中国公共卫生  2019, Vol. 35 Issue (9): 1219-1224   PDF    
纳豆联合红曲对大鼠酒精性肝损伤改善作用及机制
王宗玲1, 卓怡云1, 吕婧1, 王子龙1, 刘颖2, 梁惠1    
1. 青岛大学公共卫生学院,山东 青岛 266021;
2. 青岛大学基础医学院
摘要目的 探讨纳豆联合红曲对大鼠酒精性肝损伤(ALD)的改善作用及机制。方法 雄性Wistar大鼠随机分为4组:对照组(生理盐水);模型组(56°白酒6 mL/kg 1周+8 mL/kg 1周+10 mL/kg 1周+11 mL/kg 7周);纳豆红曲组(595.59 FU/kg纳豆激酶+4.46 mg/kg洛伐他汀+酒精);甘利欣组(200 mg/kg甘利欣+酒精),纳豆红曲与甘利欣组酒精剂量同模型组,连续10周。苏木精 – 伊红染色(HE)和透射电镜观察肝脏和小肠组织结构;测定血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、谷氨酰转肽酶(GGT)、碱性磷酸酶(ALP)活性;酶联免疫吸附法(ELISA)检测血清内毒素水平;蛋白质印迹法(Western blot)检测肝组织白细胞分化抗原(CD14)、Toll样受体4(TLR4)和肿瘤坏死因子– α(TNF-α)蛋白表达水平。结果 与对照组比较,模型组大鼠肝和小肠组织均出现明显的病变损伤;与模型组比较,纳豆红曲和甘利欣组大鼠肝脏和小肠组织病理损伤明显改善。与对照组比较,模型组大鼠血清ALT、AST、GGT、ALP水平[分别为(60.5 ± 15.4)、(152 ± 33.11)、(4.18 ± 0.75)、(157.3 ± 46.64)U/L]明显升高(P < 0.05);与模型组比较,纳豆红曲组大鼠血清AST、GGT、ALP水平[分别为(130.16 ± 27.66)、(3 ± 1.09)、(137 ± 24.77)U/L]明显下降( P < 0.05)。与对照组比较,模型组大鼠血清内毒素水平升高,肝脏组织中CD14、TLR4、TNF-α 蛋白表达明显升高( P < 0.05);与模型组比较,纳豆红曲和甘利欣组大鼠内毒素水平明显下降( P < 0.05),肝组织中CD14、TLR4和TNF-α 蛋白表达均明显下降( P < 0.05)。结论 纳豆联合红曲对大鼠酒精性肝损伤具有一定的改善作用,其机制可能与纳豆红曲降低血清内毒素,下调肝组织CD14和TLR4蛋白表达,抑制下游TNF-α 释放,减轻肝脏损伤有关。
关键词纳豆红曲     酒精性肝损伤(ALD)     内毒素     白细胞分化抗原(CD14)     Toll样受体4(TLR4)     肿瘤坏死因子 – α(TNF-α)    
Alleviating effect and mechanism of natto combined with red yeast rice on alcoholic liver injury in rats
WANG Zong-ling, ZHUO Yi-yun, LÜ Jing, et al     
School of Public Health, Qingdao University, Qingdao, Shandong Province 266021, China
Abstract: Objective To explore alleviating effect and mechanism of natto combined with red yeast rice on alcoholic liver injury (ALD) in rats. Methods Totally 48 male Wistar rats were randomly divided into four groups: a control group with normal saline; a model group gavaged with a liquor containing 56% alcohol at an increment dosage of 6, 8, and 10 ml/kg·bw·d continuously for 3 weeks and at a dosage of 11 ml/kg·bw·d for 7 weeks; a natto plus red yeast rice group gavaged with nattokinase at dosage of 595.59 FU/kg·bw·d and lovastatin at dosage of 4.46 mg/kg·bw·d one hour before the liquor treatment the same as the model group; and a diammonium glycyrrhizinate group gavaged with diammonium glycyrrhizinate at dosage of 200 mg/kg·bw·d one hour before the liquor treatment the same as the model. Structure of liver and small intestine tissue were observed with hematoxylin and eosin (HE) stain and transmission electron microscopy. Serum alanine aminotransferase (ALT) , aspartate aminotransferase (AST), glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP) were detected with automatic biochemistry analyzer; serum endotoxin was determined with enzyme-linked immunosorbent assay (ELISA); protein expressions of cluster of differentiation-14 (CD14), Toll-like receptor 4 (TLR4) and tumor necrosis factor α (TNF-α) in liver tissues were detected with Western blot. Results Compared with those of the control group, obvious pathological changes in liver and small intestine tissues of the model group were observed and the pathological changes were significantly alleviated in the natto plus red yeast rice group and diammonium glycyrrhizinate group in comparison with those of the model group. Compared with those of the control group, the serum ALT (60.50 ± 15.40 U/L), AST (152.00 ± 33.11 U/L) , GGT (4.18 ± 0.75 U/L) and ALP (157.30 ± 46.64 U/L) of the model group increased significantly (P < 0.05 for all); while, compared with those of the model group, the AST (130.16 ± 27.66 U/L), GGT (3.00 ± 1.09 U/L) and ALP (137.00 ± 24.77 U/L) of the natto plus red yeast rice group decreased significantly (all P < 0.05). Compared with those of the control group, serum endotoxin and expressions of CD14, TLR4 and TNF-α in liver tissues of the model group increased significantly (all P < 0.05); whereas, serum endotoxin and expressions of CD14, TLR4 and TNF-α in liver tissues of the natto plus red yeast rice group decreased significantly in comparison with those of the model group and the diammonium glycyrrhizinate group. Conclusion Natto combined with red yeast rice could alleviate alcoholic liver injury by down-regulating serum endotoxin, expressions of CD14 and TLR4 protein in liver tissue and inhibiting the release of downstream TNF-α in rats.
Key words: natto combined with red yeast rice     alcoholic liver injury     endotoxin     cluster of differentiation-14     Toll-like receptor 4     tumor necrosis factor α    

