2. 中国医科大学公共卫生学院
全球气候变暖是目前世界最主要的环境问题之一。农业和粮食生产释放出超过25 %的温室气体(greenhouse gases,GHGs)。人类饮食的变化致使农业对环境和人类健康的影响越来越大[1 – 4],它一方面加剧了气候变化、生物多样性丧失、土壤退化,以及淡水资源稀缺[5 – 6];另一方面导致了21亿人变得超重或肥胖[1, 7],II型糖尿病、冠心病和一些癌症的患病率增加[2 – 4, 8 – 15]。如果这种饮食变化趋势不加以控制,预计上述疾病将给人类带来三分之二的疾病负担[4, 9 – 10]。本文针对饮食与环境和疾病三者之间关系及其环境保护和公共卫生意义综述如下。
1 饮食模式与环境温室气体排放不同的食物种类对温室气体排放(greenhouse gas emissions,GHGE)贡献不一样。对食物GHGE的研究通常采用生命周期评估法(life cycle assessment,LCA),LCA系指分析评估一项产品从生产、使用到废弃或回收再利用等不同阶段所造成的能源使用、资源的耗费和污染排放等环境影响。
1.1 食物来源与温室气体排放食物主要来源于动物和植物。与植物性食品比较,动物性食品的GHGE要高得多。基于对动物和农产品进行GHGE估算的一些研究指出,GHGE最大的是反刍动物肉类(如牛肉和羊肉),其每克蛋白质的GHGE约为豆类的250倍[16]。澳大利亚南部的6种不同牛肉生产系统的碳足迹范围为10.1~12.7 kg二氧化碳当量/千克活体重(CO2-eq/kgLW)[17],与饲养肉牛比较,养殖奶牛产生的GHGE较少[18]。与粮食饲养的牛肉相比,草饲牛肉和乳制品不仅GHGE低,并且在营养方面含有丰富的脂肪酸和维生素[16],牛奶的GHGE为1.50 kgCO2-eq/kg/年[19]。加拿大[20]和法国[21]的猪肉产生的GHGE分别是2.31~3.05和2.06~3.73 kg CO2-eq/kgLW。从1981到2006年,加拿大家禽业GHGE增长40 %,主要的温室气体是N2O,约占总排放量的57 %。在对水稻、小麦和玉米排放的CH4和N2O的全球变暖增温潜势(global warming potential,GWP)进行meta分析中发现,水稻排放CH4和N2O的GWP(3 757 kgCO2-eq/公顷/季)高于小麦(662 kg CO2-eq/公顷/季)和玉米(1 399 kg CO2-eq/公顷/季)。水稻单位产量GWP(657 kg CO2-eq/单位产量)约为小麦(166 kg CO2-eq/单位产量)和玉米(185 kg CO2-eq/单位产量)的4倍[22]。
1.2 饮食模式与温室气体排放饮食模式是指膳食中食物的种类、数量、比例、组合方式及习惯性消费的频率。它也反映人们的饮食习惯、民族的传统文化、地区的环境资源和国家的经济发展水平。饮食模式严重影响温室气体排放[23 – 27]。在加拿大安大略省1万名居民的不同饮食模式调查中,不吃猪肉者的GWP(3 160 kg CO2-eq/人/年)最高,与之相比杂食者的GWP低30 %,不吃鱼肉、选择性食用奶制品和蛋者的GWP约低50 %,不吃红肉者和不吃牛肉者的GWP约低60 %,素食主义者、食用奶制品和鸡蛋的素食主义者GWP最低(955 kg CO2-eq/人/年和1 015 kg CO2-eq/人/年),这些模式中GWP的主要贡献者是肉类、乳制品和蛋类。调查人群中,不吃猪肉者和杂食者所占比例最大,牛肉对两者的GWP贡献最大,分别为68 %和48 %[28]。澳大利亚健康调查将常见的饮食模式分为高质量与低GHGE饮食模式、低质量与高GHGE的饮食模式和当前平均饮食模式3种,与营养学推荐的饮食模式进行比较,低质量与高GHGE的饮食模式中(25.2 kg CO2-eq/d)总膳食GHGE最高,其次是推荐饮食模式(20.4 kg CO2-eq/d)和当前平均饮食模式(19.7 kg CO2-eq/d),高质量与低GHGE饮食模式(13.9 kg CO2-eq/d)最低。与推荐饮食模式比较,当前饮食模式中非推荐饮食模式中的食物(discretionary foods,DF)的GHGE增加121 %,低质量与高GHGE饮食模式中的DF增加307 %[29]。另一项对新北欧饮食(new Nordic diet,NND)与GHGE之间关系的研究也提出GHGE贡献最大者是动物产品。当NND通过减少牛肉以优化饮食模式后其GWP比丹麦饮食低27 %,如果只食用有机农产品或者用豆类、乳制品和鸡蛋代替所有肉类,GHGE将低于传统方式[30]。秘鲁饮食模式的调查表明,红肉占GHGE总量的比例最大,为39 %,其次是家禽16 %,谷类11 %和蔬菜6.3 %。减少食物损失或将食物中的反刍动物肉替代为碳排放较低富含蛋白质的食品可以明显降低人均GHGE[31]。印度食羊肉非素食主义餐的GHGE最高,是素食餐的1.8倍,是食鸡肉非素食餐和蛋素食餐的1.5倍,是奶素餐的1.4倍。当牛奶被列入素食餐时,GHGE增加1.3倍[32]。意大利杂食者有较高的蛋白质和脂肪消费量,较低的碳水化合物消费量,并且对意大利地中海饮食(Mediterranean diet,MD)模式的依从性低。相反,蛋奶素食者和素食者则是蛋白质和脂肪消费量较低,碳水化合物消费量较高,对意大利MD模式的依从性较高[33]。所以,为减少食物对气候的影响,应减少肉类特别是牛肉的消费量,增加植物性食物消费量,如全谷物、豆类、蔬菜和水果[34]。
