值泛函l(f)=f(z)在La2()上有界,根据Riesz表示定理,存在唯一的KzLa2()使f(z)=[f, Kz]2,称KzLa2()的再生核,设${d_n} = 1/\sqrt {\int_\rho ^1 {{r^{2n}}d\sigma } } $ηn=dnzn,则{ηn}是La2()中的一个正规正交基且Kz(ω)=$\sum\limits_{n =-\infty }^{ + \infty } {\overline {{\eta _n}\left(z \right)} {\eta _n}\left(\omega \right)} $。设fD(),注意到${\left\| f \right\|_2} \le \left\| f \right\|$,所以点赋值泛函lD()上也有界,于是存在唯一RzD()使得f(z)=[f, Rz],称RzD()的再生核。令en(z)=cnzn,其中cn=$1/\left\| {{z^n}} \right\| = 1/(n\sqrt {\int_\rho ^1 {{r^{2n-2}}d\sigma } })$,则{en|nZ, n≠0}是D()中的一个正规正交基。容易验证

$ {R_z}\left( \omega \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\overline {{e_n}\left( z \right)} {e_n}\left( \omega \right)} = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {c_n^2\overline {{z^n}} {\omega ^n}} 。$ (2)

定理1.1  La2()是L2()的完备子空间。

证明 任取La2()中Cauchy列{fn},由上面分析可得在Ω内的任意紧子集K上,存在正数M>0使得

$ \left| {{f_n}\left( z \right) - {f_m}\left( z \right)} \right| \le M{\left\| {{f_n} - {f_m}} \right\|_2}。$

于是{fn(z)}在∀z∈Ω处收敛。记f(z)=$\mathop {{\rm{lim}}}\limits_{n \to + \infty } {f_n}\left(z \right)$,则{fn}在Ω上内闭一致收敛于fH(Ω)。由Fatou引理[9,引理1.28]知

$\int_{\Omega }{\underset{m\to +\infty }{\mathop{\text{lim}}}\,}|{{f}_{n}}\left( z \right)-{{f}_{m}}\left( z \right){{|}^{2}}\text{d}\mu \left( z \right)\le \overline{\underset{m\to +\infty }{\mathop{\text{lim}}}\,}\int_{\Omega }{{}}$$|{f_n}\left(z \right)-{f_m}\left(z \right){|^2}d\mu \left(z \right)$于是,易证fLa2()且$\mathop {{\rm{lim}}}\limits_{n \to + \infty } {\left\| {{f_n}-f} \right\|_2} = 0$

定理1.2  D()是S()的完备子空间。

证明 任取D()中Cauchy列{fn},由于${\left\| {{f_n}-{f_m}} \right\|_2} \le \left\| {{f_n}-{f_m}} \right\|$${f_n}'-{f_m}{'_2} = \left\| {{f_n}-{f_m}} \right\|$

利用定理1.1可得存在f, hLa2(dμ),使得{fn}和{fn′}在Ω上分别内闭一致收敛于fh。于是f′(z)=h(z)。任取r满足ρ < r < 1,从而f的Laurent展式的常数项

$ {c_0} = \int_{\left| \zeta \right| = r} {\frac{{f\left( \zeta \right)}}{\zeta }{\rm{d}}\zeta } = \mathop {\lim }\limits_{n \to \infty } \int_{\left| \zeta \right| = r} {\frac{{{f_n}\left( \zeta \right)}}{\zeta }{\rm{d}}\zeta } = 0。$

易证fD(dμ)且$\mathop {{\rm{lim}}}\limits_{n \to + \infty } \left\| {f-{f_n}} \right\|0$

利用dσ的严格正性可以证明以下引理,其证明借鉴了Takahiko Nakazi和Rikio Yoneda[5]在单位圆盘上的证明方法,不同的是,他们只需考虑n趋于正无穷, 而我们在圆环上需要分别考虑n趋于正无穷和趋于负无穷两种情况。

引理1.2  设ε>0,ρ>0且满足ρ+ε < 1,则有

$ \left( {\rm{i}} \right)\mathop {\lim }\limits_{n \to + \infty } \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} = 0,\left( {{\rm{ii}}} \right)\mathop {\lim }\limits_{n \to - \infty } \frac{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} = 0。$

