2. ;
3. 济宁医学院公共卫生学院;
4. 山东大学公共卫生学院生物统计学系;
5. 山东大学公共卫生学院流行病学系
2. Department of Public Health, Karolinska Institutet-Stockholm University, Sweden
原发性高血压表现为发病率高、致残和致死率高,已成为中国严重的公共卫生问题[1]。高血压作为一种慢性复杂性疾病,受到遗传和环境因素及其交互作用的影响。在众多的环境因素中,盐与血压的关系尤为密切,但是个体血压对盐负荷却表现出不同的反应,这种现象被称为血压盐敏感性。血压盐敏感性表型在血压正常人群中约占15%~42%,在高血压人群中约占28%~74%[2]。有研究表明,与血压盐抵抗者相比,血压盐敏感者更易出现靶器官功能的损害[3],同时,血压盐敏感者发生远期心血管疾病和死亡的风险明显增加[4]。血压盐敏感性在一定程度上反映了个体的遗传易感性。随着候选基因研究和全基因组关联研究的快速发展,识别血压盐敏感性易感基因、揭示其分子遗传机制[5-6]成为近年来血压盐敏感性领域的研究热点[7-9]。关于血压盐敏感性遗传学方面的研究较为深入,而且相应的文献综述也较多[7, 10-11],然而关于血压盐敏感性的流行病学影响因素的研究进展尚未见文献综述。为早期识别血压盐敏感者,从而确定重点限盐的高危人群以采取有针对性的干预措施,本文对血压盐敏感性的流行病学影响因素研究进展进行综述如下。
1 人口学因素Ishibashi等[12]学者较早提出,性别是影响血压盐敏感的重要因素之一,血浆肾素活性的变化对于女性血压盐敏感的影响较男性更为明显。He等[13]研究结果表明,相对于男性,女性更易出现血压盐敏感性。国内刘叶舟等[14]对63例盐敏感者和279例盐抵抗者的研究也支持此种观点,男性发生血压盐敏感的风险为女性的0.73倍(OR=0.73,95%CI=0.37~1.42)。可能的机制为女性的性激素(雌激素和孕激素)与肾脏钠离子重吸收和水潴留有关[15-16]。但以上研究并未考虑女性的雌激素水平、是否使用避孕药以及是处于绝经前还是绝经后等因素。有研究表明,对于年轻女性而言,血压盐敏感性比例较低,随着女性正常月经期的变化及其服用避孕药,肾脏血流动力学和肾小管对盐的反应会发生明变化,且在绝经之后,女性血压盐敏感性也会增强,其原因可能既有年龄因素的影响,又有性激素水平的修饰作用[17]。对于绝经期的女性来说,口服激素替代疗法有轻度升高血压的作用,但是常规的经皮激素替代疗法和具有抗醛固酮活性的新型孕酮(屈螺酮)却可明显降低血压水平[18]。另外,血压盐敏感性还与年龄[12-14, 19]、种族[20-21]等因素密切相关。一般来讲,随着年龄的增加,血压盐敏感性也逐渐增强[12-14];相对于白种人而言,非洲裔美国人更易出现血压盐敏感性[20]。
2 孕产期因素著名学者Barker教授[22]的疾病胎源学说认为成年期慢性病起源于生命早期,宫内营养不良可影响胎儿各个器官的生长发育。国外2项小样本的人群研究表明,低出生体重是儿童和成人血压盐敏感的重要危险因素[23-24]。动物实验通过构建母代蛋白质缺乏模型(即动物在妊娠期给予低蛋白饮食)可以诱导宫内营养不良,子代出生时表现为低出生体重,最早可在4周龄时即出现血压增高[25]。有研究表明,母代蛋白质缺乏会引起子代成年期出现盐敏感性高血压[26]。宫内营养不良的个体(低出生体重)出生时即表现为肾单位数量的减少,而有理论认为先天肾单元数目减少会导致钠离子排泄受损、水钠潴留,最终会引起高血压[27]。还有研究表明,低出生体重个体一般出生后会出现追赶生长,这会进一步加重肾功能损害和导致高血压[28]。动物实验结果显示,母代孕期高盐饮食会影响子代肾脏蛋白的表达,引起肾小球数目减少,从而导致子代成年期出现高血压[29]。同时,母代孕期蛋白质不足或高盐饮食还会引起子代的对外界刺激(如压力、冷刺激等)的高反应性[26, 30],使得子代更易出现盐敏感性高血压和心血管损害。此外,子代在出生后暴露于高盐饮食,也会引起肾脏氧化应激[31]和肾脏损伤[32],成为出生后高血压的关键窗口期。研究还表明,母亲妊娠期高血压[33]和糖尿病[34]也是子代血压盐敏感的重要危险因素。主要机制可能为子代在宫内暴露于高血压或高血糖,可通过引起先天性肾单元缺陷和肾小管功能损害,从而导致成年期血压盐敏感性和心室肥大。然而,关于妊娠期高血压或高血糖与血压盐敏感性的人群研究鲜有报道,今后应该加强此方面的研究。总之,子代在胎儿期暴露于不良的宫内环境,会引起肾脏和心血管系统发育不全,从而明显增加成年后出现血压盐敏感性的风险。
3 肥胖及代谢综合征肥胖也会增加血压盐敏感的风险[35-37]。Rocchini等[35]研究显示,相对于非肥胖组,肥胖组对于1周高盐膳食和1周低盐膳食的干预表现出更显著的血压变化。这可能主要归因于肥胖个体具有高胰岛素、高醛固酮水平和交感神经兴奋性增强等特征。事实上,前期有研究已表明,胰岛素抵抗可能会导致钠潴留和细胞外液容量扩张,从而导致血压的盐敏感性[38-39]。还有研究表明,肥胖人群的盐敏感性可能与肥胖个体的肾小管对钠的重吸收能力增强有关[36]。因肥胖往往伴随某些代谢指标的异常,如,血压偏高、血脂异常或血糖受损等。因此,一些研究进一步探讨了代谢综合征与血压盐敏感的关系,且一致认为代谢综合征个体易出现血压盐敏感性[40-42]。而肥胖和胰岛素抵抗是代谢综合征的根源所在,肥胖可能会增加远端肾小管对钠离子的重吸收,而胰岛素抵抗引起的交感神经系统、肾素-血管紧张素系统、血管舒缓素激肽系统、多巴胺系统等的异常,也会进一步导致钠潴留[43-45]。
