瘦素(leptin)是肥胖基因表达的蛋白质产物,在中枢神经系统,瘦素结合其受体激活神经元,通过多种细胞信号转导通路,调控机体能量平衡和代谢稳态,包括抑制食欲、增加能量消耗、减少脂肪合成和存储、降低体重等。瘦素被发现后,人们对肥胖的认识取得了很大进展,但后来研究结果与人们最初用瘦素治疗肥胖的预想相反,除在瘦素突变的个体中瘦素能起到明显的减轻体重作用外,在普通肥胖个体中外源补充瘦素未见明显效果。同时,大多数肥胖患者体内瘦素水平很高[1 – 2],且身体质量指数(body mass index,BMI)与瘦素水平呈正相关[3 – 4],过量的瘦素并未起到抑制摄食及减轻体重作用,这种现象被归因于产生负反馈瘦素抵抗(leptin resistance)。瘦素抵抗发生在受体及受体后信号转导水平,而在人类肥胖中瘦素受体基因突变发生的机率很小,因此,瘦素抵抗的发生主要原因在于受体后信号转导障碍。目前肥胖比例的显著增长正在影响全球慢性病发病率和死亡率[5],而瘦素抵抗机制尚未完全阐明,它的解决对防治肥胖具有重要意义。本文针对瘦素信号转导及瘦素抵抗的研究进展综述如下。
1 瘦素的细胞信号转导通路 1.1 JAK2/STAT3(STAT5)通路瘦素受体(leptin receptor,LepR)是I型细胞因子受体[6],本身不具备酪氨酸激酶活性,但它可通过偶联和激活JAK(酪氨酸蛋白激酶家族)而实现信号转导。而LepR中只有LepRb含有细胞内信号转导途径完全激活所需的完整胞内段,因此,负责瘦素的主要生物学作用。Leptin与LepRb结合后通过招募酪氨酸激酶2(Janus family tyrosine kinases-2, JAK2)[7],使LepRb上的3个关键酪氨酸位点Tyr985、Tyr1077和Tyr1138发生磷酸化,信号转导和转录激活因子3(signal transducer and activator of transcription 3,STAT3)和STAT5与LepRb中的Tyr1138位点和Tyr1077位点结合后被磷酸化活化。磷酸化的STAT3和STAT5二聚化后转移到细胞核,结合于阿片-促黑素细胞皮质素原(proopiomelanocortin,POMC)与刺鼠相关蛋白(agouti-related peptide,AgRP)启动子,继而上调POMC表达,下调AgRP与神经肽Y(neturopetide Y,NPY)表达,最终降低摄食量。
1.2 IRS /PI3通路(1)IRS/PI3K/Akt/FoxO1通路:JAK2磷酸化胰岛素受体底物(insulin receptor substrate,IRS)导致磷脂肌醇3 – 激酶(phosphoinositide-3 kinase,PI3K)活化,PI3K可以通过促进离子通道的改变并由此促进细胞活性而产生快速的细胞应答 [8]。转录因子FoxO1为瘦素信号转导负向调节因子,蛋白激酶B(protein kinase B,PKB,又称Akt)通过抑制FoxO1活性,促进STAT3与POMC和AgRP启动子结合;(2)IRS/PI3K/PDE3B/cAMP通路:瘦素活化磷酸二酯酶3B(phosphodiesterase 3B,PDE3B),其通过下丘脑中的PI3K途径导致环磷酸腺苷(cyclic adenosine monophosphate, cAMP)水平降低。抑制PDE3B活性可以逆转瘦素对食物摄入和体重的影响,表明PDE3B在下丘脑介导瘦素信号转导中起重要作用[9 – 10];(3)IRS /PI3K/mTOR/S6K通路:瘦素通过下丘脑中的雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)刺激p70 S6激酶(S6 kinase,S6K)的磷酸化。抑制mTOR会减弱瘦素的抑食作用[11]。下丘脑弓状核中S6K1的全身性缺失或S6K的选择性抑制则会消除瘦素的抑食作用[12 – 13]。
1.3 SHP2/MAPK/ERK1/2通路磷酸化的Tyr985能够招募并磷酸化激活含有SH2的蛋白酪氨酸磷酸酶2(SH2-containing protein tyrosine phosphatase 2,SHP2),SHP2被磷酸化后,与作为衔接蛋白的生长因子受体结合蛋白2结合,激活下游效应分子,后经过Ras、Raf以及丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)、胞外信号调控激酶(extracellular signal-regulated kinase,ERK)的活化使ERK磷酸化,活化的ERK入核,启动相应转录子的转录[14]。SHP2的神经元特异性缺失导致小鼠肥胖和瘦素抵抗[15]。而阻断下丘脑ERK1/2的作用可以消除瘦素在大鼠中的抑食和减轻体重作用。抑制ERK还能阻止瘦素诱导的棕色脂肪组织的交感神经激活,表明该信号通路参与了瘦素调节食物摄入和能量消耗[16]。
1.4 AMPK/ACC通路瘦素通过抑制下丘脑中的腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)使乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACC)活性增高并随后抑制食物摄取,抑制下丘脑ACC可减轻瘦素介导的食物摄入和体重下降[17 – 18]。
