近20年来,世界范围内超重和肥胖的发生率呈指数上升,世界卫生组织 (World Health Organization, WHO)称肥胖是我们这一代人最紧迫的公共卫生问题之一[1]。育龄妇女孕前肥胖和孕期过度增重也已经成为全球性的公共卫生问题。已知孕前肥胖和孕期过度增重与不良妊娠结局有关[2]。孕前肥胖和孕期过度增重引起儿童神经发育障碍,在探讨孕前肥胖和孕期过度增重对儿童神经发育的影响因素中,肥胖所导致的慢性炎症可能是影响儿童神经发育障碍的一个中介因素。本文针对孕前肥胖和孕期过度增重致子代神经发育障碍相关的母体全身炎症和胎盘炎症研究进展综述如下。
1 孕前肥胖和孕期过度增重与子代神经发育障碍的关联育龄妇女超重和肥胖现象越来越普遍,部分发达国家超过1/3的育龄妇女超重或肥胖[3-4]。中国育龄妇女超重和肥胖发生率分别达24.5%和9.0%[5],但上升趋势令人担忧。怀孕可引起孕妇体重增加,增加的部分包括子宫、胎盘、羊水、胎儿体重、母体血浆和体脂[6]。研究显示,孕期过度增重的现象越来越普遍,包括中国在内的世界范围内孕妇均有孕期过度增重的风险[7-8]。孕前肥胖和孕期过度增重不仅与不良妊娠结局有关[2],新兴的证据表明,孕前肥胖和孕期过度增重会影响儿童神经发育,增加儿童脑瘫、认知障碍、孤独症谱系障碍和精神分裂症等的风险[9-12]。已知孕前体质指数(body mass index,BMI)和孕期增重是衡量孕妇和胎儿代谢和生长的措施之一。目前对于孕前肥胖和孕期过度增重影响儿童神经发育的机制还不是十分明确,有研究表明,孕妇全身慢性炎症和胎盘炎症可能与孕前肥胖和孕期过度增重致儿童神经发育障碍的损害作用有关[13-14]。
2 孕前肥胖/孕期过度增重导致孕妇全身慢性炎症在非妊娠个体中,肥大的脂肪细胞改变了脂肪组织来源的细胞因子和脂肪因子的平衡,在肥胖的人和动物模型中均观察到炎性细胞因子如C反应蛋白(c-reactive protein,CRP)、白细胞介素(interleukin, IL-6、IL-1) 和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)全身性升高,使机体处于慢性低水平的炎症状态[15-16]。与正常体重女性相比,孕前肥胖触发的脂肪组织炎症能够延伸至孕期[17],以脂肪组织增加、全身促炎性细胞因子水平上升和脂肪组织巨噬细胞聚集为特征[18]。
为探索母体BMI与慢性全身炎症状态之间的关系,研究者收集了60名孕妇不同孕前/孕早期BMI,并通过剖宫产分娩孕妇的血浆测量其中的IL-1β、IL-6、IL-8, 单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1) 和TNF-α等细胞因子水平。结果发现,血浆中MCP-1 和TNF-α的浓度与孕前/孕早期BMI呈正相关[19]。已知MCP-1 和TNF-α是胰岛素抵抗中最主要的促炎性细胞因子[20-21]。另外,从食源性肥胖的啮齿类动物模型中观察到,肥胖母体血浆中IL6、IL-1β、IL10、IL17A、干扰素(interferon-γ,IFN-γ)和TNF-α水平显著增高[14]。并且Basu等[22]的研究结果表明肥胖孕妇脂肪组织巨噬细胞浸润增加,巨噬细胞表面CD68+T和CD14+T细胞的标志物增加2~3倍,他们还观察到肥胖孕妇脂肪组织间质炎症增强,IL-6、TNF-α和 IL-8的表达上升22~324倍。提示,孕前肥胖/孕期过度增重使孕妇呈现全身炎性状态。
3 孕前肥胖/孕期过度增重导致胎盘炎症胎盘不仅从母体运输营养物质到胎儿循环,胎盘还是一个重要的免疫器官,产生大量的细胞因子[23]。研究表明,母体肥胖所致的代谢炎症,在孕期能延伸至胎盘,使胎儿暴露于炎性环境[22]。胎盘从母体循环运输游离脂肪酸,这些游离脂肪酸被胎儿肝脏摄取和酯化,并以甘油三脂的形式释放进入胎儿循环[24]。动物研究观察到肥胖母羊胎儿体内游离脂肪酸、胆固醇和甘油三酯升高,并在胎盘子叶组织中发现toll样受体4(TLR4) 、核转录因子-κB(nuclear factor-kappa B, NF-κB)和c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)等炎性通路增强[25]。表明胎盘摄取的脂肪酸导致胎盘炎性通路被激活。已知NF-κB和JNK通路是炎症反应的主要信号通路,它们能进一步加强促炎性细胞因子的表达,形成恶性循环[26]。游离脂肪酸是TLR4的配体,而TLR4是启动NF-κB和JNK通路的主要因素[27]。