证明 一方面,对于任意正整数n,有

$ \begin{array}{*{20}{c}} {0 \le \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} \le \frac{{{{\left( {\rho + \varepsilon } \right)}^n}\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} = }\\ {\frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon }^1 {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le \frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\int_{\rho + \varepsilon + \delta }^1 {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le }\\ {{{\left( {\frac{{\rho + \varepsilon }}{{\rho + \varepsilon + \delta }}} \right)}^n}\frac{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon } \right]} \right)}}{{\sigma \left( {\left[ {\rho + \varepsilon + \delta ,1} \right]} \right)}},} \end{array} $

其中δ>0且满足ρ+ε+δ < 1。又由于$\mathop {{\rm{lim}}}\limits_{n \to + \infty } {\left({\frac{{\rho + \varepsilon }}{{\rho + \varepsilon + \delta }}} \right)^n} = 0$,所以(ⅰ)成立。

另一方面,对任意负整数n,有

$ \begin{array}{*{20}{c}} {0 \le \frac{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} \le \frac{{{{\left( {\rho + \varepsilon } \right)}^n}\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }} = }\\ {\frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon } {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le \frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\int_\rho ^{\rho + \varepsilon - \delta } {{{\left( {\frac{r}{{\rho + \varepsilon }}} \right)}^n}{\rm{d}}\sigma } }} \le }\\ {{{\left( {\frac{{\rho + \varepsilon }}{{\rho + \varepsilon - \delta }}} \right)}^n}\frac{{\sigma \left( {\left[ {\rho + \varepsilon ,1} \right]} \right)}}{{\sigma \left( {\left[ {\rho ,\rho + \varepsilon - \delta } \right]} \right)}},\forall 0 < \delta < \varepsilon 。} \end{array} $

利用$\mathop {{\rm{lim}}}\limits_{n \to-\infty } {\left({\frac{{\rho + \varepsilon }}{{\rho + \varepsilon-\delta }}} \right)^n} = 0$可得等式(ⅱ)成立。

引理1.3  设l为非负整数,则有

$ \left( {\rm{i}} \right)\mathop {\lim }\limits_{n \to + \infty } \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} = 1,\left( {{\rm{ii}}} \right)\mathop {\lim }\limits_{n \to - \infty } \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} = {\rho ^l}。$

证明(ⅰ)当n>0时,∀0 < ε < 1-ρ,适当放缩得

$ \begin{array}{l} \int_\rho ^1 {{r^n}{\rm{d}}\sigma } - \int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } \le \\ \int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } + \int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } - {\left( {\rho + \varepsilon } \right)^l}\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } \le \\ \int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } + l\left( {1 - \rho - \varepsilon } \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } , \end{array} $

所以

$ 0 \le 1 - \frac{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }} \le \frac{{\int_\rho ^{\rho + \varepsilon } {{r^n}{\rm{d}}\sigma } }}{{\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } }} + l\left( {1 - \rho - \varepsilon } \right)。$

由引理1.2中结论(ⅰ)和ε的任意性可证得等式(ⅰ)。

(ⅱ)当n < 0时,适当的放缩有:

$ \begin{array}{l} 0 \le \int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } - {\rho ^l}\int_\rho ^1 {{r^n}{\rm{d}}\sigma } = \\ \left( {{{\left( {\rho + \varepsilon } \right)}^l} - {\rho ^l}} \right)\int_\rho ^{\rho + \varepsilon } {{r^{n + l}}{\rm{d}}\sigma } + \left( {1 - {\rho ^l}} \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } \le \\ l\varepsilon \int_\rho ^{\rho + \varepsilon } {{r^{n + l}}{\rm{d}}\sigma } + \left( {1 - {\rho ^l}} \right)\int_{\rho + \varepsilon }^1 {{r^n}{\rm{d}}\sigma } , \end{array} $