2 瘦素抵抗的机制 2.1 血脑屏障转运障碍研究表明肥胖者血中瘦素浓度是消瘦者的3倍,而脑脊液瘦素浓度仅为消瘦者的30 %[19],说明肥胖者瘦素通过血脑屏障(blood brain barrier,BBB)功能低下;消瘦者的脑脊液瘦素与血中瘦素比值是肥胖者比值的5.4倍[20],提示,肥胖者瘦素的转运系统可能存在异常。另外循环中的瘦素需经BBB中的LepRa转入中枢,瘦素水平过高可使LapRa饱和,降低瘦素转运效率[21 – 22]。实际上,瘦素的中枢给药能够减少饮食诱导肥胖型小鼠的食物摄入量和体重,表明瘦素抵抗与BBB损伤有关[23]。
2.2 受体突变大量动物实验证明,糖尿病鼠(db/db)的瘦素受体基因突变能导致瘦素抵抗[24 – 25]。db/db小鼠LepR胞内区的外显子内发生单个核苷酸变异,由G变成T,产生一种异常的LepR mRNA,经翻译生成的LepR胞内部分较短,它可以与瘦素结合,但不能将信号传至胞内,导致瘦素不能发挥抑制摄食、增加能量消耗和降低体重的作用,即发生了瘦素抵抗。LepRb基因突变会导致其胞内区缩短,虽可与瘦素结合,但不能有效转导信号。有实验证明单纯性肥胖患儿存在瘦素抵抗及LepR基因第20外显子基因突变,二者可影响儿童脂质代谢,且有一定的协同作用[26]。
2.3 细胞信号转导异常炎症因子白介素6(interleukin-6,IL-6)等能导致细胞因子信号转导抑制因子3(suppressor of cytokine signaling 3,SOCS3)、蛋白酪氨酸磷酸酶1(protein tyrosine phosphatase 1B,PTP1B)等负向调节因子过度表达,从而抑制瘦素信号转导。SOCS3是JAK2/STAT3信号通路的靶基因。它通过结合LepRb上的Tyr985和抑制JAK2来减弱瘦素受体信号传导,从而提供关键的负反馈机制,并防止过度激活瘦素信号通路[27]。PTP1B和T细胞蛋白酪氨酸磷酸酶(TCPTP)均是蛋白酪氨酸磷酸酶;PTP1B介导JAK2的去磷酸化,TCPTP去磷酸化STAT3,限制瘦素作用的程度[28]。
2.4 自噬缺陷自噬在调节能量平衡中起到重要作用,可通过自噬相关蛋白7神经元特异性缺失改变小鼠的表型。特别是当自体吞噬组分被选择性地敲入POMC神经元中时,小鼠表现出肥胖的表型,可能是因为这种缺失也与瘦素诱导的STAT3磷酸化的减少有关;与此一致的是,在AgRP神经元中该基因的缺失导致脂肪量减少[29 – 30]。这些数据显示,下丘脑自噬缺陷涉及瘦素抗性和肥胖。
2.5 下丘脑内质网应激大多数分泌蛋白和跨膜蛋白在内质网合成、折叠和分选。蛋白质过载导致内质网内未折叠或错误折叠蛋白质的积累,引起内质网应激。内质网应激抑制瘦素诱导的STAT3磷酸化活化,导致瘦素抵抗。内质网应激激活未折叠的蛋白应答(UPR)途径,包括肌醇需要蛋白 – 1(inositol-requiring enzyme 1,IRE1),激活转录因子 – 6(activating transcription factor 6,ATF6)和蛋白激酶R样内质网激酶(protein kinase R-like ER kinase,PERK)途径 [31],它们共同试图抵消内质网应激,恢复内质网内稳态[32 – 33]。
3 克服瘦素抵抗的策略 3.1 控制热量摄入和锻炼控制热量摄入是治疗肥胖降低循环瘦素水平的首选方法。长期运动不仅降低瘦素水平[34],而且刺激下丘脑弓状核中STAT3和AMPK信号通路的激活[35]。运动可预防瘦素抵抗,食高脂肪饮食的大鼠经过运动表现出下丘脑SOCS3 mRNA表达和JAK2/STAT3信号传导途径的减少。而且控制热量与锻炼相结合比单独运动或者限制饮食效果更显著[36]。
3.2 逆转SOCS3和PTP1B的抑制作用SOCS3和PTP1B是瘦素受体信号转导的负性调节因子。因此,它们的下调被认为是恢复瘦素抵抗的有效方法。在LepRb突变转基因小鼠中因与SOCS3结合失效,导致食物摄入量减少,瘦素敏感性增加和抑制体重增长[37]。此外,有研究表明,下丘脑SOCS3沉默的大鼠对饮食诱导的肥胖具有抗性,不产生瘦素抗性[38]。敲除小鼠PTP1B可增加瘦素的敏感性,减轻体重并增加能量消耗[39],而噻唑烷二酮类化合物作为PTP1B抑制剂可发挥抗肥胖作用[40]。
3.3 激活POMC神经元瘦素影响能量平衡的终末靶分子是POMC神经元,因此,它的激活是克服瘦素受体信号诱导α-促黑激素对抑制食物摄入和体重增长及增加能量消耗调节的另一种策略。有报告称茶皂素治疗降低高脂饮食诱导的肥胖小鼠下丘脑炎症以及中枢性瘦素抗性,长期茶皂素治疗也会抑制能量的摄入,并增加下丘脑中产生厌食的神经肽POMC的表达[41]。
3.4 增加瘦素受体的表达有研究表明,二甲双胍作用于下丘脑LepRb基因,能够增加受体表达和瘦素的敏感性,并发挥抑食作用,因此将瘦素和二甲双胍联合用于治疗肥胖症[42]。此外,大麻素受体1的反向激动剂JD5037能够克服瘦素抵抗并减轻体重增加[43]。过氧化物酶体增殖剂活化受体α激动剂棕榈酰基乙醇酰胺可诱导肥胖的切除卵巢的大鼠瘦素抵抗的逆转,减少瘦素水平,增加LepRb的表达,从而减少食物摄入和体重[44]。
3.5 通过BBB改善瘦素转运当瘦素通过BBB转运受损时,瘦素抵抗可以通过甘油三酯水平的降低而恢复,表明它们在瘦素抵抗中的作用[45]。类似地,急性期C反应蛋白在瘦素抵抗中起作用,限制瘦素通过BBB。研究显示,高剂量的C反应蛋白通过改善中枢神经系统中的细胞旁通透性来增加瘦素进入[46]。此外,瘦素对其结合蛋白的亲和力增加可诱导脑内瘦素浓度增加[47]。为改善通过BBB的瘦素通道,设计了新的LepR激动剂或瘦素类似物[48],聚乙二醇化的瘦素尽管具有较长的半衰期,但不能穿过血脑屏障[49],因此它不会改变人体的体重[50]。