1.3 食物热量及营养密度与温室气体排放除通过饮食模式反映温室气体排放外,亦有研究采用食物热量和营养密度(nutrient density,ND)反映GHGE。采用法国1 918名成年人的食物消费数据和73种常食用食物的GHGE对个体膳食GHGE进行评估,发现与饮食相关的GHGE和每日消费的食物热量之间存在显著的正相关(r2 = 0.57,P ≤ 0.000 1)[35]。无论计算的基础是每消费100 g或100 kcal食物,反刍动物肉类食物组的GHGE值均最高,其次是鱼食物组。当以每100 kcal表示时,淀粉的GHGE最低,而水果和蔬菜则升高,猪肉、家禽和鸡蛋食物组GHGE高于乳制品食物组[36]。应用营养密度评分法分别对主要的6种和15种营养素(ND-6、ND-15)进行评分,并分析其与GHGE之间的关系,ND-6评分结果显示,加工的蔬菜、牛奶、酸奶、鸡蛋、家禽和鱼,以及强化的早餐谷物是最有营养的食物,且ND-6评分与高GHGE之间呈正相关;ND-15评分结果表明,加工的水果和蔬菜、蛋、鱼、早餐谷物和酒是具有最高ND-15分数的食物,其次是酸奶和白色奶酪,ND-15评分与高GHGE之间也呈正相关[37]。使用二氧化碳当量/营养密度作为评价食品生产中的GHGE指标,其GHGE从大到小依次为未加工的羊肉、未加工的牛肉、瘦羊肉、瘦牛肉、菜籽油、含3.5 %脂肪的牛奶,含1 %脂肪的牛奶和小麦面粉[38]。营养密度对气候影响(nutrient density to climate impact,NCDI)指数是用来描述某食物营养密度与其生命周期中GHGE的关系,该指数丰富了气候讨论中营养方面的内容。采用NDCI指数对不同饮料的GHGE的研究指出,与软饮料、橙汁、啤酒、葡萄酒、瓶装碳酸水、豆浆饮料和燕麦饮料比较,牛奶的ND最高,且其GHGE值也最大[39]。
2 饮食模式对健康的影响根据世界卫生组织(World Health Organization,WHO)的报告统计,非传染性疾病(慢性病)导致每年超过3 600万人死亡,而不健康的饮食习惯对于慢性非传染性疾病来说是一个可修饰的危险因素[40]。不健康的饮食习惯,包括能量、钠、糖的高摄入,以及水果和蔬菜的低摄入,会增加慢性疾病如糖尿病、高血压、心血管疾病和某些癌症的患病风险[41 – 42]。西方饮食模式与血脂异常、糖尿病、代谢综合征(metabolic syndrome,MetS)、体重指数(body mass index,BMI)和高血压的风险增加有关[43],而地中海饮食被认为是健康饮食的典范[44]。传统黎巴嫩饮食与BMI、和糖尿病的患病风险呈负相关,而与MetS之间无关联;食用乳制品有降低血压的作用;摄入鱼类、植物油和茶对冠心病有保护作用,而全脂酸奶和氢化脂肪的摄入可增加冠心病的患病风险[43]。相对于传统的杂食性饮食,在3种替代饮食(素食、地中海饮食、鱼素者饮食)人群中,II型糖尿病和癌症的患病率分别下降16 %~41 %和7 %~13 %,冠心病的相对死亡率下降20 %~26 %,全因总死亡率下降0 %~18 %[45]。
对黎巴嫩II型糖尿病患者进行的病例对照研究表明,精制谷物和甜点饮食模式(OR = 3.85,95 % CI = 1.13~11.23)和快餐饮食模式(OR = 2.80,95 % CI = 1.41~5.59)与增加II型糖尿病的患病风险相关,而传统的黎巴嫩饮食模式与降低II型糖尿病的患病风险相关(OR = 0.46,95 % CI = 0.22~0.97)[46]。在伊朗II型糖尿病患者中进行的随机交叉临床试验显示,终止高血压膳食疗法(dietary approaches to stop hypertension,DASH)对糖尿病患者降低心血管代谢危险有益[47]。欧洲癌症前瞻性调查(European Prospective Investigation into Cancer,EPIC)是饮食与健康关系研究中最大的队列研究,该研究结合国际癌症研究机构52万人的数据分析了饮食、生活方式和环境因素与癌症、心血管疾病及其他慢性疾病患病率之间的关系,研究发现,与非素食主义者比较,素食主义者中缺血性心脏病的死亡率较低,这可能与总血清胆固醇水平较低、肥胖症患病率较低和抗氧化剂消耗量增加有关。食用大量的水果和蔬菜(不排除肉类)可能使素食者更健康[48]。
一项用综合营养质量指数(overall nutritional quality index,ONQI)算法评价慢性疾病患病风险的研究结果显示,ONQI评分与总慢性疾病(心血管疾病、癌症、糖尿病和非创伤性死亡)、心血管疾病和糖尿病的患病风险呈负相关(P < 0.01),与全因死亡率也呈负相关( P < 0.01),但与癌症无关。女性ONQI得分最高组与最低组相比总慢性疾病 OR = 0.91(95 % CI = 0.87~0.95),心血管疾病OR = 0.79(95 % CI = 0.71~0.88),糖尿病OR = 0.86(95 % CI = 0.78~0.96)和全因死亡率OR = 0.90(95 % CI = 0.84~0.97);男性ONQI得分最高组与最低组相比总慢性疾病OR = 0.88(95 % CI = 0.83~0.93),心血管疾病OR = 0.77(95 % CI = 0.70~0.85),糖尿病OR = 0.84(95 % CI = 0.73~0.96),全因死亡率OR = 0.89(95 % CI = 0.83~0.97)。即ONQI评分系统得分较高的食物消费量与慢性疾病患病率和全因死亡率的降低相关[49]。
3 人类面临饮食所致环境温室气体排放和疾病的挑战迄今为止人类饮食发生了巨大改变,从主要食用水果、蔬菜、瘦肉和海鲜等食品转变为钠和氢化脂肪含量高、纤维含量低的加工食品[50]。这些饮食变化导致慢性非传染性疾病患病率增加,全球预期寿命降低,如果不加以控制,还将导致全球粮食生产所致的温室气体排放量增加80 %[45]。为此,世界卫生大会(World Health Assembly,WHA)于2004年通过了“世界卫生组织饮食,身体活动与健康全球战略”[51]。2014年11月,WHO与粮农组织(Food and Agriculture Organization,FAO)联合组织第二届国际营养会议,通过了“罗马营养宣言”[52]和“行动框架”[53],提出一系列措施,以促进生活各阶段的饮食多样化、安全和健康。FAO将可持续饮食定义为健康、环境影响小、价格可承受、文化可接受的饮食[54]。与当前饮食比较,健康饮食的GHGE平均下降15 %;可持续饮食下降27 %,但其需要更大的饮食改变。健康饮食中水果和蔬菜的消费往往比可持续饮食中增加更多,而对于肉类消费量,特别是牛肉和羊肉,可持续饮食比健康饮食减少更多。因此,目前只注重健康饮食并不会大幅度降低饮食来源的平均GHGE水平,这就需要基于减少环境影响制定新的饮食指南[55]。