据世界卫生组织统计,全球每年约有330万人死于酒精滥用,约5.9 %的死亡率,与醉酒驾驶、酒后暴力、特别是酒精性肝病等因素密切相关[1]。酒精性肝病致病机制复杂多样,酒精性肝病患者肠道屏障功能受损,内毒素泄漏触发脂多糖(lipopolysaccharide,LPS) – Toll样受体4(Toll-like receptor 4,TLR4) – 白细胞分化抗原(cluster of differentiation-14,CD14)炎症信号通路,促进炎性因子表达,最终导致肝细胞损伤 [23]。红曲,是粳米经红曲霉发酵制成的紫红色米曲,含他汀类成分;纳豆,是大豆经枯草芽孢杆菌发酵而成的黏性豆制品。研究表明红曲和纳豆均具有改善酒精性肝损伤(alcoholic liver disease,ALD)作用[45]。他汀类药物能抑制内毒素介导的TLR4信号转导和细胞因子表达[6]。纳豆中的枯草芽孢杆菌被认为是一种益生菌[7],枯草芽孢杆菌摄入能上调紧密连接蛋白(claudin-1、occludin、ZO-1)表达,下调肿瘤坏死因子 α(tumor necrosis factor alpha,TNF-α)等细胞因子表达,改善肠道屏障功能,减少肠上皮损伤[8]。本研究以酒精性肝损伤大鼠为研究对象,探讨纳豆联合红曲对酒精性肝损伤大鼠的改善作用及机制,旨在为纳豆红曲作为保肝保健食品的开发提供依据。结果报告如下。

1 材料与方法 1.1 实验动物

SPF级雌性Wistar大鼠48只,8周龄,体重180~220 g,购自山东鲁抗医药股份有限公司,动物生产许可证号:SCXK(鲁)20140007。饲喂普通饲料,自由饮水。