3.6 减少内质网应激4 – 苯基丁酸酯(4-PBA)和牛磺熊去氧胆酸(TUDCA)可降低下丘脑内质网应激,减少瘦素抵抗,降低饮食诱导的肥胖小鼠的食物摄入量和体重 [32]。5 – 羟色胺摄取抑制剂氟伏沙明可以减轻内质网应激诱导的瘦素抵抗,增加STAT3的磷酸化,并减少小鼠的食物消耗 [51]。氟比洛芬是一种非甾体类抗炎药也可以减少蛋白质聚集并减轻内质网应激诱导的瘦素抵抗[52]。
4 小 结近年来对瘦素信号转导与瘦素抵抗的研究表明,瘦素在机体能量与代谢的调控中发挥重要作用,而瘦素抵抗亦为肥胖和诸多代谢性疾病的重要危险因素。基于瘦素抵抗的研究研发出的抗肥胖的药物已展示出富有前景的疗效。虽然瘦素抵抗发生机制尚未完全阐明,但随着研究深入,其机制将更加明确,与瘦素抵抗有关的问题将有望得到改善,肥胖的研究与防治将进入一个全新的时期。
| [1] | Frederich RC, Löllmann B, Hamann A, et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity[J]. Journal of Clinical Investigation, 1995, 96(3): 1658–1663. DOI:10.1172/JCI118206 |
| [2] | Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans[J]. New England Journal of Medicine, 1996, 334(5): 292–295. DOI:10.1056/NEJM199602013340503 |
| [3] | Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals[J]. Nature, 1998, 395(6704): 763–770. DOI:10.1038/27376 |
| [4] | Król E, Speakman JR. Regulation of body mass and adiposity in the field vole, Microtus agrestis: a model of leptin resistance [J]. Journal of Endocrinology, 2007, 192(2): 271–278. DOI:10.1677/JOE-06-0074 |
| [5] | Rillamas-Sun E, Lacroix AZ, Waring ME, et al. Obesity and late-age survival without major disease or disability in older women[J]. JAMA Internal Medicine, 2014, 174(1): 98–106. DOI:10.1001/jamainternmed.2013.12051 |
| [6] | Gorska E, Popko K, Stelmaszczyk-Emmel A, et al. Leptin receptors[J]. European Journal of Medical Research, 2010, 15 Suppl 2(S2): 50–54. |
| [7] | Banks AS, Davis SM, Bates SH, et al. Activation of downstream signals by the long form of the leptin receptor[J]. Journal of Biological Chemistry, 2000, 275(19): 14563–14572. DOI:10.1074/jbc.275.19.14563 |
| [8] | Jr DJ, Fraza OR, Elias CF. The PI3K signaling pathway mediates the biological effects of leptin[J]. Arquivos Brasileiros De Endocrinologia E Metabologia, 2010, 54(7): 591–602. DOI:10.1590/S0004-27302010000700002 |
| [9] | Zhao AZ, Huan JN, Gupta S, et al. A phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding[J]. Nature Neuroscience, 2002, 5(8): 727–728. DOI:10.1038/nn885 |
| [10] | Sahu A. Intracellular leptin-signaling pathways in hypothalamic neurons: the emerging role of phosphatidylinositol-3 kinase-phosphodiesterase-3B-cAMP pathway[J]. Neuroendocrinology, 2011, 93(4): 201–210. DOI:10.1159/000326785 |
| [11] | Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake[J]. Science, 2006, 312(5775): 927–930. DOI:10.1126/science.1124147 |
| [12] | Cota D, Matter EK, Woods SC, et al. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2008, 28(28): 7202–7208. DOI:10.1523/JNEUROSCI.1389-08.2008 |