除改变饮食模式外,根据“2013 — 2020年预防和控制非传染性疾病全球行动计划” [56],在适合本国国情的情况下,各国考虑采取合理的税收和补贴等经济政策,使人们更倾向于选择健康食品[57]。菲律宾政府已采取了实际行动,对含糖饮料(sugary drinks,SSB)征税,它可以减少糖的消费,并有助于防止超重、肥胖和非传染性疾病(noncommunicable diseases,NCD)的发生。墨西哥在2014年对SSB征收了10 %的消费税,预计消费量的减少将对墨西哥人的健康状况和医疗费用的减少产生积极的影响[58]。
巴黎气候协议是人类在应对全球温室气体减排挑战中,为降低气候变化给人类带来的生态风险、生存危机和疾病负担迈出的重要一步。减少肉类消费是应对发达国家和处于消费正在迅速扩大的转型期国家(如中国)气候变化的有效措施[59]。但发展中国家人口的增长和对肉类需求的日益增加,估计到2050年全球肉类消耗量将增长75 %,这将使全球变暖(温室气体排放)很难实现国际共识的控制气温升高 < 2 ℃的目标。尽管中国政府提倡减少肉类消耗,但中国人对食用动物性食品,特别是猪肉有较深的饮食文化习俗 [60],加之一些研究认为限制性和单调的植物性饮食可能会导致营养缺乏,对健康产生有害影响[61 – 62]等,这些均会使人类在一定时期内继续面临着饮食所致环境温室气体排放和疾病的挑战。
4 小 结人类面临着全球气候变化环境问题和慢性疾病发病的严重威胁。这些均与人类的饮食模式变化密切相关。减少肉类食品的消费是应对发达国家和处于消费正在迅速扩大的转型期国家气候变化的有效战略,也是降低慢性疾病风险的重要途径。因此,未来需要给予饮食、温室气体排放和健康三者更多关注,进一步研究如何通过改变饮食模式减少环境温室气体排放和增进人类健康。饮食指南需要进一步融入环境意识和可持续发展观念。
[1] | Popkin BM, Adair LS, Wen NS. Global nutrition transition and the pandemic of obesity in developing countries[J]. Nutrition Reviews, 2012, 70(4): 3–21. |
[2] | Popkin BM. The nutrition transition in low-income countries: an emerging crisis[J]. Nutrition Reviews, 1994, 52(9): 285. |
[3] | Drewnowski A, Popkin BM. The nutrition transition: new trends in the global diet[J]. Nutrition Reviews, 1997, 55(2): 31. |
[4] | Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes[J]. Diabetes Care, 2011, 34(6): 1249. DOI:10.2337/dc11-0442 |
[5] | Whitmee S, Haines A, Beyrer C, et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation-Lancet Commission on planetary health[J]. Lancet, 2015, 386(10007): 1973. DOI:10.1016/S0140-6736(15)60901-1 |
[6] | Butler CD. Climate Change and Global Health: a new conceptual framework[J]. CAB Reviews, 2014, 9: 27. |
[7] | Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980 – 2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2014, 384(9945): 766–781. DOI:10.1016/S0140-6736(14)60460-8 |
[8] | Willett WC, Sacks F, Trichopoulou A, et al. Mediterranean diet pyramid: a cultural model for healthy eating[J]. American Journal of Clinical Nutrition, 1995, 61(6 Suppl): 1402S. |
[9] | Chopra M, Galbraith S, Darnton-Hill I. A global response to a global problem: the epidemic of overnutrition[J]. Bulletin of the World Health Organization, 2002, 80(12): 952. |