再利用引理1.2中结论(ⅱ)和ε的任意性可得$\mathop {{\rm{lim}}}\limits_{n \to-\infty } 1-\frac{{{\rho ^l}\int_\rho ^1 {{r^n}{\rm{d}}\sigma } }}{{\int_\rho ^1 {{r^{n + l}}{\rm{d}}\sigma } }} = 0$。从而结论(ⅱ)成立。

2 紧Toeplitz算子的必要条件

在本节,我们主要考虑紧Toeplitz算子必要性。首先,给出空间上Toeplitz算子的定义及基本性质。

P是从L2(dμ)到La2(dμ)上的正交投影,Q是从S(dμ)到D(dμ)上的正交投影,则

$ Pf\left( z \right) = {\left[ {f,{K_z}} \right]_2},Q\varphi \left( z \right) = \left[ {\varphi ,{R_z}} \right], $

其中fL2(dμ), φS(dμ)。

${\rm{ = }}\left\{ {u \in {C^1}(\Omega):u, \frac{{\partial u}}{{\partial z}}, \frac{{\partial u}}{{\partial \bar z}} \in {L^\infty }({\rm{d}}\mu)} \right\}$。对任意uL,定义

$ {\left\| u \right\|_{\infty ,1}} = \max \left\{ {{{\left\| u \right\|}_\infty },{{\left\| {\frac{{\partial u}}{{\partial z}}} \right\|}_\infty },{{\left\| {\frac{{\partial u}}{{\partial \bar z}}} \right\|}_\infty }} \right\}。$

由于Ω有界且有局部Lipschitz边界,利用Sobolev嵌入定理[10,定理5.4]可知任意的uL都可以延拓为闭圆环${\overline {\mathit{\Omega}} }$上的连续函数, 仍记为u。定义

$ {T_u}f = Q\left( {uf} \right),\forall f \in D\left( {{\rm{d}}\mu } \right), $

TuD(dμ)上以uL为符号的Toeplitz算子。

引理2.1  设fL是解析函数且uS(dμ),则$Q\bar fQ\left(u \right) = Q\left({\bar fu} \right)$

证明 对任意z∈Ω,由(2)知${R_z}\left(\omega \right) = \sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {{b_n}{\omega ^n}} $,其中${b_n} = {c_n}^2\overline {{z^n}} $。由引理1.3可以得到

$ \begin{array}{l} \mathop {\lim }\limits_{n \to + \infty } \left| {\frac{{{b_{n + 1}}}}{{{b_n}}}} \right| = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2}\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma \left| z \right|} }}{{{{\left( {n + 1} \right)}^2}\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } }} = \left| z \right| < 1,\\ \mathop {\lim }\limits_{n \to - \infty } \left| {\frac{{{b_n}}}{{{b_{n + 1}}}}} \right| = \mathop {\lim }\limits_{n \to - \infty } \frac{{{{\left( {n + 1} \right)}^2}\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } }}{{{n^2}\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}\frac{1}{{\left| z \right|}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rho ^2}\frac{1}{{\left| z \right|}} < \rho < 1。\end{array} $

从而$\sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {|{b_n}|} $收敛,$\sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {{b_n}{\omega ^n}} $在Ω上一致收敛。

同理可证$\sum\limits_{-\infty, n \ne 0}^{ + \infty } {\frac{{{z^n}{{\bar \omega }^{n-1}}}}{{n\int_\rho ^1 {{r^{2n-2}}{\rm{d}}\sigma } }}} \smallint $$\sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {\frac{{{z^{n-1}}{{\bar \omega }^{n-1}}}}{{n\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}} $均在Ω上一致收敛。于是

$ {{R'}_z}\left( \omega \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\frac{{{\omega ^{n - 1}}{{\bar z}^n}}}{{n\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}} = \overline {{E_\omega }\left( z \right)} , $

其中${E_\omega }\left(z \right) = \sum\limits_{n =-\infty, n \ne 0}^{ + \infty } {\frac{{{z^n}{{\bar \omega }^{n-1}}}}{{n\int_\rho ^1 {{r^{2n-2}}{\rm{d}}\sigma } }}} $,且

$ {{E'}_\omega }\left( z \right) = \sum\limits_{n = - \infty ,n \ne 0}^{ + \infty } {\frac{{{z^{n - 1}}{{\bar \omega }^{n - 1}}}}{{n\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } }}} = {K_\omega }\left( z \right)。$