4 体力活动一项meta分析结果显示,经常参加体力活动可以明显降低血压水平[46]。然而,关于体力活动与血压盐敏感性关系的研究,目前仅有1篇报道。研究者发现,体力活动与血压盐敏感之间存在剂量反应关系,即随着体力活动的增加,人群的血压盐敏感性呈下降趋势[47]。体力活动对血压盐敏感性具有保护性可能通过降低胰岛素抵抗、改善血管内皮功能、抑制交感神经系统的活性等机制发挥作用。首先,体力活动可以降低胰岛素抵抗[48],而胰岛素抵抗会降低肾脏钠离子排泄,导致细胞外液容量扩张和盐敏感性高血压[39];其次,体力活动能够通过增加一氧化氮的产生以减少病理性收缩和改善血流等机制来改善血管内皮功能[49];最后,体力活动能够抑制交感神经系统的活性,这可能是通过降低大脑心血管区域的神经活性来实现的[50]。
5 膳食因素高盐摄入与血压关系的研究较为广泛,可能与肾脏排钠能力受损和内皮功能紊乱有关。有研究表明,非渗透压调节的皮肤间隙的盐蓄积以及由于血管内皮多糖-蛋白质复合物层和钠离子通道损伤而导致的内皮功能紊乱在非渗透压调节的盐潴留中起重要作用[51]。事实上,与盐抵抗者相比,盐敏感高血压患者的内皮功能紊乱的比例更高[52]。这或许能解释高盐膳食会导致血压盐敏感性的部分机制。高钾摄入则具有降低血压的作用。既往的meta分析结果显示,钾补充剂可以明显降低血压水平,即收缩压下降3.11 mmHg(1 mm Hg=0.133 3 kPa)、舒张压下降1.97 mmHg[53]。最近的一项meta分析结果显示,增加膳食钾可以明显降低高血压者的血压水平(收缩压下降3.49 mmHg,舒张压下降1.96 mmHg),但在非高血压者中未见血压变化[54]。Morris等[55]研究表明,在黑人中,钾摄入缺乏容易引起血压盐敏感;但随着钾摄入的增加,血压盐敏感逐渐减弱。膳食钾的降血压效果的可能机制包括调控血管对于儿茶酚胺的敏感性、促进尿钠排泄、限制血浆肾素活性和改善内皮功能等[56]。值得一提的是,著名的DASH研究已经证明,DASH膳食(主要包括蔬菜、水果和低脂奶制品等)可以明显降低血压水平[57]。这主要得益于该膳食模式中富含钾、钙、镁、膳食纤维、蛋白质并且低脂。如果配合低钠膳食,2者联合可以起到更显著的降压效果[58]。因此在今后的研究中可进一步探讨DASH膳食模式是否能够改善血压盐敏感性。
6 应激因素Light等[59]研究表明,心理应激会引起水钠潴留,从而升高血压,这可能是通过交感神经系统发挥作用。事实上,盐和应激引起血压升高可能具有重合的通路,即交感神经系统[60]。应激导致血压盐敏感性的其他可能机制还包括肾素紧张素醛固酮系统调控受损和钠离子重吸收增强等。冷加压试验通过模拟压力刺激能够激发交感神经活性,导致动脉血管收缩,从而引起血压升高,Chen等[61]研究表明,冷加压试验与盐负荷试验具有较高的相关性,或许可以作为血压盐敏感的早期筛查试验。这也进一步证明了应激因素是血压盐敏感性的重要预测因子。
7 小结与展望综上所述,血压盐敏感性不仅与遗传因素有关,而且还与生命早期因素、肥胖、代谢综合征、体力活动、膳食因素及精神应激等各种环境因素密切相关。但是目前关于盐敏感性和环境因素关系的研究尚处于起步阶段。今后需进一步探讨其他的可能环境影响因素,如吸烟、饮酒、静态生活方式(如看电视、使用电脑和手机等)、膳食因素(如蔬菜、水果、糖等)及生命早期暴露因素(如母亲孕期吸烟、早产、巨大儿等因素)。同时,应积极开展血压盐敏感的队列研究,以验证影响因素与血压盐敏感性之间的因果关系。另外,儿童血压盐敏感的研究目前较少,此方面工作的开展有利于识别儿童期的主要影响因素。总之,从生命历程流行病学角度探讨遗传和环境因素交互作用与血压盐敏感的关系,识别各种可能的影响因素,对盐敏感高血压进行早期和重点干预,对于降低人群的心血管病事件具有重要公共卫生意义。
| [1] | He J, Gu D, Chen J, et al. Premature deaths attributable to blood pressure in China:a prospective cohort study[J]. Lancet, 2009, 374(9703): 1765–1772. DOI:10.1016/S0140-6736(09)61199-5 |
| [2] | 刘志全. 血压的盐敏感性与盐敏感性高血压[J]. 高血压杂志, 2005, 13(3): 131–132. |
| [3] | Bihorac A, Tezcan H, Ozener C, et al. Association between salt sensitivity and target organ damage in essential hypertension[J]. Am J Hypertens, 2000, 13(8): 864–872. DOI:10.1016/S0895-7061(00)00253-3 |
| [4] | Weinberger MH, Fineberg NS, Fineberg SE, et al. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans[J]. Hypertension, 2001, 37(2 Pt 2): 429–432. |
| [5] | 杨建一, 崔慧慧, 黄幸, 等. 感觉神经损伤盐敏感性高血压大鼠氧化应激[J]. 中国公共卫生, 2011, 27(2): 202–203. DOI:10.11847/zgggws2011-27-02-36 |
| [6] | 张娟, 白宝琴, 李莉, 等. AT1R和eNOS在盐敏感性高血压发生中作用[J]. 中国公共卫生, 2014, 30(7): 912–915. DOI:10.11847/zgggws2014-30-07-19 |
| [7] | Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity[J]. J Hypertens, 2012, 30(5): 861–873. DOI:10.1097/HJH.0b013e3283524949 |
