2. 青岛海洋科技中心 海洋地质过程与环境功能实验室,山东 青岛 266237
海滩是海岸带最具亲水性的区域,主要是由粒径大于0.063 mm的颗粒组成,是砂质海岸的主体地貌单元[1-2]。海滩不仅本身具有重要的旅游价值,而且通过增加房地产和其他财产的价值为经济做出贡献,是海洋经济发展的重要空间载体。海滩还是重要且独特的生态系统,是推进海洋生态文明建设的前沿区域。
由于细粒级的沉积物更容易富集各类重金属元素,多数相关研究也集中在这类沉积物上,而往往忽视颗粒相对较粗的海滩沉积物重金属污染研究。然而近年来随着人类活动增强(污水和养殖废水排放、海滩开发利用、交通污染、工农业活动等),运移到海滩沉积环境的重金属总量越来越大(见图 1(a)、(b)),海滩重金属的污染具有区域性的特征,对严重污染区域周边的生态造成严重危害。同时,重金属污染的扩散迁移特征,会从不同程度地降低了海滩旅游价值并甚至严重影响到海滩的景观和生态环境,给海滩资源带来前所未有的压力和挑战。例如山东青岛石老人海滩的沉积物和底栖动物体内都发现了As的超标[3-5];在广西海滩前滨的沉积物Cr含量较高[6],而市民喜爱的沙虫体内Cr含量也有超标[7],很有可能是重金属污染向生物体内的迁移,引起生态危害。因此在全球注重海岸可持续发展的背景下,需要对海滩沉积物中的重金属污染程度、扩散范围、影响因素以及分析方法等进行总结,从而为帮助有效治理海滩污染行为提供重要参考依据,并对海滩综合管理以及生态经济的可持续发展具有重要意义[8-9]。
使用Web of Science和Science Direct数据库进行搜索,关键词为“重金属”、“沉积物”和“海滩”,以检索科学文献。搜索内容主要包括海滩沉积物中重金属的浓度、时空分布、来源、风险评估方法、潜在危害、应用以及预防和管理措施的文献。通过对30个国家的230个海滩研究文献的统计,发现重金属污染在全球海滩普遍发生,全球五大洲包括亚洲、欧洲、非洲、美洲、大洋洲均存在海滩重金属污染问题[10-49](见图 2,表 1)。从2011年到2023年相关论文的发表数量一直在增加。2019年以来增加明显(见图 2(a)),表明全球对这一问题的广泛关注。从分布来看,发表论文数量最多的是亚洲(42.4%),其次是非洲(19.7%)和美洲(19.7%),最低的是大洋洲(3.0%)(见图 2(b))。就国家而言,很大一部分文献来自印度(18.4%)、中国(8.1%)、埃及(7.7%)、南非(6.9%)、马来西亚(6.1%)、墨西哥(5.7%)(见图 2(c))。
全球沉积物重金属质量基准(Sediment quality guideline,SQG)是指与沉积物直接接触的底栖生物或上覆水生物不受某些有毒有害重金属元素危害的临界水平,反映了重金属元素与底栖生物或上覆水生物之间的剂量-效应关系。TEL-SQGs(Threshold effect level)和PEL-SQGs(Probable effect level)分别是指沉积物重金属质量基准的阈值效应水平和可能影响水平,指示了引发生物毒性效应和其他生物效应的重金属浓度的阈值[50]。
本研究收集了30个国家的230个海滩的研究文献,将每个文献所有海滩重金属元素含量的平均值与TEL-SQGs和PEL-SQGs数据进行对比。若每个文献中海滩沉积物所有重金属元素平均浓度低于TEL值,那么就不会产生不良生物效应,则评定为Ⅰ级,表示轻微或无污染;若文献海滩重金属中一种或多种元素平均浓度高于PEL值,就会产生不良生物效应,则评定为Ⅲ级,表示严重污染;如果海滩重金属所有元素平均浓度含量介于两者之间,那么产生和不产生不良生物效应的概率相当,则评定为Ⅱ级,表示中度污染。
3 国内外研究现状 3.1 海滩重金属污染元素和污染源密度不小于4.5 g/cm3的金属元素被称为重金属,原子序数从23(V)至92(U)的天然金属元素有60种,除其中的6种外,其余54种的密度都大于4.5 g/cm3,属于重金属。在沉积环境研究中,重金属主要指Cr、Cd、Co、Cu、Fe、Hg、Mn、Ni、Pb、Sb、V、Zn等以及类金属As等13种生物毒性显著的重金属元素。全球海滩的重金属元素主要受控于海滩周边的人类活动差异性,和当地的工业化进程和产业结构等息息相关。布设于海滩的排污口是海滩污染物的主要来源。例如在对西澳大利亚州约一半的海滩重金属污染是由于排污造成的,提出政府需要重新审视和修改海滩排污口的排污管理条例[51]。山东省2021年共排查出入海排污口20 914个[52],存在对海滩造成重金属污染的潜在风险。
3.1.1 Cr元素海滩附近矿石开采、钢厂废物、燃煤废渣倾倒、港口码头、养殖污水排放等通过排污、河流、水动力甚至风力等被带入海滩,成为重金属污染物的众多来源。这些来源造成的最为普遍的污染元素是Cr,这可能和多数工业生产材料中多含有Cr元素有关。例如,马来西亚海滩上的Cr含量相对较高,主要来自海滩附近地区的化工厂废物和工业生产污水[49]。土耳其海滩上的Cr含量也远超评价标准污染水平,主要来自当地的矿石开采、冶金和污水排放[53]。印度一半海滩的Cr含量超标,主要来自城市的采矿废渣和污水污泥[53-55]。青岛第三海水浴场和石老人海滩的重金属Cr平均含量存在中度或重度污染,是由于该海滩上排污口的污水排放[3]。南非南德班盆地7个海滩沉积物中铬含量高,主要是受到当地工业废水排放和港口活动的影响[56]。古巴、哥伦比亚和印度的一些海滩都发现Cr元素含量较高,其污染源是当地的工业生产排污造成的,其次还受到当地附近地区的化工厂废料、矿石提炼、采矿废渣倾倒等影响[23, 55, 57]。
3.1.2 Cd、Cu、Hg、Co、Fe、Mn元素另外,在海滩沉积物中以上元素的污染也比较常见。例如马来西亚一个海滩的Cd和Cu元素含量普遍偏高,是由于附近钢厂废物经过排污进入海滩造成的,其中Cd也有大气沉降的贡献[8]。南非的5个海滩附近的工厂产生的石化废物造成Cd的极度严重污染;但是这5个海滩的Hg也呈现严重污染,但和Cd的污染来源不同,是由于附近金矿开采中使用Hg作为混汞的黄金开采技术,产生的残渣通过周边的运河和河流进入海滩所造成[58]。
大西洋沿岸喀麦隆Limbe coastal海滩沉积物中出现了Co污染,同时还有Cr、Cd、Cu、Fe、Mn、Ni、Zn的重金属污染。这些重金属元素是由于农业、车辆排放、渔业及码头的影响造成富集,且Cd可能是炼油厂和喀麦隆火山喷发造成[28]。
在对印度泰米尔纳德邦东岸海滩沙的重金属评价中,发现重金属Fe和Mn的浓度最高,富集因子(EF)值表明,这些金属来源于人为来源,是由于工业废物排污到海滩造成的[59]。我国青岛石老人海滩表层沉积物的重金属Fe和Mn的浓度超过了标准的两倍,其污染源主要来自海滩上分布的三个排污口[3, 60]。
3.1.3 Ni、Pb、Sb、V、Zn和As元素很多海滩会会出现Ni元素的污染。例如对古巴地区Matanzas市沿岸的6个度假村海滩沉积物进行重金属污染调查,发现所有海滩都有重金属Ni的中度污染。另外第一个海滩还有Cr的高度污染以及Zn的中度污染;第二个海滩沉积物还有Cu、Zn和Pb的中度污染。其他四个海滩还受到Cr和Cu的中度污染。主要是受到海滩周边的多个工厂,包括天然气生产设备、发电厂、水泥、化学品和化肥等工厂的排污输入[61]。
印度一个海滩的Pb浓度达到显著的污染水平,主要来源于含铅汽油排放经过雨水排污口进入海滩[55, 59]。我国辽东湾东部月亮湾海滩和潟湖中的Pb出现异常富集,可能是由于船只停泊或过度的旅游活动造成的[62]。中国深圳海岸的海滩出现包括Sb在内的多种重金属的污染[71]。中国山东日照海滩的V和Ni超标最为严重,主要受到排污口及于周边钢厂的影响[42-43]。中国青岛第三海水浴场海滩的Zn平均含量较高,达到133.6 mg/kg,主要来自污水和燃烧产生的煤渣[3]。我国青岛石老人海滩表层沉积物的重金属As有超标的现象,其污染源主要来自海滩上分布的三个排污口[3, 60]
从以上研究结果来看,不同海滩重金属污染由于污染源的差异,造成污染元素和污染程度不同,目前其污染源的判断主要依据传统地球化学的污染元素测试方法,并结合周边人类活动进行推测。
3.2 全球海滩重金属污染分布和污染程度根据目前收集的来自30个国家的230海滩的资料(见图 3、图 4和表 1),发现五大洲中海滩重金属污染呈现美洲>亚洲>非洲>欧洲>大洋洲的趋势。美洲13个研究区域中,Ⅱ级中度污染和Ⅲ级重度污染的海滩分别占46%和54%;亚洲28个研究区域中分别占46%和18%;欧洲10个的研究区域分别占40%和20%;非洲13个研究区域分别占54%和8%;大洋洲研究地区与较少,两个海滩都为中度污染。
南美洲和亚洲海滩重金属污染程度较高,主要是工业活动较为密集,从而排出的重金属污染物多,造成海滩的污染程度高。例如Vilhena等人[27]对南美洲巴西亚马逊三个海滩沉积物进行重金属污染评价发现,20.0%的采样点受到中度污染,4.4%受到严重污染,其中两个海滩的潜在生态风险被列为高生态风险地区,镉和汞的单因子指数达到了中等至极高,海滩重金属整体污染程度较高。Gutiérrez-Mosquera等[23]对哥伦比亚东部Bahia Solano和Nuquí沿线四个不同海滩的30个沉积物样本进行了分析,发现沉积物中Cu、Zn、V、Co、Cr和Pb的严重至极严重富集,潜在生态风险指数表明,铅的风险最高,需要对该地区的金属浓度进行持续监测。
亚洲巴基斯坦的Gizri Creek和Lyari海滩重金属污染风险较高,潜在毒性可能直接对生物群造成不利影响[44]。印度Kanyakumari海滩沉积物中的金属和微量元素显著富集和污染[39]。由于亚洲地区海滩沉积物重金属污染频发,且污染风险较高。印度东南部Tupilipalem海滩沉积物中Fe、Mn、Cr、Cu、Ni、Pb、Zn、Cd等元素呈现点源的分布特征,这与当地农业径流、工业活动和其他人为投入有关[87]。沙特阿拉伯Hoba River Estuary海滩的Mn、Al、Cd、Fe、Ni、Cu、Zn和Pb重金属含量由于当地石油、化肥、塑料垃圾的故意倾倒导致海滩重金属的富集均超过了沙特阿拉伯的国家标准[45]。孟买Aksa、Versova、Juhu和Dadar海滩Fe、Mn、Cr、Co、Ni、Pb、Zn、Cu和Cd含量较高,海滩受到重金属污染[73]。
非洲由于工业水平目前还较低,整体上对于海滩的重金属污染还相对较轻。但有个别海滩由于临近工业区和人口密集区,也产生较为严重的污染现象。例如坦桑尼亚的Dar es Salaam海滩,临近工业开发区、矿区、港口等,海滩沉积物中砷、锰、锌显著富集,并且砷、镉、铜、和锌在双壳类Mactra ovalina和腹足类Polinices mammilla中发生生物累积[34]。埃及地中海沿岸罗塞塔地区Abu Khashaba海滩沉积物中Cu、Cd、Zn、As、Pb、Mn、Ni、Cr、和Fe重金属中Cd含量极为丰富,污染极为严重;As和Pb严重富集和严重污染,Ni中度富集和污染[82]。