[10] | Joint WHO/FAO Expert Consultation on Diet, Nutrition Prevention of Chronic Diseases, the Health Organization. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation[J]. World Health Organization Technical Report, 2003, 45(12): 619–629. |
[11] | Singh PN, Sabaté J, Fraser GE. Does low meat consumption increase life expectancy in humans?[J]. American Journal of Clinical Nutrition, 2003, 78(3 Suppl): 526S. |
[12] | Aune D, Ursin G, Veierød MB. Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies[J]. Diabetologia, 2009, 52(11): 2277–2287. DOI:10.1007/s00125-009-1481-x |
[13] | Kearney J. Food consumption trends and drivers[J]. Philosophical Transactions of the Royal Society of London, 2010, 365(1554): 2793. DOI:10.1098/rstb.2010.0149 |
[14] | Huang T, Yang B, Zheng J, et al. Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review[J]. Annals of Nutrition and Metabolism, 2012, 60(4): 233–240. DOI:10.1159/000337301 |
[15] | Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and mortality: results from 2 prospective cohort studies[J]. Archives of Internal Medicine, 2012, 172(7): 555–563. DOI:10.1001/archinternmed.2011.2287 |
[16] | Daley CA, Abbott A, Doyle PS, et al. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef[J]. Nutrition Journal, 2010, 9(1): 10. DOI:10.1186/1475-2891-9-10 |
[17] | Ridoutt BG, Sanguansri P, Harper GS. Comparing carbon and water footprints for beef cattle production in Southern Australia[J]. Sustainability, 2011, 3(12): 2443–2455. DOI:10.3390/su3122443 |
[18] | Casey JW, Holden NM. Quantification of GHG emissions from sucker-beef production in Ireland[J]. Agricultural Systems, 2006, 90(1-3): 79–98. DOI:10.1016/j.agsy.2005.11.008 |
[19] | Casey JW, Holden NM. Analysis of greenhouse gas emissions from the average Irish milk production system. Agric Syst[J]. Agricultural Systems, 2005, 86(1): 97–114. DOI:10.1016/j.agsy.2004.09.006 |
[20] | Vergé XPC, Dyer JA, Desjardins RL, et al. Greenhouse gas emissions from the Canadian pork industry[M]// The manuscript books of Emily Dickinson/. Belknap Press of Harvard University Press, 2009: 683-693. |
[21] | Bassetmens C, Hmgvander W. Scenario-based environmental assessment of farming systems: the case of pig production in France[J]. Agriculture Ecosystems and Environment, 2005, 105(1-2): 127–144. DOI:10.1016/j.agee.2004.05.007 |
[22] | Linquist B, Groenigen KJ, Adviento-Borbe MA, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops[J]. Global Change Biology, 2015, 18(1): 194–209. |