| [8] | He J, Kelly TN, Zhao Q, et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese[J]. Circ Cardiovasc Genet, 2013, 6(6): 598–607. DOI:10.1161/CIRCGENETICS.113.000307 |
| [9] | Mei H, Gu D, Hixson JE, et al. Genome-wide linkage and positional association study of blood pressure response to dietary sodium intervention:the GenSalt Study[J]. Am J Epidemiol, 2012, 176(Suppl 7): S81–90. |
| [10] | 陈慧锦. 盐敏感性高血压遗传学研究进展[J]. 新疆医科大学学报, 2012, 35(8): 1013–1017. |
| [11] | Sanada H, Jones JE, Jose PA. Genetics of salt-sensitive hypertension[J]. Curr Hypertens Rep, 2011, 13(1): 55–66. DOI:10.1007/s11906-010-0167-6 |
| [12] | Ishibashi K, Oshima T, Matsuura H, et al. Effects of age and sex on sodium chloride sensitivity:association with plasma renin activity[J]. Clin Nephrol, 1994, 42(6): 376–380. |
| [13] | He J, Gu D, Chen J, et al. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study[J]. J Hypertens, 2009, 27(1): 48–54. DOI:10.1097/HJH.0b013e328316bb87 |
| [14] | 刘叶舟, 武晶晶, 张玲, 等. 原发性高血压患者盐敏感性的影响因素和急性盐负荷后血压及钠钾代谢的变化[J]. 中华心血管病杂志, 2013, 41(12): 1015–1019. DOI:10.3760/cma.j.issn.0253-3758.2013.12.006 |
| [15] | Stachenfeld NS, Taylor HS. Effects of estrogen and progesterone administration on extracellular fluid[J]. J Appl Physiol(1985), 2004, 96(3): 1011–1018. |
| [16] | Stachenfeld NS, DiPietro L, Palter SF, et al. Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women[J]. Am J Physiol, 1998, 274(1 Pt 2): R187–195. |
| [17] | Pechere-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation[J]. Am J Hypertens, 2004, 17(10): 994–1001. DOI:10.1016/j.amjhyper.2004.08.009 |
| [18] | Kim JM, Kim TH, Lee HH, et al. Postmenopausal hypertension and sodium sensitivity[J]. J Menopausal Med, 2014, 20(1): 1–6. DOI:10.6118/jmm.2014.20.1.1 |
| [19] | Luft FC, Weinberger MH. Heterogeneous responses to changes in dietary salt intake:the salt-sensitivity paradigm[J]. Am J Clin Nutr, 1997, 65(2 Suppl): 612S–617S. |
| [20] | Wright JT Jr, Rahman M, Scarpa A, et al. Determinants of salt sensitivity in black and white normotensive and hypertensive women[J]. Hypertension, 2003, 42(6): 1087–1092. DOI:10.1161/01.HYP.0000101687.89160.19 |
| [21] | Luft FC, Miller JZ, Grim CE, et al. Salt sensitivity and resistance of blood pressure.Age and race as factors in physiological responses[J]. Hypertension, 1991, 17(1 Suppl): I102–108. |
| [22] | Barker DJ. The developmental origins of adult disease[J]. J Am Coll Nutr, 2004, 23(6 Suppl): 588S–595S. |
| [23] | de Boer MP, Ijzerman RG, de Jongh RT, et al. Birth weight relates to salt sensitivity of blood pressure in healthy adults[J]. Hypertension, 2008, 51(4): 928–932. DOI:10.1161/HYPERTENSIONAHA.107.101881 |