而欧洲和大洋洲对于海滩管理的水平相对较高,并有成熟的海滩管理法律法规和评分标准,如欧洲的蓝旗,从环境教育信息、水质、环境管理、安全和服务四个方面制定26个标准管理海滩,除此之外还有英国滨海认证、英国海岸观察认证等及大洋洲的州政府的海滩分级认证等。因此可以发现海滩重金属污染的报告相对较少且污染程度相对较低。如土耳其克默地区Kizkalesi海滩的沉积物中Cr、Zn、Cu、Fe具有轻微污染风险,潜在生态风险指数(RI<150)显示海滩没有生态风险[12-13]。西班牙北部阿斯图里亚海岸沿线35个海滩的沉积物中重金属轻微超过OSPAR质量标准(北大西洋和东大西洋海洋环境保护委员会)[15]。
总体来说,同一大洲的各个国家中的各个地区海滩重金属污染程度由于当地工业水平、自然环境、人类活动的不同也有所区别,但是工业密集以及活动强烈的地区,海滩的重金属污染相对较强。
3.3 海滩重金属污染扩散海滩重金属污染具有长期积累性、滞留性、难降解性、迁移扩散性。海滩重金属会吸附在沉积物上或者溶解在水中,随者沉积物和水体的运移而发生扩散[89]。海滩沉积物重金属会自发的由高浓度区域流向低浓度区域[88],而且水体的流动也会将溶解的重金属带往新的区域。海滩重金属主要来源以矿区活动、排污口、旅游港口活动等污染源为源头,向周围以表层和垂向两个方向扩散,随着扩散距离的增加含量减小。在重金属污染前期,重金属的污染危害可能是局部区域性的,但若未加以防范治理,重金属会向周边扩散,最终导致整个海滩的重金属污染。
在波兰三个海滩的表层,发现海滩重金属常常呈现不均匀污染,例如污染物多数情况下不会完全污染整个海滩。一般来说距离污染源越远,重金属越不容易到达,因此表现为靠近污染源的沉积物污染明显较高。高潮线附近的沉积物重金属含量比在滩肩或沙丘更高,这表明海水动力对沉积物重金属富集有一定的作用[3, 18]。例如在青岛的三个海滩,距离排污口近的区域,重金属污染严重[3]。除了污染源的影响,水动力对于海滩上重金属的分布也有一定的影响。例如在石老人海滩,发现高低潮线附近的沉积物重金属含量高,主要受到水动力的影响,产生了富集作用。另外,海滩的干滩和湿滩的分布特征不同。例如通过对印度泰米尔纳德邦东北海岸的海滩干滩和湿滩重金属的空间分布的评估,发现在干滩沉积物中Cr和Ni浓度较高,在湿滩Cd浓度较高,主要是由于工业和生活垃圾未经处理的废物堆放在干滩造成Cr和Ni富集,而Cd是由于河流带来的污染物富集于湿滩造成的[76]。也有研究注意到人工海滩和自然海滩的重金属污染差异。例如对智利北部邻近的圣乔治湾的人工海滩(Paraíso)和自然海滩(El Lenguado)的生物体和沉积物中的重金属含量(Cu、Ni、Zn、Cd、Pb)评估结果显示,自然海滩的有机质含量较高,生物有22个类群;人工海滩有19个类群,但海滩沉积物和大部分生物体内的重金属含量高于自然海滩,达到了污染的水平,质量明显恶化[20]。
在垂直剖面上,有些海滩重金属分布从表层到底层,浓度会逐渐减少,例如孟加拉国Cox’s-Bazar海滩沙中大部分重金属元素含量随着采样深度减少,没有发生元素向深处的迁移[69];我国日照海滩的重金属含量也呈现从表到深处的逐渐降低的趋势[42]。也有的在垂向样品中部浓度最高,这是因为一般情况下随深度增加,沉积层更加致密,重金属向深层迁移到一定深度后难度加大,在这一深度后垂向上呈现出递减的规律。例如在印度Kerala海滩的垂向分布来看,各种重金属元素都在一定深度上发现存在富集,例如Cd、Cu、Ni和Zn在垂向上约30cm处有富集,向下减少[54]。有些重金属在垂向沉积物底部浓度最高,这表明重金属污染物会向海滩沉积物深处迁移,随着表层沉积物重金属污染的加重,迁移到深层的重金属也会增多[18]。
3.4 海滩重金属向生物的迁移海滩重金属可以通过不同途径进入各种生物体,并在特定组织内积累。(1)摄食途径:海洋生物通过摄食被污染的沉积物或有机物,从而摄入重金属。例如,底栖无脊椎动物螃蟹和牡蛎通过过滤摄食沉积物中的有机质和微生物来摄入重金属。(2)吸附途径:鳃是鱼类与环境之间进行气体和物质交换的主要器官,鱼类可以通过鳃直接吸收水中的溶解态重金属。(3)被动扩散:重金属可以通过水体中的被动扩散过程进入生物体内,尤其是对于那些直接暴露于水体中的生物[90-92]。
不同重金属在生物体内的分布和积累部位不同,如Pb通常在软体动物的肝脏或中肠腺中高浓度聚集;Cd往往集中在肾脏和肝脏中,由于这些器官具有较高的金属结合蛋白含量;Hg主要积累在鱼类的肌肉组织中,这是由于Hg具有高的脂溶性,容易通过食物链逐级放大,最终在高级捕食者的肌肉中达到高浓度;Cu通常在肝脏和鳃中浓度较高[93-95]。海滩沉积物中生活的底栖动物如螃蟹和贝类也是人类的重要水产品,同时海滩也是人类重要旅游场所。因此海滩重金属污染可以通过食物链途径、皮肤接触等方式对周边居民及游客健康造成严重危害[96]。
Yogeshwaran等[97]对来自印度东南海岸不同地区的锯缘青蟹体内的重金属、生化成分、抗氧化剂和代谢酶的生物积累进行了研究。发现从港口附近海滩采集的锯缘青蟹各器官样本的重金属(Zn、Cu、Cd、Pb等)、生化成分、抗氧化剂和代谢酶的浓度,相比于其他地区这些指标的含量显著较高,表明港口海滩地区已受到严重的重金属污染。来自受污染环境的螃蟹,其重金属的生物积累量会显著增加,从而导致抗氧化剂和代谢酶的水平也升高,使生物体遭受生理压力。抗氧化剂和代谢酶水平的升高也是锯缘青蟹体内重金属生物积累的证据。
Cabrini等[98]对巴西东南部里约热内卢海岸的大型海滩动物群落中的重金属进行了研究,评估了里约热内卢州海岸的7个区域(共计68个海滩)中代表性大型动物组织中的8种重金属Cr、Zn、Pb、Ni、Cu、Cd、Co和V的浓度。此外,还研究了污染水平与动物多样性、均匀度、密度和生物量等之间的联系,发现有三个区域动物组织的重金属含量较高,与这些区域较高的人类活动有关,而南部两个区域的海滩位于海洋保护区,其重金属含量较低。对澳大利亚维多利亚州海滩滩面采集的双壳类三角斧蛤中的组织,与澳大利亚其他地方收集的软体动物和双壳类动物的组织浓度相比,三角斧蛤中硒的浓度较高,主要是生活的水域遭受污染的原因[99]。
Harmesa等[100]对印度尼西亚大孙河口附近海滩沉积物和海滩牵牛花植被(厚藤)中的重金属Cr、Cd和Pb进行了初步研究,发现Cr、Cd、Pb的含量在沉积物和植被之间存在显著差异,厚藤植被中积累的Cd浓度与沉积物中Cd浓度相差最大。该植被对Cd的吸收能力较强,而对于Cr和Pb等其他金属吸收能力较弱。
如果大型动物生活在海滩低潮线下的海水中,则沉积物的重金属污染对生物的影响小得多。Ghani[81]对埃及西北海岸Marsa Matrouh海滩采集的海水、沉积物和鱼类肌肉中测定了微量金属(V、Al、Sn、As和Se)的浓度。富集因子(EF)、污染因子(CF)和地质累积指数(Igeo)表明,大部分沉积物样品都受到Sn的中度至重度污染。鱼类肌肉中金属积累量依次为Al>Sn>V>Se,不过金属污染指数(MPI)表明其对人类消费是安全的。
3.5 海滩重金属污染的评价检测方法海滩沉积物重金属污染的诊断方法一般采用地球化学法和环境磁学指示法。
3.5.1 地球化学法这种方法包括利用原子吸收分光光度法(AAS)、电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱(ICP-MS)等获得沉积物重金属的浓度,然后利用多种评价方法进行重金属污染评价。评价方法主要有:(1)单因子指数法是评价沉积物污染水平、环境质量等级的一种无量纲指数方法,能够直观地反映单个金属的污染程度,它是将实测值与评价标准值相比并得出各项污染物的污染指数[101];(2)地累积指数(Igeo)通过与研究区重金属背景值进行比对[102],用来定量评价沉积物重金属污染累积程度;(3)污染负荷指数方法用于评估重金属污染的总体水平[103];(4)富集因子则可以有效的判断污染程度和可能的重金属来源[104]。另外重金属元素来源可通过主成分(PCA)和层次聚类分析(HCA)判断,观察元素之间的相关性,结合当地污染特征以及元素可能的污染来源,确定重金属元素的污染来源。地球化学法获得元素含量的实验结果准确,但方法操作复杂、成本高而且耗时长,无法快速监测大面积的沉积物中重金属的污染动态。
同位素法也是进行重金属元素溯源的重要方法。Araújo等人[105]对地中海土伦湾55个海滩沉积物的Cu、Zn和Pb同位素组成和元素浓度进行了测定,通过对比可能污染源处沉积物这三种元素的含量和同位素组成,发现土伦湾海滩重金属来源主要为附近海军和港口活动造成。在印度喀拉拉邦海滩沉积物通过放射性同位素238U和232Th追踪重金属Fe、Ni、Zn的污染来源,通过对比这两种同位素与重金属含量的相关性,以及这两种同位素与可能污染源处同位素含量,发现海滩重金属污染主要受当地城市化及密集的农业活动影响[106]。埃及红海Safaga海滩Fe、Zn、Pb和Cd超过了加拿大环境质量指南建议的允许限值,通过放射性同位素226Ra、232Th和40K值判断重金属主要是由阿布塔尔图尔港的磷酸盐运输和旅游港的航行产生[107]。
3.5.2 室内环境磁学诊断重金属污染近年来国内外研究者常使用环境磁学的方法诊断重金属污染,由于各种环境系统均不同程度地含有外源性磁性污染物[108],这些磁性颗粒在磁性矿物种类、含量、粒度上均与母质来源的原生磁性矿物存在差异,使得磁学方法可以用来追踪环境变化[109]。例如燃煤成因的磁性颗粒,重金属可以结合在磁性矿物的晶体结构中[110];同时磁性矿物的比表面积较大,使得重金属容易吸附在磁性矿物表面。当这些球粒最终进入大气或者沉积物中,可以使沉积物的磁化率增强,改变其他磁性参数[111-113]。因此磁性增强现象往往伴随着重金属污染[84, 114-118]。目前磁性诊断主要应用于土壤、城市交通、城市工业园区等产生的重金属污染,在水生环境应用于湖泊、潮滩、河流表层沉积物、河口等细颗粒沉积物,已经取得了大量的成果[119-127]。
对于粗颗粒的海滩沉积环境的磁学应用,已有研究发现磁性测试同样可以指示海滩沉积物重金属污染[3, 128]。由于海滩沉积物颗粒较粗,沉积物粒径会影响重金属的测试和污染评价,因此多采用对沉积物分粒级进行测试[3]。例如沉积物磁性参数质量磁化率(χ)、饱和等温剩磁(SIRM)、硬剩磁(HIRM-300mT)、HIRM-100mT与>63 μm的砂质组分和平均粒径(μm值)呈明显正相关。而S-100mT与<4 μm、4~8 μm、8~16 μm、16~32 μm各级粒级组分显著正相关,说明亚铁磁性矿物和不完整反铁磁矿物均在粗粒级沉积物中富集。随着粒级的变粗,磁性参数χ增大,磁性矿物含量增加[124]。
另外不同区域背景的沉积物的环境磁学背景值也会有差异。对青岛石老人海滩沉积物的磁性参数和重金属元素富集的研究发现,室内质量磁化率大于2 000×10-8 m3·kg-1时,重金属元素Fe、Mn、Cr可能存在重金属污染[3]。中国山东日照海滩的沉积物中,室内质量磁化率大于1 000×10-8 m3·kg-1时,Cr、Ni、V存在重金属污染[42-43]。这些利用磁性进行重金属污染判别的临界值的差异可能是由于母岩的差异引起的[129-131]。因此为了避免母岩背景值的影响,可以使用同一海滩的沉积物磁性的最大值是最小值的50~100倍,判断存在重金属污染[132]。当海滩表层的取样密度足够大,则可以确定磁化率分布,利用少量的元素测定方法建立模型进行校正,获得沉积物重金属元素的表层分布图,从而指示海滩沉积重金属的分布和扩散[42]。