1.2 主要试剂与仪器

纳豆红曲粉,含纳豆激酶595.59 FU/g,含洛伐他汀4.46 mg/g,由汤臣倍健股份有限公司提供;甘利欣(甘草酸二胺胶囊)(江苏正大天晴药业股份有限公司);56°红星二锅头(北京红星股份有限公司);兔抗CD14、TLR4多克隆抗体、鼠抗TNF-α 单克隆抗体(武汉三鹰生物技术有限公司);酶联免疫法(enzyme-linked immunosorbent assay,ELISA)试剂盒(武汉优尔生商贸有限公司)。半自动组织包埋机(英国SHANDON公司);LKB-5超薄切片机(瑞典LKB公司);JEM1200EX透射电镜(日本JEOL公司);600型全自动生化分析仪(日本日立公司);Tanon1600全自动数码凝胶成像系统(上海天能公司)。

1.3 动物模型建立及分组处理

大鼠适应性喂养1周,按体重随机分为4组,每组12只。对照组给予生理盐水灌胃;模型组给予56°红星二锅头灌胃,6 mL/kg 1周 + 8 mL/kg 1周 + 10 mL/kg 1周 + 11 mL/kg 7周;纳豆红曲组给予纳豆红曲粉(含595.59 FU/kg纳豆激酶,4.46 mg/kg洛伐他汀)灌胃,1 h后给予酒精;甘利欣组(阳性对照)给予200 mg/kg甘利欣灌胃,1 h后给予酒精;纳豆红曲组与甘利欣组酒精剂量同模型组,连续10周。末次灌胃后禁食不禁水12 h,称重后给予3 %戊巴比妥钠麻醉,腹主动脉取血,离心分离血清用于生化指标检测,留取肝和小肠组织,固定部分肝脏和小肠用于组织病理学观察和超微结构观察,其余组织 – 80 ℃保存待测。

1.4 指标与方法 1.4.1 肝与小肠组织病理学观察

取肝组织样品(1.0 cm × 1.0 cm × 0.5 cm)和小肠组织样品(1.0 cm × 1.0 cm × 0.2 cm),用10 %中性甲醛固定后,常规石蜡包埋、切片、脱蜡、苏木素 – 伊红(HE)染色,中性树胶封片,光学显微镜下观察各组大鼠肝脏和小肠壁形态学改变。

1.4.2 肝与小肠组织超微结构观察

取肝脏和小肠组织样品(l mm × l mm × l mm),3 %戊二醛固定4 h,0.1 mol/L磷酸盐缓冲液(phosphate-buffered saline,PBS)漂洗3次;l %饿酸固定l h,PBS漂洗3次;丙酮逐级脱水,环氧树脂(EPON8l2)包埋,温箱固化,超薄切片,醋酸双氧铀和柠檬酸铅双重染色,透射电镜观察大鼠肝与小肠细胞超微结构。

1.4.3 生化指标测定

采用全自动生化分析仪检测血清谷丙转氨酶(alanine aminotransferase,ALT)、谷草转氨酶(aspartate aminotransferase,AST)、谷氨酰转肽酶(gamma-glutamyl transferase,GGT)、碱性磷酸酶(alkaline phosphatase,ALP)活性。

1.4.4 血清内毒素指标测定

标准孔、待测样品孔、空白孔分别加入标准品、待测样品、标准品稀释液各50 μL,加入检测溶液50 μL混匀,37 ℃温育1 h;弃去孔内液体,用350 μL洗涤液重复洗涤3次;每孔加入检测溶液100 μL,37 ℃温育30 min;再重复洗板5次,加入底物溶液90 μL,37 ℃避光显色10~20 min;加入终止溶液50 μL;用酶标仪在450 nm波长测量各孔吸光度(A)值。

1.4.5 大鼠肝组织CD14、TLR4 和TNF-α 蛋白表达检测

采用Western blot法,取肝组织,加入裂解液后匀浆,4 ℃、12 000 g离心后取上清,采用聚氰基丙烯酸正丁酯蛋白浓度检测法(bicinchoninic acid assay,BCA)测定样品蛋白浓度,以20 μg蛋白/泳道上样,经十二烷基硫酸钠聚丙烯酰胺凝胶电泳(sodium dodecyl-polyacryl gradient gel electrophoresis,SDS-PAGE)后,电转移至聚偏二氟乙烯膜(polyvinylidene fluoride,PVDF),分别用非标记一抗及辣根过氧化物酶标记的二抗孵育、检测。最后用全自动数码凝胶成像Tanon1600对胶片进行扫描,用Tanon Gis软件分析,以目的蛋白与内参蛋白的光密度比值作为目的蛋白的相对表达量。