| [24] | Simonetti GD, Raio L, Surbek D, et al. Salt sensitivity of children with low birth weight[J]. Hypertension, 2008, 52(4): 625–630. DOI:10.1161/HYPERTENSIONAHA.108.114983 |
| [25] | Ojeda NB, Grigore D, Alexander BT. Developmental programming of hypertension:insight from animal models of nutritional manipulation[J]. Hypertension, 2008, 52(1): 44–50. DOI:10.1161/HYPERTENSIONAHA.107.092890 |
| [26] | Augustyniak RA, Singh K, Zeldes D, et al. Maternal protein restriction leads to hyperresponsiveness to stress and salt-sensitive hypertension in male offspring[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5): R1375–1382. DOI:10.1152/ajpregu.00848.2009 |
| [27] | Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease:the role of fetal programming[J]. Hypertension, 2006, 47(3): 502–508. DOI:10.1161/01.HYP.0000198544.09909.1a |
| [28] | Adair LS, Cole TJ. Rapid child growth raises blood pressure in adolescent boys who were thin at birth[J]. Hypertension, 2003, 41(3): 451–456. DOI:10.1161/01.HYP.0000054212.23528.B2 |
| [29] | Koleganova N, Piecha G, Ritz E, et al. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring[J]. Am J Physiol Renal Physiol, 2011, 301(2): F344–354. DOI:10.1152/ajprenal.00626.2010 |
| [30] | Porter JP, King SH, Honeycutt AD. Prenatal high-salt diet in the Sprague-Dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 293(1): R334–342. DOI:10.1152/ajpregu.00887.2006 |
| [31] | Stewart T, Ascani J, Craver RD, et al. Role of postnatal dietary sodium in prenatally programmed hypertension[J]. Pediatr Nephrol, 2009, 24(9): 1727–1733. DOI:10.1007/s00467-009-1196-8 |
| [32] | Geurts AM, Mattson DL, Liu P, et al. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats[J]. Hypertension, 2015, 65(2): 447–455. DOI:10.1161/HYPERTENSIONAHA.114.04179 |
| [33] | Armstrong DW, Tse MY, O'Tierney-Ginn PF, et al. Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy[J]. Regul Pept, 2013, 186: 108–115. DOI:10.1016/j.regpep.2013.08.006 |
| [34] | Nehiri T, Duong Van Huyen JP, Viltard M, et al. Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring[J]. Diabetes, 2008, 57(8): 2167–2175. DOI:10.2337/db07-0780 |
| [35] | Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents[J]. N Engl J Med, 1989, 321(9): 580–585. DOI:10.1056/NEJM198908313210905 |
| [36] | Hall JE. Mechanisms of abnormal renal sodium handling in obesity hypertension[J]. Am J Hypertens, 1997, 10(5 Pt 2): 49S–55S. |