[23] | Steinfeld H, Gerber P, Wassenaar T, et al. Livestock's long shadow: environmental issues and options[J]. Livestocks Long Shadow Environmental Issues and Options, 2011, 16(1): 7. |
[24] | Vries MD, Boer IJMD. Comparing environmental impacts for livestock products: a review of life cycle assessments[J]. Livestock Science, 2010, 128(1): 1–11. |
[25] | Nijdam D, Rood T, Westhoek H. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes[J]. Food Policy, 2012, 37(6): 760–770. DOI:10.1016/j.foodpol.2012.08.002 |
[26] | Eshel G, Martin PA. Diet, energy, and global warming[J]. Earth Interactions, 2005, 10(9): 1. |
[27] | Marlow HJ, Hayes WK, Soret S, et al. Diet and the environment: does what you eat matter?[J]. American Journal of Clinical Nutrition, 2009, 89(5): 1699S. DOI:10.3945/ajcn.2009.26736Z |
[28] | Veeramani A, Dias GM, Kirkpatrick S. Carbon footprint of dietary patterns in Ontario, Canada: a case study based on actual food consumption[J]. Journal of Cleaner Production, 2017, 162: 1398–1406. DOI:10.1016/j.jclepro.2017.06.025 |
[29] | Hendrie GA, Baird D, Ridoutt B, et al. Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia[J]. Nutrients, 2016, 8(11): 890. |
[30] | Saxe H, Larsen TM, Mogensen L. The global warming potential of two healthy Nordic diets compared with the average Danish diet[J]. Climatic Change, 2013, 116(2): 249–262. DOI:10.1007/s10584-012-0495-4 |
[31] | Vázquezrowe I, Larreagallegos G, Villanuevarey P, et al. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru[J]. PLoS One, 2017, 12(11): e0188182. DOI:10.1371/journal.pone.0188182 |
[32] | Pathak H, Jain N, Bhatia A, et al. Carbon footprints of Indian food items[J]. Agriculture Ecosystems and Environment, 2010, 139(1): 66–73. |
[33] | Rosi A, Mena P, Pellegrini N, et al. Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet[J]. Scientific Reports, 2017, 7: 6150. DOI:10.1038/s41598-017-06232-w |
[34] | Monsivais P, Scarborough P, Lloyd T, et al. Greater accordance with the Dietary Approaches to Stop Hypertension dietary pattern is associated with lower diet-related greenhouse gas production but higher dietary costs in the United Kingdom[J]. American Journal of Clinical Nutrition, 2015, 102(1): 138–145. DOI:10.3945/ajcn.114.090639 |
[35] | Vieux F, Darmon N, Touazi D, et al. Greenhouse gas emissions of self-selected individual diets in France: changing the diet structure or consuming less?[J]. Ecological Economics, 2012, 75(2): 91–101. |
[36] | Vieux F, Soler LG, Touazi D, et al. High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults[J]. American Journal of Clinical Nutrition, 2013, 97(3): 569. DOI:10.3945/ajcn.112.035105 |