3.5.3 野外原位磁学诊断重金属污染的模式海滩后滨和前滨都暴露于空气,可以进行原位测量[3, 132],更加方便得获得大量的磁化率参数。利用图像处理技术,可以全面解释沉积物中重金属的污染来源和扩散情况。结合少量样品的重金属的地球化学测试,也可以获得具体某个重金属元素的污染情况[3, 133]。例如在青岛石老人海滩开展的原位沉积物磁性测量发现,每个海滩可以快速获得超过5 000个样品的数据。高分辨率的数据勾画了海滩的重金属污染程度和污染扩散范围。在排污口附近,磁化率最高,远离排污口磁化率下降。另外,在高低潮线附近,磁化率较高,相应地重金属含量也较高,表现了波浪和潮汐等动力对于重金属富集的影响[3, 132]。在青岛第三海水浴场海滩,发现沉积物中重金属在两个区域出现高值,指示了两个可能的污染源。结合沉积物的元素测定,发现当原位磁化率超过600×10-5 SI时,海滩存在重金属污染。同样,原位测试也存在母岩影响的沉积磁化率差异的问题,因此可以结合同一海滩的最高原位磁化率是最低值的50~100倍时,存在沉积物重金属的污染问题[132]。
3.5.4 海滩沉积物粒径对于粗颗粒沉积物重金属污染评价的影响海滩粗颗粒沉积物粒度对于沉积物重金属含量和磁性的影响较大。不同于细颗粒物质,海滩沉积物颗粒较粗,如果使用全样进行地球化学测试时,取样量少则无法正确反映沉积物的污染情况。因此不同研究者自行选择不同粒级,如<0.063 mm[3],<0.1 mm[55],<0.125 mm[61],或者<2 mm[15]等。但选用不同的沉积物粒径,则会影响重金属含量测试结果的比较。我国目前现行的各类国家和行业标准中并未规定重金属测试的取样方法。因此还需要确定可以代表海滩沉积物重金属污染的样品粒级,从而更加合理地评价海滩粗颗粒沉积物的重金属污染程度。
3.6 海滩沉积物重金属污染治理和管理在海滩沉积物重金属污染的管理方面,印度东南部图皮利帕勒姆海岸的利益相关者决定通过廉价的生物标志物监测海岸污染,并管理和保护海滩免受进一步的污染危害。可以不断监测海滩的污染水平,以保护渔业群落和生物多样性[87]。大西洋沿岸(喀麦隆林贝海岸边缘)海滩沉积物中重金属的特征表明,重金属污染的来源主要与工业活动有关,地方当局已经意识到重金属污染的严重性,现在严格控制了一系列来源,包括农业、车库、排放、渔业、石油码头,炼油厂等。为了降低重金属污染程度,沙姆沙伊赫(埃及)政府发布了相关政策,以控制当地重型船只的航行,减少污水的直接排放,防止游客投掷垃圾,并减少其他人类活动的影响,这有效地减少了当地海滩上重金属的污染程度[134]。
总之,如果地方政府能够采取措施严格控制相关行为,包括污水排放、垃圾倾倒、船舶航行和附近交通,并能够采用快速、简单、廉价的方法定期监测和评估海滩沉积物中的重金属污染程度,就可以大大提高对海滩生态和旅游业的保护。
4 主要结论和未来关注的问题(1) 高强度人类活动作用下海滩沉积环境发生了巨大变化,人们除了关注动力地貌过程,更关注环境过程和生态以及社会过程。目前在海滩沉积物已经发现了常见的Cr、Cd、Co、Cu、Fe、Hg、Mn、Ni、Pb、Sb、V、Zn以及类金属As等13种污染元素。因此这些元素的污染程度、扩散范围和生态效应的研究需要引起足够的重视,才能通过适当的管理措施达到预防和防治的目标。这对支撑海滩环境生态治理和社会经济高质量发展具有重要的科学价值和现实意义。
(2) 根据目前收集的来自30个国家的230海滩的资料,发现五大洲中海滩重金属污染呈现美洲>亚洲>非洲>欧洲>大洋洲的趋势。南美洲和亚洲海滩重金属污染程度较高,主要是工业活动较为密集,从而排出的重金属污染物多,造成海滩的污染程度高。而欧洲和大洋洲对于海滩管理的水平相对较高,并有成熟的海滩管理法律法规和评分标准。因此有关海滩重金属污染的报告相对较少且污染程度相对较低。
(3) 由于海滩重金属污染的源头有多种,除了海滩上的一些大的排污口比较明显,一些隐蔽的排污口和其他污染源无法直观观察,因此需要加强海滩沉积物重金属污染源、污染物向海滩水平和垂向的扩散范围的研究。虽然重金属在沉积物中的迁移过程不仅取决于污染元素的化学性质、迁移系数,更取决于沉积物的环境因素及其理化性质。因此从海滩的旅游和生态健康方面,需主要针对海滩的粗颗粒沉积物的特殊沉积环境,重点考虑沉积物的粒度、水动力、重金属的赋存状态等对于污染物的扩散的影响。
(4) 综合室内的地球化学和原位磁学测试方法的优势,可以更好地给海滩污染管理提供基础数据支撑。地球化学方法可以获得较为准确的重金属元素的含量,同位素方法可以精准溯源,原位磁学测试则可以快捷方便地获取大量的数据,因此多种方法的综合利用,则可以更准确、快速和全面的掌握海滩的重金属污染现状,从而为海滩污染的管理提供全面的基础数据。
(5) 海滩沉积物粒径较粗,因此重金属元素和磁学的室内测试时,所使用的沉积物粒径不统一,例如有些研究使用海滩全样,有的研究使用<0.063 mm,或者有些研究使用<0.1 mm,<0.125 mm,<0.5 mm,0.1~2 mm等,从而使得海滩沉积物重金属的研究不统一,影响对海滩沉积物重金属的评价结果。
[1] |
中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会发布. 中华人民共和国国家标准GB/T 18190—2017, 海洋学术语-海洋地质学[S]. 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. National Standard of the People's Republic of China GB/T 18190—2017, Oceanographic terminology-Marine Geology[S]. 2017. (0) |
[2] |
Expósito N, Rovira J, Sierra J, et al. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. case study of Tarragona coast(western Mediterranean)[J]. Science of the Total Environment, 2021, 786: 147453. DOI:10.1016/j.scitotenv.2021.147453 (0) |
[3] |
Wang Y, Huang Q, Lemckert C, et al. Laboratory and field magnetic evaluation of the heavy metal contamination on Shilaoren Beach, China[J]. Marine Pollution Bulletin, 2017, 117(1-2): 291-301. DOI:10.1016/j.marpolbul.2017.01.080 (0) |
[4] |
刘阳, 相杰友, 张凡顺. 青岛近海潮间带生物体重金属含量及评价[J]. 河北渔业, 2019, 311: 32-36. Liu Y, Xiang J Y, Zhang F S. Contents and evaluation of heavy metals in organisms from Qingdao intertidal zone[J]. Hebei Fisheries, 2019, 311: 32-36. (0) |
[5] |
刘阳, 赵晋娥, 张凡顺. 青岛潮间带表层沉积物重金属污染现状及潜在生态风险评价[J]. 环境污染与防治, 2021, 43(4): 492-496. Liu Y, Zhao J E, Zhang Fan S. Pollution status and potential ecological risk assessment of heavy metals in the surface sediments of Qingdao intertidal[J]. Environmental Pollution & Control, 2021, 43(4): 492-496. (0) |
[6] |
夏鹏. 广西北海段潮间带表层沉积物中重金属地球化学特征及潜在生态危害评价[D]. 青岛: 国家海洋局第一海洋研究所, 2008. Xia P. Geochemistry and Potential Ecological Risk of Heavy Metal Elements in the Surface Sediments of the Beihai Inter-tidal Zone[D]. Qingdao: The First Institute of Oceanography, 2008. (0) |
[7] |
董兰芳, 童潼, 张琴, 等. 北海市干沙虫污染状况调查[J]. 中国食品卫生杂志, 2015, 27(S1): 54-57. Dong L F, Tong T, Zhang Q, et al. Investigation of hazardous substances contamination of dried peanut worm from Beihai city[J]. Chinese Journal of Food Hygiene, 2015, 27(S1): 54-57. (0) |
[8] |
Anandkumar A, Nagarajan R, Gounder E S, et al. Seasonal variation and mobility of trace metals in the beach sediments of NW Borneo[J]. Chemosphere, 2022, 287: 132069. DOI:10.1016/j.chemosphere.2021.132069 (0) |
[9] |
Buzzi N S, Menéndez M C, Truchet D M, et al. An overview on metal pollution on touristic sandy beaches: Is the COVID-19 pandemic an opportunity to improve coastal management?[J]. Marine Pollution Bulletin, 2022, 174: 113275. DOI:10.1016/j.marpolbul.2021.113275 (0) |
[10] |
Caredda A M, Cristini A, Ferrara C, et al. Distribution of heavy metals in the Piscinas beach sediments(SW Sardinia, Italy)[J]. Environmental Geology, 1999, 38: 91-100. DOI:10.1007/s002540050405 (0) |