| [13] | Blouet C, Ono H, Schwartz GJ. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis[J]. Cell Metabolism, 2008, 8(6): 459–467. DOI:10.1016/j.cmet.2008.10.004 |
| [14] | 李晓环, 邹宁. 瘦素信号转导与瘦素抵抗研究进展[J]. 中国儿童保健杂志, 2009, 17(2): 179–180. |
| [15] | Zhang EE, Chapeau E, Hagihara K, et al. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(45): 16064. DOI:10.1073/pnas.0405041101 |
| [16] | Kamal R, Sigmund CD, Haynes WG, et al. Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin[J]. Diabetes, 2009, 58(3): 536–542. |
| [17] | Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nature, 2004, 428(6982): 569–574. DOI:10.1038/nature02440 |
| [18] | Gao S, Kinzig KP, Aja S, et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44): 17358–17363. DOI:10.1073/pnas.0708385104 |
| [19] | Caro JF, Kolaczynski JW, Nyce MR, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance[J]. Lancet, 1996, 348(9021): 159–161. DOI:10.1016/S0140-6736(96)03173-X |
| [20] | Schwartz MW, Peskind E, Raskind M, et al. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans[J]. Nature Medicine, 1996, 2(5): 589–593. DOI:10.1038/nm0596-589 |
| [21] | mYERS MGJr, Heymsfield SB, Haft C, et al. Challenges and opportunities of defining clinical leptin resistance[J]. Cell Metabolism, 2012, 15(2): 150–156. DOI:10.1016/j.cmet.2012.01.002 |
| [22] | Yu MH, Kang GM, Byun K, et al. Leptin-promoted cilia assembly is critical for normal energy balance[J]. Journal of Clinical Investigation, 2014, 124(5): 2193–2197. DOI:10.1172/JCI69395 |
| [23] | Heek MV, Compton DS, France CF, et al. Diet-induced obese mice develop peripheral, but not central, resistance to leptin[J]. Journal of Clinical Investigation, 1997, 99(3): 385–390. DOI:10.1172/JCI119171 |
| [24] | Caro JF, Sinha MK, Kolaczynski JW, et al. Leptin: the tale of an obesity gene[J]. Diabetes, 1996, 45(11): 1455–1462. DOI:10.2337/diab.45.11.1455 |
| [25] | Qiu J, Ogus S, Mounzih K, et al. Leptin-deficient mice backcrossed to the BALB/cJ genetic background have reduced adiposity, enhanced fertility, normal body temperature, and severe diabetes[J]. Endocrinology, 2001, 142(8): 3421–3425. DOI:10.1210/endo.142.8.8323 |
| [26] | 丁文玲, 刘长云, 宋茂媛, 等. 瘦素抵抗及其受体基因变异对单纯性肥胖患儿脂代谢的影响[J]. 中华实用儿科临床杂志, 2012, 27(7): 492–494. DOI:10.3969/j.issn.1003-515X.2012.07.008 |