因此对于φS(dμ),有

$ \begin{array}{*{20}{c}} {Q\left( \varphi \right)\left( z \right) = \left\langle {\varphi ,{R_z}} \right\rangle = \int_\Omega {\frac{{\partial \varphi \left( \omega \right)}}{{\partial \omega }}{E_\omega }\left( z \right){\rm{d}}\mu } ,}\\ {\forall z \in \Omega ,} \end{array} $

从而,

$ Q{\left( \varphi \right)^\prime }\left( z \right) = \int_\Omega {\frac{{\partial \varphi \left( \omega \right)}}{{\partial \omega }}{K_\omega }\left( z \right){\rm{d}}\mu } = P\left( {\frac{{\partial \varphi }}{{\partial \omega }}} \right)\left( z \right)。$ (3)

于是$\left[{Q\bar fQ\left(u \right)-Q\left({\bar fu} \right)} \right]' = P\left({\bar f\left({P -I} \right)\left({\frac{{\partial u}}{{\partial \omega }}} \right)} \right) = 0$。又由于${Q\bar fQ\left(u \right)}$${Q\left({\bar fu} \right)}$的Laurent展式中均没有常数项,从而得到$Q\bar fQ\left(u \right) = Q\left({\bar fu} \right)$

接下来我们对L2(dμ)进行分解。令Rk=eikθR,其中$\text{R}=\left\{ a\left(r \right):\Omega \to \mathbb{C}|\int_{\rho }^{1}{{{\left| a\left(r \right) \right|}^{2}}}\text{d}\sigma < \infty \right\}$

$ {L^2}\left( {{\rm{d}}\mu } \right) = { \oplus _{k \in Z}}{{\rm{R}}_k}。$

特别地,对于任意的φL$\subseteq $L2(dμ)有展开式

$ \phi \left( {r{{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{\phi _j}\left( r \right){{\rm{e}}^{ij\theta }}} , $

其中${{\phi }_{j}}\left(r \right)=\int_{0}^{2\text{ }\!\!\pi\!\!\text{ }}{\phi }(r{{\text{e}}^{i\theta }}){{\text{e}}^{-ij\theta }}\frac{\text{d}\theta }{2\text{ }\!\!\pi\!\!\text{ }}$。因为ϕL可以延拓为闭圆环上的连续函数,所以ϕj(r)在[ρ, 1]上连续。利用卢玉峰等[6]在单位圆盘加权Dirichlet空间上的方法,容易验证下面两个引理。

引理2.2  若${{{\mathit{\Phi}} }_{j}}(r{{\text{e}}^{i\theta }})={{r}^{\left| j \right|}}{{\phi }_{j}}(r{{\text{e}}^{i\theta }}){{\text{e}}^{-ij\theta }}$,则

$ \left\langle {{T_{{\mathit{\Phi }_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = \left\langle {{r^{\left| j \right|}}\varphi \left( r \right){{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle 。$

引理2.3  若$f(r{{\text{e}}^{i\theta }})=\sum\limits_{j=-\infty }^{+\infty }{{{f}_{j}}\left(r \right){{\text{e}}^{ij\theta }}}\in L$,则f′j(r)有界。

下面,给出本节的主要定理。

定理2.1  若fLTf是D(dμ)上的紧算子,则f|Ω=0。

证明 定义${{\Phi }_{j}}(r{{\text{e}}^{i\theta }})={{r}^{(\left| j \right|)}}{{\text{e}}^{-ij\theta }}f(r{{\text{e}}^{i\theta }})$。由引理2.1可得当j≥0时,${{T}_{{{\Phi }_{j}}}}={{T}_{{{r}^{(\mid j\mid)}}{{\text{e}}^{-ij\theta }}}}{{T}_{f}}$;当j < 0时,${{T}_{{{\Phi }_{j}}}}={{T}_{f}}{{T}_{{{r}^{(\mid j\mid)}}{{\text{e}}^{-ij\theta }}}}$,从而对于任意的jTΦj紧。注意到当n→∞时,en弱收敛于0,所以$\left\| {{T}_{{{\Phi }_{j}}}}{{\text{e}}_{n}} \right\|\to 0$,进而$\langle {{T}_{{{\Phi }_{j}}}}{{\text{e}}_{n}}, {{\text{e}}_{n}}\rangle \to 0$。令$f(r{{\text{e}}^{i\theta }})=\sum\limits_{j=-\infty }^{+\infty }{{{f}_{j}}\left(r \right){{\text{e}}^{ij\theta }}}$,则