[11] |
Vidinha J M, Rocha F, Patinha C, et al. Heavy metals contents on beach and dune sediments from Espinho to Mondego Cape(Portugal)—influence of human activities[J]. Journal of Geochemical Exploration, 2006, 88(1-3): 404-407. DOI:10.1016/j.gexplo.2005.08.085 (0) |
[12] |
Yalcin M G, Ilhan S. Multivariate analyses to determine the origin of potentially harmful heavy metals in beach and dune sediments from Kizkalesi coast(Mersin), Turkey[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81: 57-68. DOI:10.1007/s00128-008-9461-2 (0) |
[13] |
Yalcin M G, Mutlu E, Olguner C, et al. Spatial geochemical structure of soft sediment on shallow littoral of the Gulf of Antalya, the eastern Mediterranean Sea[J]. Marine Pollution Bulletin, 2023, 193: 115-155. (0) |
[14] |
Kodat M, Tepe Y. A holistic approach to the assessment of heavy metal levels and associated risks in the coastal sediment of Giresun, southeast Black Sea[J]. Heliyon, 2023, 9(6): 16424-16435. DOI:10.1016/j.heliyon.2023.e16424 (0) |
[15] |
Sanz-Prada L, García-Ordiales E, Roqueñí N, et al. Geochemical distribution of selected heavy metals in the Asturian coastline sediments(North of Spain)[J]. Marine Pollution Bulletin, 2020, 156: 111263. DOI:10.1016/j.marpolbul.2020.111263 (0) |
[16] |
Ardila P A R, Alonso R Á, Valsero J J D, et al. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island, Spain[J]. Environmental Science and Pollution Research, 2023, 30(7): 16852-16866. DOI:10.1007/s11356-022-25014-0 (0) |
[17] |
Tsabaris C, Patiris D L, Adams R, et al. In situ radioactivity maps and trace metal concentrations in beach sands of a mining coastal area at north Aegean, Greece[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1207. DOI:10.3390/jmse11061207 (0) |
[18] |
Bigus K, Astel A, Niedzielski P. Seasonal distribution of metals in vertical and horizontal profiles of sheltered and exposed beaches on Polish coast[J]. Marine Pollution Bulletin, 2016, 106(1-2): 347-359. (0) |
[19] |
Jonathan M P, Rodriguez-Espinosa P F, Sujitha S B, et al. A multi-elemental approach to assess potential contamination in tourist beaches: The case of Loreto Bay(Marine Protected Area), NW Mexico[J]. Marine Pollution Bulletin, 2019, 146: 729-740. DOI:10.1016/j.marpolbul.2019.06.083 (0) |
[20] |
Castro G, Valdés J. Heavy metals concentration(Cu, Ni, Zn, Cd, Pb), in biota and sediments of an artificial beach, in San Jorge bay 23°S, northern Chile[J]. Latin American Journal of Aquatic Research, 2012, 40(2): 267-281. DOI:10.3856/vol40-issue2-fulltext-3 (0) |
[21] |
Buzzi N S, Marcovecchio J E. Heavy metal concentrations in sediments and in mussels from Argentinean coastal environments, South America[J]. Environmental Earth Sciences, 2018, 77: 1-13. DOI:10.1007/s12665-017-7169-5 (0) |
[22] |
Fernández-Severini M D, Menéndez M C, Buzzi N S, et al. Metals in the particulate matter from surf zone waters of a Southwestern Atlantic sandy beach(Monte Hermoso, Argentina)[J]. Regional Studies in Marine Science, 2019, 29: 100646. DOI:10.1016/j.rsma.2019.100646 (0) |
[23] |
Gutiérrez-Mosquera H, Shruti V C, Jonathan M P, et al. Metal concentrations in the beach sediments of Bahia Solano and Nuquí along the Pacific coast of Chocó, Colombia: A baseline study[J]. Marine Pollution Bulletin, 2018, 135: 1-8. DOI:10.1016/j.marpolbul.2018.06.060 (0) |
[24] |
Acosta V, Lodeiros C, Senior W, et al. Niveles de metales pesados en sedimentos superficiales en tres zonas litorales de Venezuela[J]. Interciencia, 2002, 27(12): 686-690. (0) |
[25] |
Lakhan V C, Cabana K, LaValle P D. Relationship between grain size and heavy metals in sediments from beaches along the coast of Guyana[J]. Journal of Coastal Research, 2003, 19(3): 600-608. (0) |
[26] |
García E M, Cruz-Motta J J, Farina O, et al. Anthropogenic influences on heavy metals across marine habitats in the western coast of Venezuela[J]. Continental Shelf Research, 2008, 28(20): 2757-2766. DOI:10.1016/j.csr.2008.09.020 (0) |
[27] |
Vilhena J C E, Amorim A, Ribeiro L, et al. Baseline study of trace element concentrations in sediments of the intertidal zone of amazonian oceanic beaches[J]. Frontiers in Marine Science, 2021, 8: 671390. DOI:10.3389/fmars.2021.671390 (0) |
[28] |
Ekoa Bessa A Z, Ngueutchoua G, Kwewouo Janpou A, et al. Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean(Limbe coastal fringes, Cameroon)[J]. Earth Systems and Environment, 2021, 5: 433-444. DOI:10.1007/s41748-020-00167-5 (0) |
[29] |
Shetaia S A, Khatita A M A, Abdelhafez N A, et al. Human-induced sediment degradation of Burullus lagoon, Nile Delta, Egypt: Heavy metals pollution status and potential ecological risk[J]. Marine Pollution Bulletin, 2022, 178: 113566. DOI:10.1016/j.marpolbul.2022.113566 (0) |