| [37] | Strazzullo P, Barba G, Cappuccio FP, et al. Altered renal sodium handling in men with abdominal adiposity:a link to hypertension[J]. J Hypertens, 2001, 19(12): 2157–2164. DOI:10.1097/00004872-200112000-00007 |
| [38] | Shimamoto K, Hirata A, Fukuoka M, et al. Insulin sensitivity and the effects of insulin on renal sodium handling and pressor systems in essential hypertensive patients[J]. Hypertension, 1994, 23(1 Suppl): I29–33. |
| [39] | Galletti F, Strazzullo P, Ferrara I, et al. NaCl sensitivity of essential hypertensive patients is related to insulin resistance[J]. J Hypertens, 1997, 15(12 Pt 1): 1485–1491. |
| [40] | Uzu T, Kimura G, Yamauchi A, et al. Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension[J]. J Hypertens, 2006, 24(8): 1627–1632. DOI:10.1097/01.hjh.0000239299.71001.77 |
| [41] | Hoffmann IS, Cubeddu LX. Increased blood pressure reactivity to dietary salt in patients with the metabolic syndrome[J]. J Hum Hypertens, 2007, 21(6): 438–444. |
| [42] | Chen J, Gu D, Huang J, et al. Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China:a dietary intervention study[J]. Lancet, 2009, 373(9666): 829–835. DOI:10.1016/S0140-6736(09)60144-6 |
| [43] | Strazzullo P, Barbato A, Vuotto P, et al. Relationships between salt sensitivity of blood pressure and sympathetic nervous system activity:a short review of evidence[J]. Clin Exp Hypertens, 2001, 23(1-2): 25–33. DOI:10.1081/CEH-100001194 |
| [44] | Fujita T. Spotlight on renin.The renin system, salt-sensitivity and metabolic syndrome[J]. J Renin Angiotensin Aldosterone Syst, 2006, 7(3): 181–183. DOI:10.3317/jraas.2006.029 |
| [45] | Chan TY, Critchley JA, Ho CS, et al. Renal kallikrein-kinin system, but not renal dopamine system, mediates the natriuretic response to intravenous saline infusion in healthy Chinese subjects[J]. J Auton Pharmacol, 2000, 20(1): 37–45. DOI:10.1046/j.1365-2680.2000.00160.x |
| [46] | Huai P, Xun H, Reilly KH, et al. Physical activity and risk of hypertension:a meta-analysis of prospective cohort studies[J]. Hypertension, 2013, 62(6): 1021–1026. DOI:10.1161/HYPERTENSIONAHA.113.01965 |
| [47] | Rebholz CM, Gu D, Chen J, et al. Physical activity reduces salt sensitivity of blood pressure:the Genetic Epidemiology Network of Salt Sensitivity Study[J]. Am J Epidemiol, 2012, 176(Suppl 7): S106–113. DOI:10.1093/aje/kws266 |
| [48] | Gill JM. Physical activity, cardiorespiratory fitness and insulin resistance:a short update[J]. Curr Opin Lipidol, 2007, 18(1): 47–52. DOI:10.1097/MOL.0b013e328012b8bd |