[37] | Drewnowski A, Rehm CD, Martin A, et al. Energy and nutrient density of foods in relation to their carbon footprint[J]. American Journal of Clinical Nutrition, 2015, 101(1): 184. DOI:10.3945/ajcn.114.092486 |
[38] | Doran-Browne NA, Eckard RJ, Behrendt R, et al. Nutrient density as a metric for comparing greenhouse gas emissions from food production[J]. Climatic Change, 2015, 129(1-2): 73–87. DOI:10.1007/s10584-014-1316-8 |
[39] | Smedman A, Lindmark Månsson H, Drewnowski A, et al. Nutrient density of beverages in relation to climate impact[J]. Food and Nutrition Research, 2010, 54(1): 5170. DOI:10.3402/fnr.v54i0.5170 |
[40] | Hayashi F, Takemi Y. Why is creating a healthy food environment so crucial to making improvements in diet-related NCDs?[J]. Journal of Nutritional Science and Vitaminology, 2015, 61Suppl: S36. |
[41] | Mccullough ML, Feskanich D, Rimm EB, et al. Adherence to the Dietary Guidelines for Americans and risk of major chronic disease in men[J]. American Journal of Clinical Nutrition, 2000, 72(5): 1223–1231. DOI:10.1093/ajcn/72.5.1223 |
[42] | Guo X, Warden BA, Paeratakul S, et al. Healthy Eating Index and obesity[J]. European Journal of Clinical Nutrition, 2004, 58(12): 1580. DOI:10.1038/sj.ejcn.1601989 |
[43] | Aljefree N, Ahmed F. Association between dietary pattern and risk of cardiovascular disease among adults in the Middle East and North Africa region: a systematic review[J]. Food and Nutrition Research, 2015, 59(1): 27486. DOI:10.3402/fnr.v59.27486 |
[44] | Hoşcan Y, Yiğit F, Müderrisoğlu H. Adherence to Mediterranean diet and its relation with cardiovascular diseases in Turkish population[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(2): 2860. |
[45] | Tilman D, Clark M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518–522. DOI:10.1038/nature13959 |
[46] | Naja F, Hwalla N, Itani L, et al. Dietary patterns and odds of type 2 diabetes in Beirut, Lebanon: a case-control study[J]. Nutrition and Metabolism, 2012, 9(1): 1–11. DOI:10.1186/1743-7075-9-1 |
[47] | Azadbakht L, Fard NRP, Karimi M, et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial[J]. Diabetes Care, 2011, 34(1): 55. DOI:10.2337/dc10-0676 |
[48] | Ginter E. Vegetarian diets, chronic diseases and longevity[J]. Bratislavske Lekarske Listy, 2008, 109(10): 463–466. |
[49] | Chiuve SE, Sampson L, Willett WC. Adherence to the overall nutritional quality index and risk of total chronic disease[J]. American Journal of Preventive Medicine, 2011, 40(5): 505. DOI:10.1016/j.amepre.2010.11.022 |