1.5 统计分析

采用SPSS 20.0软件进行数据处理和统计分析,方差齐的计量资料以 $\bar x$ ± s表示,多组间比较采用单因素方差分析,组间两两比较采用最小显著差法检验。检验水准为 α = 0.05。

2 结 果 2.1 大鼠肝组织病理学观察(图1
图 1 纳豆联合红曲对大鼠肝组织结构影响(HE,× 400)

结果显示,对照组大鼠肝小叶结构完整,肝细胞索排列整齐,胞浆充盈,无变性、坏死等形态学改变(图1A);模型组大鼠肝小叶结构模糊,细胞排列紊乱,胞浆皱缩,可见大小不等、形状不一的弥漫性胞浆空泡,并伴有脂肪变性,汇管区可见大量炎性细胞浸润(图1B);纳豆红曲组大鼠肝细胞损伤程度明显减轻,肝索排列较为整齐,局部有少量空泡,散在可见炎性细胞浸润(图1C);甘利欣组大鼠肝小叶结构清晰,肝窦无扩张,肝细胞无明显变性,坏死等形态学改变,无胞浆空泡,汇管区有少量炎细胞浸润(图1D)。

2.2 大鼠小肠组织病理学观察(图2
注:A对照组;B模型组;C纳豆红曲组;D甘利欣组。 图 2 纳豆联合红曲对大鼠小肠组织结构影响(HE,× 200)

结果显示,对照组大鼠小肠绒毛排列整齐,无缺损,黏膜下腺体大小一致且无增生,无炎性细胞浸润(图2A);模型组大鼠小肠绒毛破损脱落,排列紊乱,黏膜下腺体萎缩,伴有炎性细胞浸润(图2B);纳豆红曲组大鼠小肠绒毛排列相对整齐,破损脱落现象明显改善,黏膜下腺体有少量增生,排列较规则(图2C);甘利欣组大鼠小肠绒毛排列整齐,有微量破损,黏膜下腺体较规则,无明显炎细胞浸润和增生现象(图2D)。

2.3 大鼠肝组织超微结构观察(图3
图 3 纳豆联合红曲对大鼠肝组织超微结构影响(电镜,× 5 000)

结果显示,对照组大鼠肝细胞核呈圆形或椭圆形,核膜完整清晰,线粒体形态正常,粗面内质网排列整齐,核糖体丰富(图3A);模型组大鼠肝细胞核出现皱缩变形,核膜凹陷,线粒体数量减少,并出现肿胀、破裂等改变,粗面内质网扩张断裂,排列紊乱无序,核糖体脱落稀疏(图3B);纳豆红曲组大鼠肝细胞核明显恢复,线粒体肿胀程度明显减轻,粗面内质网断裂与排列紊乱程度显著改善,核糖体数量增加(图3C);甘利欣组大鼠肝细胞核无形态病变,线粒体结构和数量明显恢复,粗面内质网排列较整齐,核糖体均匀(图3D)。

2.4 大鼠小肠组织超微结构观察(图4
图 4 纳豆联合红曲对大鼠小肠组织超微结构影响(电镜,× 20 000)

结果显示,对照组大鼠小肠微绒毛细长丰富,排列整齐紧密,细胞链接清晰完整,结构正常(图4A);模型组大鼠小肠微绒毛短小稀疏,部分萎缩脱落,紧密连接肿胀,桥粒数量明显减少(图4B);纳豆红曲组大鼠小肠绒毛损伤状况得到明显改善,微绒毛排列相对整齐,长短不一,无萎缩脱落现象,紧密连接肿胀减轻,桥粒数量相对增多(图4C);甘利欣组大鼠小肠微绒毛排列整齐,相对变长,细胞链接无明显肿胀,桥粒数量明显恢复(图4D)。