| [27] | Bjorbak C, Lavery HJ, Bates SH, et al. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985[J]. Journal of Biological Chemistry, 2000, 275(51): 40649–40657. DOI:10.1074/jbc.M007577200 |
| [28] | Zhou Y, Rui L. Leptin signaling and leptin resistance[J]. Frontiers of Medicine, 2013, 7(2): 207–222. |
| [29] | Quan W, Kim HK, Moon EY, et al. Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response[J]. Endocrinology, 2012, 153(4): 1817–1826. DOI:10.1210/en.2011-1882 |
| [30] | Kaushik S, Rodriguez-Navarro JA, Arias E, et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance[J]. Cell Metabolism, 2011, 14(2): 173–183. DOI:10.1016/j.cmet.2011.06.008 |
| [31] | Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nature Reviews Molecular Cell Biology, 2007, 8(7): 519–529. DOI:10.1038/nrm2199 |
| [32] | Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance[J]. Cell Metabolism, 2009, 9(1): 35–51. |
| [33] | Zhang X, Zhang G, Zhang H, et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity[J]. Cell, 2008, 135(1): 61–73. |
| [34] | Murakami T, Iida M, Shima K. Dexamethasone regulates obese expression in isolated rat adipocytes[J]. Biochemical and Biophysical Research Communications, 1995, 214(3): 1260–1267. DOI:10.1006/bbrc.1995.2422 |
| [35] | Kimura M, Tateishi N, Shiota T, et al. Long-term exercise down-regulates leptin receptor mRNA in the arcuate nucleus[J]. Neuroreport, 2004, 15(4): 713–716. DOI:10.1097/00001756-200403220-00028 |
| [36] | Tan Y, Chen WH, Guo L. Mechanism of exercise and diet interventions on central posterior rreceptor signaling of leptin resistance rats[J]. China Sport Science, 2011, 31: 57–66. |
| [37] | Björnholm M, Münzberg H, Leshan RL, et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function[J]. Journal of Clinical Investigation, 2007, 117(5): 1354–1360. DOI:10.1172/JCI30688 |
| [38] | Bai X, Liu Z, Wang Y, et al. Down-regulation of suppressor of cytokines signaling 3 expression in hypothalamus attenuates high-fat diet-induced obesity in rats[J]. Chin J End Met, 2012, 28: 63–67. |
| [39] | Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene[J]. Science, 1999, 283(5407): 1544–1548. DOI:10.1126/science.283.5407.1544 |
| [40] | Bhattarai BR, Kafle B, Hwang JS, et al. Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-γ activators[J]. Bioorganic and Medicinal Chemistry Letters, 2010, 20(22): 6758–6763. DOI:10.1016/j.bmcl.2010.08.130 |