[50] | Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention[J]. Journal of Medicinal Food, 2009, 12(5): 925. DOI:10.1089/jmf.2008.0268 |
[51] | World Health Organization. Global strategy on diet, physical activity and health[R]. Geneva: World Health Organization, 2004. |
[52] | Rome Declaration on Nutrition. Second International Conference on Nutrition[R]. Rome: Food and Agriculture Organization/World Health Organization, 2014. |
[53] | Framework for Action. Second International Conference on Nutrition[R]. Rome: Food and Agriculture Organization/World Health Organization, 2014. |
[54] | Food and Agriculture Organization, editor. Sustainable diets and biodiversity: direction and solution for policy, research and action[R]. Proceedings of the International Scientific Symposium: Biodiversity and Sustainable Diets United Against Hunger, 2010, Rome: FA. |
[55] | Horgan GW, Perrin A, Whybrow S, et al. Achieving dietary recommendations and reducing greenhouse gas emissions: modeling diets to minimize the change from current intakes[J]. International Journal of Behavioral Nutrition and Physical Activity, 2016, 13(1): 1–11. DOI:10.1186/s12966-015-0325-y |
[56] | Global action plan for the prevention and control of noncommunicable diseases 2013 – 2020[R]. Geneva: World HealthOrganization, 2013. |
[57] | Fiscal policies for diet and the prevention of noncommunicable diseases[R]. Geneva: World Health Organization, 2015. |
[58] | Sweetened beverage tax will help beat NCDs in the Philippines[OL/EB].http://www.wpro.who.int/philippines/mediacentre/releases/sweetened_beverage_tax_phl/en/ |
[59] | Stoll-Kleemann S, Schmidt UJ. Reducing meat consumption in developed and transition countries to counter climate change and biodiversity loss: a review of influence factors[J]. Regional Environmental Change, 2016, 17(5): 1–17. |
[60] | China's plan to cut meat consumption by 50 % cheered by climate campaigners[OL/EB]. https://www.theguardian.com/world/2016/jun/20/chinas-meat-consumption-climate-change. |
[61] | Millward DJ, Garnett T. Plenary Lecture 3: food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods[J]. Proceedings of the Nutrition Society, 2010, 69(1): 103–118. DOI:10.1017/S0029665109991868 |
[62] | Mcevoy CT, Norman T, Woodside JV. Vegetarian diets, low-meat diets and health: a review[J]. Public Health Nutrition, 2012, 15(12): 2287–2294. DOI:10.1017/S1368980012000936 |