[30] |
Nour H E, El-Sorogy A S. Heavy metals contamination in seawater, sediments and seashells of the Gulf of Suez, Egypt[J]. Environmental Earth Sciences, 2020, 79: 1-12. DOI:10.1007/s12665-019-8746-6 (0) |
[31] |
Beldi H, Gimbert F, Maas S, et al. Seasonal variations of Cd, Cu, Pb and Zn in the edible mollusc Donax trunculus(Mollusca, Bivalvia) from the gulf of Annaba, Algeria[J]. African Journal of Agricultural Research, 2006, 1(4): 85-90. (0) |
[32] |
Samuel D A O. Heavy metals concentration and pollution assessment of the beach sediments in Lagos, Southwestern Nigeria[J]. SDRP Journal of Earth Sciences & Environmental Studies, 2019, 4(2): 567-578. (0) |
[33] |
Tnoumi A, Angelone M, Armiento G, et al. Assessment of trace metals in sediments from Khnifiss Lagoon(Tarfaya, Morocco)[J]. Earth, 2020, 2(1): 16-31. DOI:10.3390/earth2010002 (0) |
[34] |
Rumisha C, Elskens M, Leermakers M, et al. Trace metal pollution and its influence on the community structure of soft bottom molluscs in intertidal areas of the Dar es Salaam coast, Tanzania[J]. Marine Pollution Bulletin, 2012, 64(3): 521-531. DOI:10.1016/j.marpolbul.2011.12.025 (0) |
[35] |
Ali M M, Islam M S, Islam A R M T, et al. Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh[J]. Marine Pollution Bulletin, 2022, 175: 113274. DOI:10.1016/j.marpolbul.2021.113274 (0) |
[36] |
Antony S, Unnikrishnan K, Aswin S, et al. Heavy metals in coral reef sediments of Kavaratti Island, India: An integrated quality assessment using GIS and pollution indicators[J]. Marine Pollution Bulletin, 2022, 180: 113721. DOI:10.1016/j.marpolbul.2022.113721 (0) |
[37] |
Vinothkannan A, Charles P E, Rajaram R. Ecological risk assessment and seasonal variation of heavy metals in water and sediment collected from industrially polluted Cuddalore coast, Southeastern India[J]. Regional Studies in Marine Science, 2022, 49: 102134. DOI:10.1016/j.rsma.2021.102134 (0) |
[38] |
Ramasamy V, Senthil S, Paramasivam K, et al. Potential toxicity of heavy metals in beach and intertidal sediments: A comparative study[J]. Acta Ecologica Sinica, 2022, 42(2): 57-67. (0) |
[39] |
Sundar S, Roy P D, Chokkalingam L, et al. Evaluation of metals and trace elements in sediments of Kanyakumari beach(southernmost India) and their possible impact on coastal aquifers[J]. Marine Pollution Bulletin, 2021, 169: 112527. DOI:10.1016/j.marpolbul.2021.112527 (0) |
[40] |
Gandhi K S, Pradhap D, Saravanan P, et al. Metal concentration and its ecological risk assessment in the beach sediments of Coromandel Coast, Southern India[J]. Marine Pollution Bulletin, 2020, 160: 111565. (0) |
[41] |
Hu G R, Yu R L, Chen L P, et al. Evaluation of pollution of heavy metals in Luoyangjiang inter-tidal sediments, Quanzhou Bay[J]. Journal of Mineralogy and Petrology, 2011, 31: 109-115. DOI:10.3969/j.issn.1001-6872.2011.01.017 (0) |
[42] |
王晓宇, 王永红. 日照市海滩表层沉积物重金属污染评价及磁学指示[J]. 海洋地质前沿, 2022, 38(7): 63-74. Wang X Y, Wang Y H. Evaluation of heavy metal pollution and their magnetic indicators in beach surface sediments in Rizhao City[J]. Marine Geological Frontiers, 2022, 38(7): 63-74. (0) |
[43] |
王凯伟, 王永红, 王晓宇. 山东南部海滩沉积物重金属污染评价及磁学诊断[J]. 海洋与湖沼, 2023, 54(5): 1322-1339. Wang K W, Wang Y H, Wang X Y. Evaluation and magnetic diagnosis of heavy metal pollution in sediments of beaches in southeastern Shandong province[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1322-1339. (0) |
[44] |
Siddique A, Mumtaz M, Zaigham N A, et al. Heavy metal toxicity levels in the coastal sediments of the Arabian Sea along the urban Karachi(Pakistan) region[J]. Marine Pollution Bulletin, 2009, 58(9): 1406-1414. DOI:10.1016/j.marpolbul.2009.06.010 (0) |
[45] |
Saad G A, Bedeer A H, Radwan E H. Measurement of heavy metals accumulation in ctendia of Anadara ehrenbergi(Dunker, 1868) using energy-dispersive x-ray fluorescence(EDXRF)[J]. Journal of Oceanography and Marine Science, 2015, 6: 1-19. DOI:10.5897/JOMS2014.0115 (0) |
[46] |
Duong L T, Nguyen B Q, Dao C D, et al. Heavy metals in surface sediments of the intertidal Thai Binh Coast, Gulf of Tonkin, East Sea, Vietnam: Distribution, accumulation, and contamination assessment[J]. Environmental Science and Pollution Research, 2022, 29(27): 41261-41271. DOI:10.1007/s11356-022-18881-0 (0) |
[47] |
Kobkeatthawin T, Sirivithayapakorn S, Nitiratsuwan T, et al. Accumulation of trace metal in sediment and soft tissue of Strombus canarium in a tropical remote island of Thailand[J]. Journal of Marine Science and Engineering, 2021, 9(9): 991. DOI:10.3390/jmse9090991 (0) |
[48] |
Kim S M, Choi Y. Assessment of Lead(Pb) and Zinc(Zn) contamination in beach sands by hot spot analysis[J]. Journal of Coastal Research, 2019, 91(S1): 321-325. (0) |