| [41] | Yu Y, Wu Y, Szabo A, et al. Teasaponin reduces inflammation and central leptin resistance in diet-induced obese male mice[J]. Endocrinology, 2013, 154(9): 3130–3140. DOI:10.1210/en.2013-1218 |
| [42] | Aubert G, Mansuy V, Voirol MJ, et al. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression[J]. Metabolism Clinical and Experimental, 2011, 60(3): 327–334. DOI:10.1016/j.metabol.2010.02.007 |
| [43] | Tam J, Cinar R, Liu J, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance[J]. Cell Metabolism, 2012, 16(2): 167–179. DOI:10.1016/j.cmet.2012.07.002 |
| [44] | Mattace RG, Santoro A, Russo R, et al. Palmitoylethanolamide prevents metabolic alterations and restores leptin sensitivity in ovariectomized rats[J]. Endocrinology, 2014, 155(4): 1291–1301. DOI:10.1210/en.2013-1823 |
| [45] | Banks WA, Dipalma CR, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity[J]. Peptides, 1999, 20(11): 1341–1345. DOI:10.1016/S0196-9781(99)00139-4 |
| [46] | Hsuchou H, Mishra PK, Kastin AJ, et al. Saturable leptin transport across the BBB persists in EAE mice[J]. Journal of Molecular Neuroscience Mn, 2013, 51(2): 364–370. DOI:10.1007/s12031-013-9993-8 |
| [47] | Dietrich MO, Spuch C, Antequera D, et al. Megalin mediates the transport of leptin across the blood-CSF barrier[J]. Neurobiology of Aging, 2008, 29(6): 902–912. DOI:10.1016/j.neurobiolaging.2007.01.008 |
| [48] | Yi X, Yuan D, Farr SA, et al. Pluronic modified leptin with increased systemic circulation, brain uptake and efficacy for treatment of obesity[J]. Journal of Controlled Release, 2014, 191(15): 34–46. |
| [49] | Elinav E, Nivspector L, Katz M, et al. Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity[J]. Endocrinology, 2009, 150(7): 3083–3091. DOI:10.1210/en.2008-1706 |
| [50] | Hukshorn CJ, van Dielen FM, Buurman WA, et al. The effect of pegylated recombinant human leptin (PEG-OB) on weight loss and inflammatory status in obese subjects[J]. International Journal of Obesity and Related Metabolic Disorders Journal of the International Association for the Study of Obesity, 2002, 26(4): 504–509. DOI:10.1038/sj.ijo.0801952 |
| [51] | Hosoi T, Miyahara T, Kayano T, et al. Fluvoxamine attenuated endoplasmic reticulum stress-induced leptin resistance[J]. Frontiers in Endocrinology, 2012, 3: 12. |
| [52] | Hosoi T, Yamaguchi R, Noji K, et al. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress[J]. Embo Molecular Medicine, 2014, 6(3): 335–346. |
2019, Vol. 35