$ f\left( {{{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{f_j}\left( 1 \right){{\rm{e}}^{ij\theta }}} ,f\left( {\rho {{\rm{e}}^{i\theta }}} \right) = \sum\limits_{j = - \infty }^{ + \infty } {{f_j}\left( 1 \right){{\rm{e}}^{ij\theta }}} 。$

我们只需证明对任意整数j下面两式成立

$ \begin{array}{l} {f_j}\left( 1 \right) = \mathop {\lim }\limits_{n \to + \infty } \left\langle {{T_{{{\rm{\Phi }}_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = 0,{\rho ^{\left| j \right|}}{f_j}\left( \rho \right) = \\ \mathop {\lim }\limits_{n \to - \infty } \left\langle {{T_{{{\rm{\Phi }}_j}}}{{\rm{e}}_n},{{\rm{e}}_n}} \right\rangle = 0。\end{array} $

由引理2.2知$\langle {{T}_{{{\Phi }_{j}}}}{{\text{e}}_{n}}, {{\text{e}}_{n}}\rangle =\langle {{r}^{j}}{{f}_{j}}{{\text{e}}_{n}}, {{\text{e}}_{n}}\rangle $。根据内积定义可得

$\langle {{r}^{\left| j \right|}}{{f}_{j}}{{\text{e}}_{n}}, {{\text{e}}_{n}}\rangle =$${{\int }_{\Omega }}{{\left| {{c}_{n}} \right|}^{2}}n{{r}^{n-1}}{{\text{e}}^{-i\left(n-1 \right)\theta }}\frac{\partial }{\partial z}[{{r}^{\left| j \right|+n}}{{f}_{j}}\left(r \right){{\text{e}}^{in\theta }}]\text{d}\sigma \left(r \right)\frac{\text{d}\theta }{2\text{ }\!\!\pi\!\!\text{ }}=$$\frac{n{{\left| {{c}_{n}} \right|}^{2}}}{2}\int_{\rho }^{1}{\left(\left| j \right|+2n \right)}{{r}^{\left| j \right|+2n-2}}{{f}_{j}}\left(r \right)+$${{r}^{\left| j \right|+2n-1}}f{{'}_{j}}\left(r \right)\text{d}\sigma \left(r \right)$。由引理2.3不妨设|f′j|(r)≤M。根据引理1.3有

$ \begin{array}{l} \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {{r^{\left| j \right| + 2n - 1}}{{f'}_j}\left( r \right){\rm{d}}\sigma \left( r \right)} } \right| \le \\ \mathop {\lim }\limits_{n \to \infty } \frac{M}{{2n}} \cdot \frac{{\int_\rho ^1 {{r^{\left| j \right| + 2n - 1}}{\rm{d}}\sigma \left( r \right)} }}{{\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = 0。\end{array} $

因为fj在[ρ, 1]上连续,存在三角多项式列{pjk}在[ρ, 1]上一致逼近fj。所以我们只需验证对任意三角多项式$p\left(r \right)=\sum\limits_{k=-m}^{n}{{{a}_{k}}{{r}^{k}}}$均有

$ p\left( 1 \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}p\left( r \right){\rm{d}}\sigma \left( r \right)} , $
$ \begin{array}{l} {\rho ^{\left| j \right|}}p\left( \rho \right) = \mathop {\lim }\limits_{n \to - \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + } \right.} \\ \left. {2n} \right){r^{\left| j \right| + 2n - 2}}f\left( r \right){\rm{d}}\sigma \left( r \right)。\end{array} $