[49] |
Nagarajan R, Jonathan M P, Roy P D, et al. Metal concentrations in sediments from tourist beaches of Miri City, Sarawak, Malaysia(Borneo Island)[J]. Marine Pollution Bulletin, 2013, 73(1): 369-373. DOI:10.1016/j.marpolbul.2013.05.036 (0) |
[50] |
Macdonald D D, Carr R S, Calder F D, et al. Development and evaluation of sediment quality guidelines for Florida coastal waters[J]. Ecotoxicology, 1996, 5: 253-278. DOI:10.1007/BF00118995 (0) |
[51] |
Department of water, government of western Australia. Enviroument[EB/OL]. 2017.12.27. https://www.wa.gov.au/service/environment,
(0) |
[52] |
中国新闻网. 海洋大省山东整治入海排污口超1.5万个[N/OL]. 2022年03月09日. China news network Shandong, a major maritime province, has rectified over 15000 sewage outlets into the sea[N/OL]. March 9th, 2022 https://www.chinanews.com.cn/cj/2022/03-09/9697232.shtml. (0) |
[53] |
Suresh G, Ramasamy V, Sundarrajan M, et al. Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India[J]. Marine Pollution Bulletin, 2015, 91(1): 389-400. DOI:10.1016/j.marpolbul.2014.11.007 (0) |
[54] |
Bramha S N, Mohanty A K, Satpathy K K, et al. Heavy metal content in the beach sediment with respect to contamination levels and sediment quality guidelines: A study at Kalpakkam coast, southeast coast of India[J]. Environmental Earth Sciences, 2014, 72: 4463-4472. DOI:10.1007/s12665-014-3346-y (0) |
[55] |
Krishnakumar T, Vidyasakar A, Anbalagan S, et al. Bioavailable trace metals and their ecological risks in the tourist beaches of the Southeast coast of India[J]. Marine Pollution Bulletin, 2020, 160: 111562. DOI:10.1016/j.marpolbul.2020.111562 (0) |
[56] |
Vetrimurugan E, Shruti V C, Jonathan M P, et al. Metal concentration in the tourist beaches of South Durban: Anindustrial hub of South Africa[J]. Marine Pollution Bulletin, 2017, 117: 538-546. DOI:10.1016/j.marpolbul.2017.02.036 (0) |
[57] |
Peter T S, Chandrasekar N, Wilson J S J, et al. A baseline record of trace elements concentration along the beach placer mining areas of Kanyakumari coast, South India[J]. Marine Pollution Bulletin, 2017, 119(1): 416-422. DOI:10.1016/j.marpolbul.2017.03.040 (0) |
[58] |
Vetrimurugan E, Shruti V C, Jonathan M P, et al. Comprehensive study on metal contents and their ecological risks in beach sediments of KwaZulu-Natal province, South Africa[J]. Marine Pollution Bulletin, 2019, 149: 110555. DOI:10.1016/j.marpolbul.2019.110555 (0) |
[59] |
Chandrasekaran S, Pillai G S, Venkatraman B. Spatial and heavy metal assessment in beach sands of east coast of Tamil Nadu, India[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 14: 100324. (0) |
[60] |
Liang W Q, Wang Y H, Huang Q H. Heavy metal contamination in beach sediments as a result of sewage outlet and waste residue dumping in Qingdao, China[J]. Marine Pollution Bulletin, 2022, 183: 114024. DOI:10.1016/j.marpolbul.2022.114024 (0) |
[61] |
Rizo O D, González F B, López J O A, et al. Heavy metal levels in dune sands from Matanzas urban resorts and Varadero beach(Cuba): Assessment of contamination and ecological risks[J]. Marine Pollution Bulletin, 2015, 101: 961-964. DOI:10.1016/j.marpolbul.2015.10.025 (0) |
[62] |
Wang P, Zhang L J, Lin X, et al. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China[J]. Marine Pollution Bulletin, 2020a, 156: 111279. DOI:10.1016/j.marpolbul.2020.111279 (0) |
[63] |
Mirlean N, Garcia F, Baisch P, et al. Sandy beaches contamination by arsenic, a result of nearshore sediment diagenesis and transport(Brazilian coastline)[J]. Estuarine, Coastal and Shelf Science, 2013, 135: 241-247. DOI:10.1016/j.ecss.2013.10.020 (0) |
[64] |
Jonathan M P, Roy P D, Thangadurai N, et al. Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico[J]. Marine Pollution Bulletin, 2011, 62(4): 845-850. DOI:10.1016/j.marpolbul.2011.02.042 (0) |
[65] |
Retama I, Jonathan M P, Roy P D, et al. Metal concentrations in sediments from tourist beaches of Huatulco, Oaxaca, Mexico: An evaluation of post-Easter week vacation[J]. Environmental Earth Sciences, 2016, 75: 1-10. (0) |
[66] |
Edward F B, Yap C K, Ismail A, et al. Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves[J]. Water, Air, and Soil Pollution, 2009, 196: 297-309. DOI:10.1007/s11270-008-9777-x (0) |
[67] |
Noik V J, Tuah P M, Seng L, et al. Fingerprinting and quantification of selected heavy metals in meso- and microplastics sampled from Santubong and Trombol beach. Kuching, Sarawak, Malaysia[C]. //2nd International Conference on Agriculture, Environment and Biological Sciences, 2015: 53.
(0) |
[68] |
Musta B, Asat M A, Ling S Y, et al. Geophysical Investigation and Geochemical Study of Sediment along the Coastal Area in Kota Belud Sabah, Malaysia[C]. Journal of Physics: Conference Series. [s. l.]: IOP Publishing, 2022.