2.5 纳豆红曲对酒精性肝损伤大鼠血清酶活性影响(表1
表 1 纳豆红曲对大鼠血清酶活性影响(U/L, $\bar x$ ± sn = 12)

与对照组比较,模型组大鼠血清ALT、AST、GGT、ALP水平明显升高(P < 0.05);与模型组比较,纳豆红曲和甘利欣组大鼠血清AST、GGT、ALP水平明显下降( P < 0.05)。

2.6 纳豆红曲对酒精性肝损伤大鼠血清内毒素水平影响

结果显示,对照组、模型组、纳豆红曲组和甘利欣组大鼠血清内毒素水平分别为(0.369 ± 0.013)、(0.409 ± 0.021)、(0.389 ± 0.015)、(0.381 ± 0.013)ng/mL。与对照组比较,模型组大鼠血清内毒素水平明显升高(P < 0.05);与模型组比较,纳豆红曲组和甘利欣组大鼠血清中内毒素水平明显下降( P < 0.05)。

2.7 纳豆红曲对酒精性肝损伤大鼠肝组织炎症因子表达影响(图5表2
图 5 纳豆红曲对大鼠肝组织炎症因子表达影响

表 2 纳豆红曲对大鼠肝组织炎症因子表达影响( $\bar x$ ± sn = 3)

结果显示,与对照组比较,模型组大鼠肝组织CD14、TLR4和TNF-α 蛋白表达明显升高(P < 0.05);与模型组比较,纳豆红曲和甘利欣组大鼠肝组织CD14、TLR4和TNF-α 蛋白表达均明显下降( P < 0.05)。

3 讨 论

肝脏是体内主要代谢器官,长期嗜酒可导致肝损伤。研究表明,慢性酒精暴露导致持续的肠源性内毒素释放入血,介导脂多糖受体TLR-4和CD14活化,增强其敏感性,随后释放细胞因子,诱导肝细胞损伤[910]。纳豆是传统发酵产品,其中含有纳豆激酶、纳豆皂苷,纳豆异黄酮等活性物质[11],具有溶栓降脂[12],提高胰岛素敏感性,改善氧化应激[13]等作用,纳豆中的纳豆激酶是枯草芽孢杆菌在发酵过程的代谢产物。红曲中含有他汀类、甾醇、生物碱、黄酮等多种生物活性物质,具有降血脂[14],抗炎抗氧化[15],抗肿瘤[16],调节免疫功能[17]等作用。研究显示,纳豆中的枯草芽孢杆菌具有解酒的功效[18]。本研究通过酒精灌胃方法建立大鼠酒精性肝损伤模型,肝脏组织病理学和超微结构观察表明,酒精摄入引起大鼠肝脏明显的形态结构损伤,大鼠肝脏功能异常(血清中ALT、AST、GGT、ALP水平明显升高);纳豆红曲干预能显著改善大鼠肝组织结构损伤程度,大鼠肝脏功能异常得到一定程度的恢复(血清AST、GGT、ALP水平明显下降)。

紧密连接是肠粘膜屏障形成的主要成分,通过封闭相邻上皮细胞间的间隙构成肠道屏障[19]。肠道屏障的破坏是ALD内毒素血症的主要原因,肠道泄漏导致血液中的内毒素浓度增加[20]。CD14和TLR4是内毒素所致炎症反应发生的起点,在炎症级联反应中具有类似于阀门作用[21]。研究表明,长期慢性酒精摄入导致肠道屏障功能受损,内毒素由肠道渗透入血,经门静脉循环进入肝脏[22]。一旦到达肝脏,会刺激肝细胞表面跨膜受体TLR4[23],CDl4是通过糖基磷脂酰肌醇(GH)锚固在巨噬细胞膜上,缺乏跨膜结构,两者起协同作用形成CD14-TLR4受体组合,将脂多糖信号转导到细胞内,介导单核巨噬细胞系统激活,核因子kB(nuclear factor kappa B,NF-kB)活化,增强肿瘤坏死因子 α(TNF-α)等下游炎症因子表达,从而导致机体肝脏损伤[2, 2425]。研究表明红曲霉菌提取物具有清除自由基,抑制肝微粒体脂质过氧化作用,对氨基半乳糖或半乳糖胺加LPS诱导的肝损伤具有保护作用[26]。红曲能明显降低动脉粥样硬化小鼠体内TNF-α 水平,降低主动脉NF-κB蛋白表达,通过炎症信号通路改善小鼠动脉粥样硬化[14, 27]。本研究结果显示,酒精暴露引起大鼠肠道组织结构受损,血清内毒素水平升高,肝脏TLR4、CD14、TNF-α 表达上调,与相关文献报道一致[28];纳豆红曲干预能显著改善酒精引起的肠道屏障组织结构损伤,抑制血清内毒素、TLR4、CD14、TNF-α 表达上调。