事实上

$ \begin{array}{l} \mathop {\lim }\limits_{n \to + \infty } \frac{{n{{\left| {{c_n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}\sum\limits_{k = - m}^n {{a_k}{r^k}{\rm{d}}\sigma \left( r \right)} } = \\ \mathop {\lim }\limits_{n \to + \infty } \frac{{\left( {\left| j \right| + 2n} \right)\sum\limits_{k = - m}^n {{a_k}{r^k}\int_\rho ^1 {{r^{\left| j \right| + 2n - 2}}{\rm{d}}\sigma \left( r \right)} } }}{{\int_\rho ^1 {2n{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = \\ \sum\limits_{k = - m}^n {{a_k}} = p\left( 1 \right), \end{array} $

同理,

$ \begin{array}{l} \mathop {\lim }\limits_{n \to - \infty } \frac{{n{{\left| {{c^n}} \right|}^2}}}{2}\int_\rho ^1 {\left( {\left| j \right| + 2n} \right){r^{\left| j \right| + 2n - 2}}\sum\limits_{k = - m}^n {{a_k}{r^k}{\rm{d}}\sigma \left( r \right)} } = \\ \mathop {\lim }\limits_{n \to - \infty } \frac{{\left( {\left| j \right| + 2n} \right)\sum\limits_{k = - m}^n {{a_k}{r^k}\int_\rho ^1 {{r^{\left| j \right| + 2n - 2}}{\rm{d}}\sigma \left( r \right)} } }}{{\int_\rho ^1 {2n{r^{2n - 2}}{\rm{d}}\sigma \left( r \right)} }} = \\ \sum\limits_{k = - m}^n {{a_k}{\rho ^{k + \left| j \right|}}} = {\rho ^{\left| j \right|}} \cdot p\left( \rho \right)。\end{array} $
3 Toeplitz算子紧性的充分条件

本节,考虑主要定理的充分性,首先证明Bergman空间中以fL为符号的Toeplitz算子为紧算子的充分条件,然后转化到圆环Dirichlet空间上。

uL, 空间La2(dμ)上以u为符号的Toeplitz算子定义为:Suf=P(uf),∀fLa2(dμ)。

引理3.1  若{hn}⊂La2(dμ)弱收敛到零,则{hn}在Ω上内闭一致收敛于零。

证明 只需证明在对∀a∈Ω,{hn}在a的某个小邻域上内闭一致收敛于零。由{hn}弱收敛到零知, 存在常数C>0使得${{\left\| {{h}_{n}} \right\|}_{2}}\le C$,∀n∈, 且对∀z∈Ω有

$ \mathop {\lim }\limits_{n \to + \infty } {h_n}\left( z \right) = \mathop {\lim }\limits_{n \to + \infty } {\left[ {{h_n},{K_z}} \right]_2} = 0。$

由引理1.1得,任取$\overline{B(a, R)}\subset \Omega $,存在正数M使得$|{{h}_{n}}\left(z \right)|\le M{{\left\| {{h}_{n}} \right\|}_{2}} < MC$$\forall z\in \overline{B(a, R)}$

${{g}_{n}}\left(z \right)=\frac{{{h}_{n}}\left(z \right)}{MC}$,则ln|gn(z)|为$\overline{B(a, R)}$上非正调和函数,根据Harnack不等式有

$\frac{R+\left| z-a \right|}{R-\left| z-a \right|}\text{log}\left| {{g}_{n}}\left(a \right) \right|\le \text{log}\left| {{g}_{n}}\left(z \right) \right|\le \frac{R-\left| z-a \right|}{R+\left| z-a \right|}\text{log}|{{g}_{n}}\left(a \right)|$。进而对任意zB(a, r0), 0 < r0 < R均有

$ {\left| {{g_n}\left( a \right)} \right|^{{b_1}}} \le \left| {{g_n}\left( z \right)} \right| \le {\left| {{g_n}\left( a \right)} \right|^{{b_2}}}, $

其中${{b}_{1}}=\frac{R+{{r}_{0}}}{R-{{r}_{0}}}>0$, ${{b}_{2}}=\frac{R\text{-}{{r}_{0}}}{R+{{r}_{0}}}>0$。注意到