(0) |
[69] |
Khan R, Rouf M A, Das S, et al. Spatial and multi-layered assessment of heavy metals in the sand of Cox's-Bazar beach of Bangladesh[J]. Regional Studies in Marine Science, 2017, 16: 171-180. (0) |
[70] |
Bhuyan M S, Haider S M B, Meraj G, et al. Assessment of heavy metal contamination in beach sediments of eastern St. Martin's Island, Bangladesh: Implications for environmental and human health risks[J]. Water, 2023, 15(13): 2494. DOI:10.3390/w15132494 (0) |
[71] |
向静雅, 王倩, 邵明帅, 等. 深圳海滩塑料垃圾及其重金属污染分析[J]. 中国环境科学, 2020, 40(7): 3097-3105. Xiang J Y, Wang Q, Shao M S, et al. Assessment of beach plastic waste and its heavy metal pollution in Shenzhen[J]. China Environmental Science, 2020, 40(7): 3097-3105. DOI:10.3969/j.issn.1000-6923.2020.07.036 (0) |
[72] |
Santhiya G, Lakshumanan C, Jonathan M P, et al. Metal enrichment in beach sediments from Chennai Metropolis, SE coast of India[J]. Marine Pollution Bulletin, 2011, 62(11): 2537-2542. DOI:10.1016/j.marpolbul.2011.08.019 (0) |
[73] |
Jayasiri H B, Vennila A, Purushothaman C S. Spatial and temporal variability of metals in inter-tidal beach sediment of Mumbai, India[J]. Environmental Monitoring and Assessment, 2014, 186: 1101-1111. DOI:10.1007/s10661-013-3441-7 (0) |
[74] |
Gandhi K S, Pradhap D, Saravanan P, et al. Metal concentration and its ecological risk assessment in the beach sediments of Coromandel Coast, Southern India[J]. Marine Pollution Bulletin, 2020, 160: 111565. (0) |
[75] |
Sachithanandam V, Parthasarathy P, Elangovan S S, et al. A baseline study on trace metals concentration and its ecological risk assessment from the coast of South Andaman Island, India[J]. Regional Studies in Marine Science, 2020, 36: 101242. DOI:10.1016/j.rsma.2020.101242 (0) |
[76] |
Ramasamy V, Senthil S, Paramasivam K, et al. Potential toxicity of heavy metals in beach and intertidal sediments: A comparative study[J]. Acta Ecologica Sinica, 2021, 42(2): 3-27. (0) |
[77] |
Santhosh A P, Pyary A, Biju A, et al. Heavy metal contamination along different tidal zones of a tropical Bay of Bengal coastal environment influenced by various anthropogenic activities[J]. Environmental Science and Pollution Research, 2023, 30(10): 27980-27995. (0) |
[78] |
Vidinha J M, Rocha F, Silva E, et al. Geochemical beach sediments studies—a contribution to a standard definition useful for public health[J]. Journal of Coastal Research, 2009, 56: 905-908. (0) |
[79] |
Al-Kahtany K, Nour H E, El-Sorogy A S, et al. Ecological and health risk assessment of heavy metals contamination in mangrove sediments, Red Sea coast[J]. Marine Pollution Bulletin, 2023, 192: 115000. DOI:10.1016/j.marpolbul.2023.115000 (0) |
[80] |
El-Kammar A M, Arafa I H, El-Sheltami O R. Mineral composition and environmental geochemistry of the beach sediments along the eastern side of the Gulf of Suez, Egypt[J]. Journal of African Earth Sciences, 2007, 49(3): 103-114. DOI:10.1016/j.jafrearsci.2007.08.003 (0) |
[81] |
Ghani SAA. Trace metals in seawater, sediments and some fish species from Marsa Matrouh Beaches in north-western Mediterranean coast, Egypt[J]. The Egyptian Journal of Aquatic Research, 2015, 41(2): 145-154. DOI:10.1016/j.ejar.2015.02.006 (0) |
[82] |
El-Sorogy A S, Tawfik M, Almadani S A, et al. Assessment of toxic metals in coastal sediments of the Rosetta area, Mediterranean Sea, Egypt[J]. Environmental Earth Sciences, 2016, 75: 1-11. (0) |
[83] |
Vetrimurugan E, Jonathan M P, Roy P D, et al. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa[J]. Marine Pollution Bulletin, 2016, 105: 430-436. DOI:10.1016/j.marpolbul.2016.01.045 (0) |
[84] |
Vetrimurugan E, Shruti V C, Jonathan M P, et al. Metals and their ecological impact on beach sediments near the marine protected sites of Sodwana Bay and St. Lucia, South Africa[J]. Marine Pollution Bulletin, 2018, 127: 568-575. DOI:10.1016/j.marpolbul.2017.12.044 (0) |
[85] |
Harbison P. Diurnal variations in the chemical environment of a shallow tidal inlet, Gulf St Vincent, South Australia: Implications for water quality and trace metal migration[J]. Marine Environmental Research, 1986, 20(3): 161-195. DOI:10.1016/0141-1136(86)90046-2 (0) |
[86] |
Pit I R, Dekker S C, Kanters T J, et al. Mobilisation of toxic trace elements under various beach nourishments[J]. Environmental Pollution, 2017, 231: 1063-1074. DOI:10.1016/j.envpol.2017.08.064 (0) |
[87] |
Sreenivasulu G, Jayaraju N, Reddy B C S R, et al. Influence of coastal morphology on the distribution of heavy metals in the coastal waters of Tupilipalem coast, Southeast coast of India[J]. Remote Sensing Applications: Society and Environment, 2018, 10: 190-197. DOI:10.1016/j.rsase.2018.04.003 (0) |
[88] |
Bigus K, Astel A, Niedzielski P. Seasonal distribution of metals in vertical and horizontal profiles of sheltered and exposed beaches on Polish coast[J]. Marine Pollution Bulletin, 2016, 106(1-2): 347-359. (0) |
[89] |
Khan R, Rouf M A, Das S, et al. Spatial and multi-layered assessment of heavy metals in the sand of Cox's-Bazar beach of Bangladesh[J]. Regional Studies in Marine Science, 2017, 16: 171-180. (0) |
[90] |
Waldichuk M. Some biological concerns in heavy metals pollution[J]. Pollution and Physiology of Marine Organisms, 1974, 1: 1-59. (0) |
[91] |
Cabrini T M B, Barboza C A M, Skinner V B, et al. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil[J]. Environmental Pollution, 2017, 221: 116-129. (0) |
[92] |
Birch G F, Olmos M A. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies[J]. ICES Journal of Marine Science, 2008, 65(8): 1407-1413. DOI:10.1093/icesjms/fsn139 (0) |
[93] |
El-Serehy H A, Aboulela H, Al-Misned F, et al. The potential use of the bivalve Donax trunculus as Bio-indicator for heavy metal pollution of Port Said western coast on the Mediterranean Sea[J]. Life Science Journal, 2013, 10(4): 1094-1101. (0) |
[94] |
Ramasamy V, Senthil S, Paramasivam K, et al. Potential toxicity of heavy metals in beach and intertidal sediments: A comparative study[J]. Acta Ecologica Sinica, 2022, 42(2): 57-67. (0) |
[95] |
Valdelamar-Villegas J, Olivero-Verbel J. Bioecological aspects and heavy metal contamination of the mollusk Donax denticulatus in the Colombian Caribbean coastline[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100: 234-239. DOI:10.1007/s00128-017-2203-6 (0) |
[96] |
王军广, 王鹏, 伏箫诺, 等. 海南清澜港红树林湿地沉积物中重金属形态及生物有效性[J]. 西南农业学报, 2019, 32(10): 2425-2431. Wang J G, Wang P, Fu X N, et al. Speciation and bioavailability of heavy metals in sediments of mangrove wetland in Qinglan harbor, Hainan Island[J]. Southwest China Journal of Agricultural Science, 2019, 32(10): 2425-2431. (0) |
[97] |
Yogeshwaran A, Gayathiri K, Muralisankar T, et al. Bioaccumulation of heavy metals, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India[J]. Marine Pollution Bulletin, 2020, 158: 111443. DOI:10.1016/j.marpolbul.2020.111443 (0) |
[98] |
Cabrini T M B, Barboza C A M, Skinner V B, et al. Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil[J]. Environmental Pollution, 2017, 221: 116-129. (0) |
[99] |
Haynes R J. Use of industrial wastes as media in constructed wetlands and filter beds—prospects for removal of phosphate and metals from wastewater streams[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(10): 1041-1103. DOI:10.1080/10643389.2014.924183 (0) |
[100] |
Harmesa, Cordova M R. A preliminary study on heavy metal pollutants chrome(Cr), cadmium(Cd), and lead(Pb) in sediments and beach morning glory vegetation(Ipomoea pes-caprae) from Dasun Estuary, Rembang, Indonesia[J]. Marine Pollution Bulletin, 2021, 162: 111819. DOI:10.1016/j.marpolbul.2020.111819 (0) |
[101] |
Hakanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. DOI:10.1016/0043-1354(80)90143-8 (0) |