综上所述,长期一定量酒精摄入会引起大鼠肝脏损伤,而补充纳豆红曲在一定程度上可保护酒精性肝损伤,其机制可能与保护大鼠肠道屏障,抑制内毒素释放,降低TLR4和CD14受体表达,减少下游TNF-α 的释放有关。

参考文献
[1] World Health Organization. Global status report on alcohol and health 2014[J]. Global Status Report on Alcohol, 2011, 18(7): 1–57.
[2] Wang H, Li ZY, Wu HS, et al. Endogenous danger signals trigger hepatic ischemia/reperfusion injury through toll-like receptor 4/nuclear factor-kappa B pathway[J]. Chinese Medical Journal, 2007, 120(6): 509–514. DOI:10.1097/00029330-200703020-00015
[3] Mandrekar P, Szabo G. Signaling pathways in alcohol-induced liver inflammation[J]. Journal of Hepatology, 2009, 50(6): 1258–1266. DOI:10.1016/j.jhep.2009.03.007
[4] Cheng CF, Pan TM. Protective effect of Monascus-fermented red mold rice against alcoholic liver disease by attenuating oxidative stress and inflammatory response [J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 9950–9957. DOI:10.1021/jf202577t
[5] 郭力榕. 纳豆冻干粉解酒功效和对酒精性肝损伤保护作用的研究[D]. 上海: 华东师范大学硕士学位论文, 2012.
[6] Hodgkinson CP, Ye S. Statins inhibit toll-like receptor 4-mediated lipopolysaccharide signaling and cytokine expression[J]. Pharmacogenetics and Genomics, 2008, 18(9): 803–813. DOI:10.1097/FPC.0b013e3283050aff
[7] Permpoonpattana P, Hong HA, Khaneja R, et al. Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredient [J]. Beneficial Microbes, 2012, 3(2): 127. DOI:10.3920/BM2012.0002
[8] Gong Y, Li H, Li Y. Effects of Bacillus subtilis on epithelial tight junctions of mice with inflammatory bowel disease [J]. J Interferon Cytokine Res, 2016, 36(2): 75. DOI:10.1089/jir.2015.0030
[9] Del Pozo JL. Primers on molecular pathways: lipopolysaccharide signaling – potential role in pancreatitis and pancreatic cancer[J]. Pancreatology, 2010, 10(2-3): 114–118. DOI:10.1159/000299987
[10] Peng JH, Cui T, Sun ZL, et al. Effects of Puerariae radix extract on endotoxin receptors and TNF-α expression induced by gut-derived endotoxin in chronic alcoholic liver injury [J]. Evidence-Based Complementray and Alternative Medicine, 2012, 2012: 234987.
[11] 刘梦洁, 陈守文, 魏雪团. 纳豆激酶高产菌的快速筛选及其发酵纳豆特性[J]. 食品科学, 2016, 37(21): 131–135. DOI:10.7506/spkx1002-6630-201621023
[12] Lee BH, Lai YS, Wu SC. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea [J]. Journal of Food and Drug Analysis, 2015, 23(4): 750–757. DOI:10.1016/j.jfda.2015.06.008
[13] Taniguchi-Fukatsu A, Yamanaka-Okumura H, Naniwa-Kuroki Y, et al. Natto and viscous vegetables in a Japanese-style breakfast improved insulin sensitivity, lipid metabolism and oxidative stress in overweight subjects with impaired glucose tolerance[J]. British Journal of Nutrition, 2012, 6(8): 1184–1191.
[14] Wu M, Zhang WG, Liu LT. Red yeast rice prevents atherosclerosis through regulating inflammatory signaling pathways[J]. Chinese Journal of Integrative Medicine, 2017, 23(9): 689–695. DOI:10.1007/s11655-017-2416-x