$ \mathop {\lim }\limits_{n \to + \infty } {\left| {{g_n}\left( a \right)} \right|^{{b_1}}} = \mathop {\lim }\limits_{n \to + \infty } {\left| {{g_n}\left( a \right)} \right|^{{b_2}}} = 0, $

从而{hn}在B(a, R)上内闭一致收敛于零。

定理3.1  设f(z)∈Lf|Ω=0,则SfLa2(dμ)上的紧算子。

证明 首先令${{E}_{n}}=\left\{ z\left\| f\left(z \right)\left| \right. \right.\ge \frac{1}{n} \right\}$,构造函数${{g}_{n}}\left(z \right)=\left\{ \begin{align} & f\left(z \right), z\in {{E}_{n}} \\ & 0, z\in \Omega, {{E}_{n}}~ \\ \end{align} \right.$,则$\left| f\left(z \right)-{{g}_{n}}\left(z \right) \right| < \frac{1}{n}$,∀z∈Ω。于是$\underset{n\to +\infty }{\mathop{\text{lim}}}\, \left\| {{S}_{{{g}_{n}}}}-{{S}_{f}} \right\|=0$。因此只需证明对任意正整数n, Sgn是紧算子。

f连续且f|Ω=0知En为有界闭集,进而gn(z)具有紧支集且在支集上连续。设{hm}m=1+∞La2(dμ)中弱收敛到零的列,由引理3.1知{hm}在supp gn上一致收敛到零。又由于

$ \begin{array}{l} \left\| {{S_{{g_n}}}{h_m}} \right\|_2^2 \le \left\| {{g_n}{h_m}} \right\|_2^2 = \int_\Omega {{{\left| {{g_n}\left( z \right)} \right|}^2}{{\left| {{h_m}\left( z \right)} \right|}^2}{\rm{d}}\mu } = \\ \int_{\mathit{supp}\;\;\;{\mathit{g}_n}} {{{\left| {{g_n}\left( z \right)} \right|}^2}{{\left| {{h_m}\left( z \right)} \right|}^2}{\rm{d}}\mu } , \end{array} $

利用控制收敛定理可得$\underset{m\to \infty }{\mathop{\text{lim}}}\, {{\left\| {{S}_{{{g}_{n}}}}{{h}_{m}} \right\|}_{2}}=0$。从而Sgn为紧算子。

利用文献[7]中的方法,建立空间D(dμ)和La2(dμ)之间的嵌入映射,得到下面引理。

引理3.2  设{ψk}在D(dμ)中弱收敛到零, 则$\underset{k\to +\infty }{\mathop{\text{lim}}}\, {{\left\| {{\psi }_{k}} \right\|}_{2}}=0$

证明 建立嵌入算子i:D(dμ)→La2(dμ),

$ i\left( {{e_n}} \right) = \frac{{\sqrt {\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } } }}{{n\sqrt {\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } } }}{e_n}, - \infty < n < + \infty ,n \ne 0。$

${{\left\| f \right\|}_{2}}\le \left\| f \right\|$i是有界算子。利用引理1.3可得

$ \mathop {\lim }\limits_{n \to \infty } \frac{{\sqrt {\int_\rho ^1 {{r^{2n}}{\rm{d}}\sigma } } }}{{n\sqrt {\int_\rho ^1 {{r^{2n - 2}}{\rm{d}}\sigma } } }} = 0. $