| [49] | Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease[J]. N Engl J Med, 2000, 342(7): 454–460. DOI:10.1056/NEJM200002173420702 |
| [50] | Mueller PJ. Exercise training and sympathetic nervous system activity:evidence for physical activity dependent neural plasticity[J]. Clin Exp Pharmacol Physiol, 2007, 34(4): 377–384. DOI:10.1111/j.1440-1681.2007.04590.x |
| [51] | Choi HY, Park HC, Ha SK. Salt sensitivity and hypertension:a paradigm shift from kidney malfunction to vascular endothelial dysfunction[J]. Electrolyte Blood Press, 2015, 13(1): 7–16. DOI:10.5049/EBP.2015.13.1.7 |
| [52] | Bragulat E, de la Sierra A. Salt intake, endothelial dysfunction, and salt-sensitive hypertension[J]. J Clin Hypertens(Greenwich), 2002, 4(1): 41–46. DOI:10.1111/jch.2002.4.issue-1 |
| [53] | Whelton PK, He J, Cutler JA, et al. Effects of oral potassium on blood pressure.Meta-analysis of randomized controlled clinical trials[J]. JAMA, 1997, 277(20): 1624–1632. DOI:10.1001/jama.1997.03540440058033 |
| [54] | Aburto NJ, Hanson S, Gutierrez H, et al. Effect of increased potassium intake on cardiovascular risk factors and disease:systematic review and meta-analyses[J]. BMJ, 2013, 346: f1378. DOI:10.1136/bmj.f1378 |
| [55] | Morris RC Jr, Sebastian A, Forman A, et al. Normotensive salt sensitivity:effects of race and dietary potassium[J]. Hypertension, 1999, 33(1): 18–23. DOI:10.1161/01.HYP.33.1.18 |
| [56] | Kanbay M, Bayram Y, Solak Y, et al. Dietary potassium:a key mediator of the cardiovascular response to dietary sodium chloride[J]. J Am Soc Hypertens, 2013, 7(5): 395–400. DOI:10.1016/j.jash.2013.04.009 |
| [57] | Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure.DASH Collaborative Research Group[J]. N Engl J Med, 1997, 336(16): 1117–1124. DOI:10.1056/NEJM199704173361601 |
| [58] | Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension(DASH)diet[J]. N Engl J Med, 2001, 344(1): 3–10. DOI:10.1056/NEJM200101043440101 |
| [59] | Light KC, Koepke JP, Obrist PA, et al. Psychological stress induces sodium and fluid retention in men at high risk for hypertension[J]. Science, 1983, 220(4595): 429–431. DOI:10.1126/science.6836285 |
| [60] | Stewart DL, Harshfield GA, Zhu H, et al. Stress and salt sensitivity in primary hypertension[J]. Curr Hypertens Rep, 2015, 17(2): 2. DOI:10.1007/s11906-014-0513-1 |
| [61] | Chen J, Gu D, Jaquish CE, et al. Association between blood pressure responses to the cold pressor test and dietary sodium intervention in a Chinese population[J]. Arch Intern Med, 2008, 168(16): 1740–1746. DOI:10.1001/archinte.168.16.1740 |
2017, Vol. 33