[15] Lee CL, Wang JJ, Pan TM. Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and anti-oxidative effect[J]. Applied Microbiology and Biotechnology, 2008, 79(5): 829–841. DOI:10.1007/s00253-008-1480-8
[16] Hsu YW, Hsu LC, Chang CL, et al. New anti-inflammatory and anti-proliferative constituents from fermented red mold rice Monascus purpureus NTU 568 [J]. Molecules, 2010, 15(11): 7815–7824. DOI:10.3390/molecules15117815
[17] Tseng KC, Fang TJ, Chiang SS, et al. Immunomodulatory activities and antioxidant properties of polysaccharides from red yeast rice-fermented products in vitro [J]. J Sci Food Agric, 2012, 92(7): 1483–1489. DOI:10.1002/jsfa.v92.7
[18] Sumi H, Yatagai C, Wada H, et al. Effect of Bacillus natto-fermented product (BIOZYME) on blood alcohol, aldehyde concentrations after whisky drinking in human volunteers, and acute toxicity of acetaldehyde in mice [J]. Arukoru Kenkyuto Yakubutsu Ison, 1995, 30(2): 69–79.
[19] Förster C. Tight junctions and the modulation of barrier function in disease[J]. Histochemistry and Cell Biology, 2008, 130(1): 55. DOI:10.1007/s00418-008-0424-9
[20] Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease[J]. Hepatology, 2009, 50(2): 638–644. DOI:10.1002/hep.23009
[21] Takeda K, Akira S. Toll-like receptors in innate immunity[J]. International Immunology, 2005, 17(1): 1.
[22] Bharrhan S, Koul A, Chopra K, et al. Catechin suppresses an array of signalling molecules and modulates alcohol-induced endotoxin mediated liver injury in a rat model[J]. PLoS One, 2011, 6(6): e20635. DOI:10.1371/journal.pone.0020635
[23] Fujimoto M, Uemura M, Nakatani Y, et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance[J]. Alcoholism – Clinical and Experimental Research, 2000, 23(4 Suppl): 48S.
[24] 吴敬涛. 酒精肝的致病机理及其相关细胞信号通路[J]. 济南大学学报: 自然科学版, 2017, 31(6): 513–518.
[25] Fallavena PRV. Variantes polimórficas dos genes que codificam o CD14, TLR2, TLR4 e TNF-α envolvidos com o processo inflamatório em pacientes em condições críticas de saúde[J]. Pontifícia Universidade Católica Do Rio Grande Do Sul, 2011.
[26] Aniya Y, Yokomakura T, Yonamine M, et al. Screening of antioxidant action of various molds and protection of red yeast rice anka, against experimentally induced liver injuries of rats[J]. General Pharmacology the Vascular System, 1999, 32(2): 225–231. DOI:10.1016/S0306-3623(98)00183-9
[27] Lin CP, Huang PH, Tsai HS, et al. Red yeast rice purpureus-fermented rice inhibits tumor necrosis factor-α-induced upregulation of matrix metalloproteinase 2 and 9 in human aortic smooth muscle cells[J]. Journal of Pharmacy and Pharmacology, 2011, 63(12): 1587–1594. DOI:10.1111/j.2042-7158.2011.01364.x
[28] 潘慧, 周旭春, 彭晓华, 等. 慢性酒精性胰腺炎中CD14、TLR4、TNFα的表达[J]. 世界科技研究与发展, 2012, 34(3): 478–481. DOI:10.3969/j.issn.1006-6055.2012.03.034