[102] |
Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2: 108-118. (0) |
[103] |
Tomlinson D L, Wilson J G, Harris C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index[J]. Helgoländer Meeresuntersuchungen, 1980, 33(1-4): 566-575. DOI:10.1007/BF02414780 (0) |
[104] |
Simex S A, Helz G R. Regional geochemistry of trace elements in Chesapeake Bay[J]. Environmental Geology, 1981, 3(6): 315-323. DOI:10.1007/BF02473521 (0) |
[105] |
Araújo D F, Ponzevera E, Briant N, et al. Copper, zinc and lead isotope signatures of sediments from a mediterranean coastal bay impacted by naval activities and urban sources[J]. Applied Geochemistry, 2019, 111: 104440. DOI:10.1016/j.apgeochem.2019.104440 (0) |
[106] |
Chaparro M A E, Krishnamoorthy N, Chaparro M A E, et al. Magnetic, chemical and radionuclide studies of river sediments and their variation with different physiographic regions of Bharathapuzha River, southwestern India[J]. Studia Geophysica et Geodaetica, 2015, 59: 438-460. DOI:10.1007/s11200-014-0145-6 (0) |
[107] |
Uosif M A M, Issa S, Zakaly H M H, et al. The status of natural radioactivity and heavy metals pollution on marine sediments Red Sea coast, at Safaga, Egypt[J]. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 2016, 3(2): 191-222. DOI:10.15415/jnp.2016.32020 (0) |
[108] |
Chaparro M A E, Bidegain J C, Sinito A M, et al. Relevant magnetic parameters and heavy metals from relatively polluted stream sediments—vertical and longitudinal distribution along a cross-city stream Buenos Aires province, Argentina[J]. Studia Geophysica et Geodaetica, 2004, 48: 615-636. DOI:10.1023/B:SGEG.0000037474.08544.8e (0) |
[109] |
王冠, 陈裕颖, 夏敦胜, 等. 上海城市表土磁性特征对重金属污染的指示作用[J]. 环境科学学报, 2018, 38(8): 3302-3312. Wang G, Chen Y Y, Xia D S, et al. Magnetic property of urban topsoil and its implication pollution in Shanghai[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3302-3312. (0) |
[110] |
Suresh G, Sutharsan P, Ramasamy V, et al. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India[J]. Ecotoxicology and Environmental Safety, 2012, 84: 117-124. DOI:10.1016/j.ecoenv.2012.06.027 (0) |
[111] |
Hay K L, Dearing J A, Baban S M J, et al. A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements[J]. Physics and Chemistry of the Earth, 1997, 22(1): 207-210. (0) |
[112] |
Blundell A, Dearing J A, Boyle J F, et al. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales[J]. Earth Science Reviews, 2009, 95(3-4): 158-188. DOI:10.1016/j.earscirev.2009.05.001 (0) |
[113] |
Li X L, Yang Y, Yang J X, et al. Rapid diagnosis of heavy metal pollution in lake sediments based on environmental magnetism and machine learning[J]. Journal of Hazardous Materials, 2021, 416: 26-163. (0) |
[114] |
Wang G, Oldfield F, Xia D S, et al. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China[J]. Atmospheric Environment, 2012, 46: 289-298. (0) |
[115] |
陈裕颖, 王冠, 陈姣, 等. 上海市杨浦区表土重金属污染的磁学响应[J]. 水土保持通报, 2017, 37(3): 28-34. Chen Y Y, Wang G, Chen J, et al. Magnetic response of heavy metals pollution in urban topsoil of Yangpu district, Shanghai city[J]. Bulletin of Soil and Water Conservation, 2017, 37(3): 28-34. (0) |
[116] |
Magiera T, Zawadzki J, Szuszkiewicz M, et al. Impact of an iron mine and a nickel smelter at the Norwegian/Russian border close to the Barents Sea on surface soil magnetic susceptibility and content of potentially toxic elements[J]. Chemosphere, 2018, 195: 48-62. DOI:10.1016/j.chemosphere.2017.12.060 (0) |
[117] |
林钟扬, 管敏琳, 金翔龙, 等. 基于海岸带潟湖沉积物重金属污染评价的磁诊断模型构建[J]. 环境污染与防治, 2019, 41(11): 1368-1373. Lin Z Y, Guan M L, Jin X L, et al. Construction of magnetic diagnosis model based on heavy metal pollution assessment of lagoon sediments in coastal zone[J]. Environmental Pollution & Control, 2019, 41(11): 1368-1373. (0) |
[118] |
Wang S, Liu J, Li J C, et al. Environmental magnetic parameter characteristics as indicators of heavy metal pollution in the surface sediments off the Zhoushan Islands in the East China Sea[J]. Marine Pollution Bulletin, 2019, 150(3): 110642. (0) |
[119] |
Zhang L P, Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Marine Pollution Bulletin, 2007, 54(7): 974-982. DOI:10.1016/j.marpolbul.2007.02.010 (0) |
[120] |
Bartoli G, Papa S, Sagnella E, et al. Heavy metal content in sediments along the Calore river: Relationships with physical-chemical characteristics[J]. Journal of Environmental Management, 2012, 95: 9-14. (0) |
[121] |
Wang B, Xia D S, Yu Y, et al. Magnetic records of heavy metal pollution in urban topsoil in Lanzhou, China[J]. Chinese Science Bulletin, 2013, 58(3): 384-395. DOI:10.1007/s11434-012-5404-8 (0) |
[122] |
Dong C Y, Zhang W G, Ma H L, et al. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta[J]. Science of the Total Environment, 2014, 476: 368-377. (0) |
[123] |
Li H M, Qian X, Wei H T, et al. Magnetic properties as proxies for the evaluation of heavy metal contamination in urban street dusts of Nanjing, Southeast China[J]. Geophysical Journal International, 2014, 199(3): 1354-1366. DOI:10.1093/gji/ggu253 (0) |
[124] |
李文, 胡忠行, 吉茹, 等. 金华市义乌江沉积物磁性特征与重金属污染[J]. 环境科学学报, 2016, 36(1): 74-83. Li W, Hu Z X, Ji R, et al. Magnetic properties and heavy metal pollution in sediments of Yiwu River, Jinhua, China[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 74-83. (0) |
[125] |
Zong Y, Xiao Q, Lu S. Magnetic signature and source identification of heavy metal contamination in urban soils of steel industrial city, Northeast China[J]. Journal of Soils and Sediments, 2017, 17(1): 190-203. DOI:10.1007/s11368-016-1522-2 (0) |
[126] |
Lone A M, Achyuthan H, Shah R A, et al. Environmental magnetism and heavy metal assemblages in lake bottom sediments, Anchar Lake, Srinagar, NW Himalaya, India[J]. International Journal of Environmental Research, 2018, 12(4): 489-502. DOI:10.1007/s41742-018-0108-9 (0) |
[127] |
Winkler A, Caricchi C, Guidotti M, et al. Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy[J]. Science of the Total Environment, 2019, 690: 1355-1368. DOI:10.1016/j.scitotenv.2019.06.526 (0) |
[128] |
Dytłow S, Górka-Kostrubiec B. Effective and universal tool for evaluating heavy metals—passive dust samplers[J]. Environmental Pollution, 2019, 247: 188-194. DOI:10.1016/j.envpol.2019.01.030 (0) |
[129] |
Zhang W G, Yu L Z, Lu M, et al. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China[J]. Environmental Pollution, 2007, 147(1): 238-244. DOI:10.1016/j.envpol.2006.08.003 (0) |
[130] |
董艳, 张卫国, 钱鹏, 等. 南通市任港河底泥重金属污染的磁学诊断[J]. 环境科学学报, 2012, 32(3): 696-705. Dong Y, Zhang W G, Qian P, et al. Magnetic analysis of heavy metal pollution in Rengang River sediments, Nantong, China[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 696-705. (0) |
[131] |
陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展[J]. 生态环境学报, 2015, 24(6): 1069-1074. Chen M, Cai Q Y, Xu H, et al. Research progress of risk assessment of heavy metals pollution in water body sediments[J]. Ecology and Environmental Sciences, 2015, 24(6): 1069-1074. (0) |
[132] |
Wang Y H, Feng Z, Wang K W, et al. A new in situ magnetic method to indicate the source and seasonal diffusion of heavy metal contamination at Qingdao Beach, China[J]. Marine Environmental Research, 2024, 198: 106516. DOI:10.1016/j.marenvres.2024.106516 (0) |
[133] |
Li H M, Qian X, Hu W, et al. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China[J]. Science of the Total Environment, 2013, 456-457: 212-221. DOI:10.1016/j.scitotenv.2013.03.094 (0) |
[134] |
Hamdy S A, Ali N. Evaluation of the service quality of one-day trips in south Sinai from a tourist's point of view[J]. Minia Journal of Tourism and Hospitality Research, 2022, 14(1): 1-22. (0) |
2. Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China