于是算子i在{en}下的矩阵表示为对角线元素趋于0的对角阵, 于是i是紧算子,从而定理得证。

定理3.2  设fL,若f|Ω=0,则TfD(dμ)上的紧算子。

证明 设{ψk}D(dμ)弱收敛到零,易证{ψk}在La2(dμ)中弱收敛于零。由定理3.1知SfLa2(dμ)上的紧算子,因此当k→+∞时,${{\left\| {{S}_{f}}\psi {{'}_{k}} \right\|}_{2}}\to 0$。另一方面,由引理3.2得${{\left\| {{\psi }_{k}} \right\|}_{2}}\to 0$。利用引理2.1中(3)式得$\left({{T}_{f}}{{\psi }_{k}} \right)'=P\left(\frac{\partial f}{\partial z}{{\psi }_{k}}~+\text{ }f{{\psi }_{k}} \right)={{S}_{\frac{\partial f}{\partial z}{{\psi }_{k}}}}+{{S}_{f}}{{\psi }_{k}}$,所以$\left\| {{T}_{f~}}{{\psi }_{k~}} \right\|={{\left\| \left({{T}_{f~}}{{\psi }_{k~}} \right)' \right\|}_{2~}}\le {{\left\| \frac{\partial f}{\partial z} \right\|}_{\infty }}\cdot {{\left\| {{\psi }_{k~}} \right\|}_{2~}}+{{\left| {{S}_{f~}}{{\psi }^{k~}} \right|}_{2~}}\to 0$。故Tf是紧算子。

综上,得到本文的主要结论

定理3.3  设fL,则Tf是D(dμ)上的紧算子当且仅当f|Ω=0。

参考文献
[1]
Richard R, WU Z J. Toeplitz operators on Dirichlet spaces[J]. Integral Equations and Operator Theory, 1992, 17(2): 325-342. (0)
[2]
邓燕, 潘根梅. Dirichlet空间上一类特殊符号的Toeplitz算子[J]. 吉林师范大学学报(自然科学版), 2010, 31(2): 15-17.
Deng Yan, Pan Genmei. A class of Toeplitz operator with specical symbols on the Dirichlet space[J]. Journal of Normal University(Natural Science Edition), 2010, 31(2): 15-17. DOI:10.3969/j.issn.1674-3873.2010.02.004 (0)
[3]
王晓峰, 夏锦. 圆环上Dirichlet空间中一类Toeplitz算子[J]. 广州大学学报, 2006, 5(3): 9-11.
Wang Xiaofeng, Xia Jin. A class of Toeplitz operatiors on Dirichlet spaces of annulus[J]. Journal of Guangzhou University (Natural Science Edition), 2006, 5(3): 9-11. (0)
[4]
陈建军, 王晓峰. 圆环上Dirichlet空间中的Toeplitz算子及其代数性质[J]. 数学物理学报, 2014, 34(4): 890-904.
Chen Jianjun, Wang Xiaofeng. Toeplitz operator and its algebra on Dirichlet spaces of the annulus domain[J]. Acta Mathematica Scientia, 2014, 34(4): 890-904. (0)
[5]
Nakazi T, Yoneda R. Compact Toeplitz operators with continuous symbols on weighted Bergman spaces[J]. Glasgow Math, 2000, 42(1): 31-35. DOI:10.1017/S0017089500010053 (0)
[6]
LU Y F, HU Y Y, LIU L. Compact Toeplitz operators on the weighted Dirichlet space[J]. Acta Mathematica Sinica, English Series, 2015, 31(1): 35-43. DOI:10.1007/s10114-015-3380-z (0)
[7]
Lee Y J, Na K. Compact sums of Toeplitz products on weighted Bergman and Dirichlet spaces[J]. Complex Analysis and Operator Theory, 2016, 10(8): 1799-1809. DOI:10.1007/s11785-016-0576-x (0)
[8]
李德生, 罗生英. 圆环上的Bergman空间、Bergman度量及圆环的分解[J]. 河池学院学报, 1995(2): 38-42.
Li Desheng, Luo Shengying. Bergman space, Bergman metric and the ring decomposition on the annulus[J]. Journal of Hechi Teachers college, 1995(2): 38-42. (0)
[9]
Rudin W. Real and Complex Analysis[M]. Beijing: China Machine Press, 2004. (0)
[10]
Adams R. Sobolev Space[M]. NewYork: Academic Press, 1975. (0)
Compactness of Toeplitz Operators on the Dirichlet Spaces
WANG Cun, SHI Yan-Yue     
School of Mathematical Science, Ocean University of China, Qingdao 266100, China
Abstract: In this paper, we consider the compactness of Toeplitz operators on the weighted Dirichlet spaces over the annulus. Let φ be a continuous function on the closed annulus. Under certain condition, we prove that the Toeplitz operator with symbol φ is compact if and only if φ|Ω=0.
Key words: dirichlet spaces    toeplitz operators    compact operators