胎盘合体滋养层细胞与母体血液直接接触,能表达多种toll样受体(TLRs)和点头样受体亚型(NLRs),它们为炎性受体,能检测细胞内和细胞外的炎性刺激。这些炎性受体与促炎性细胞因子受体一起能激活炎性信号通路,如p38-丝裂原活化蛋白激酶(p38-mitogen activated protein kinase, p38-MAPK) 和信号转导子和转录激活子3(signal transducer and activator of transcription 3, STAT3) 通路[19, 28-30]。胎盘p38-MAPK途径能被促炎性细胞因子MCP-1和TNF-α激活,而STAT3途径可被TNF-α激活[19]。研究者通过对60名不同孕前/孕早期BMI孕妇胎盘的炎性状态分析,发现胎盘p38-MAPK 和 STAT3与母体BMI呈正相关。在另一项相关研究中同样观察到肥胖孕妇胎盘中p38-MAPK途径被激活[31]。此外,Challier等[32]通过比较肥胖孕妇和非肥胖孕妇胎盘中巨噬细胞的差异,探讨母体肥胖与胎盘炎症之间的关系,发现肥胖孕妇胎盘中TNF-α等促炎性细胞因子的表达是对照组的2~4倍。这些研究结果均表明母体肥胖引起的慢性低水平炎症状态能使胎儿处于炎性环境。
4 母体全身和胎盘炎症引起子代神经发育障碍肥胖母亲体内慢性低水平炎症状态在发育编程领域已经成为一个新兴的焦点。有研究表明,肥胖所导致的母体代谢性炎症能编程子代的组织炎症,与正常体重母亲的儿童相比,肥胖母亲分娩的非肥胖儿童体内CRP水平较高[33],表明这些儿童具有慢性系统性炎症。孕前和孕期食源性肥胖的啮齿类动物模型显示,在妊娠的第17.5天,母亲肥胖组胎儿循环中IL6、IL17A和IFN-γ显著升高[14];另一小鼠模型显示,在胎儿期母体高脂饮食环境使幼崽体内TNF-α水平升高,并且幼崽胸腺皮质变薄和脾淋巴细胞减少[34]。这些结果表明,母体肥胖增加子代免疫负担,导致子代全身性炎症。
孕期母体和胎儿的免疫系统具有双向交换的特点,控制良好的母体免疫对胎儿的神经系统发育起到积极作用,不恰当的母体免疫如促炎性细胞因子水平升高,可对胎儿神经发育的主要过程如细胞迁移、轴突伸长和树突成熟产生不利影响,可增加子代神经发育障碍的风险[35-37]。
母体肥胖可能会影响胎儿的大脑发育。大鼠孕前或孕期暴露于高脂饮食会增加母体重量以及循环CRP和IL-6水平,这种母体全身免疫系统的激活能导致子代出生时神经免疫功能和行为的长期变化[13, 38]。White等[39]观察到肥胖母鼠子代海马中促炎性细胞因子IL-6增加,并在水迷宫测试试验中观察到子代的记忆力下降。另一肥胖动物模型显示子代海马中促炎性细胞因子IL-1β显著升高,并且表现出空间学习障碍和焦虑[40]。这些研究结果表明母体肥胖引起子代海马炎性反应增强,并导致子代认知发育障碍。
小胶质细胞是中枢神经系统主要的免疫活性细胞,参与许多重要的大脑发育和功能,包括突触发生和细化、凋亡和血管生成[13]。胎儿期血脑屏障尚未完全发育完成,当胎儿受到炎性刺激时,小胶质细胞活化,血脑屏障通透性增强,增加了胎儿暴露于损伤和环境刺激的风险,这可能影响神经发育[41]。在交配前、整个孕期和哺乳期的肥胖母鼠模型显示,幼崽在出生时海马小胶质细胞活化标记物增加,这能导致子代记忆损伤和其他相关的认知障碍[40, 42]。
宫内环境对子代的终身健康具有重要影响,不利的宫内环境或孕前失匹配均可能导致子代的不良结局。母体循环和胎盘的炎症状态干扰了母体-胎儿界面信号通路的相互作用,改变了宫内环境,影响胎儿的行为发育[42]。研究者在绵羊模型中观察到子宫胎盘炎症引起胎儿小脑中凋亡标志物的表达[43],这是神经发育障碍的标志。随后,在母体免疫激活的小鼠模型中观察到雄性幼崽社会交往和语言行为缺如,并存在反复刻板行为[44],这些都是孤独症谱系障碍的典型特征。最近的人群研究也观察到肥胖母亲的儿童学习障碍和相关的行为障碍风险增加,粗大运动功能和阅读得分也与母体BMI显著相关[45]。
5 小结围生期是一个敏感的时期,在该时期,宫内暴露可以调节子代发育历程,对子代产生长远影响。人群研究和动物学试验均表明孕前肥胖和孕期过度增重引起母体全身炎症和胎盘炎症,使胎儿暴露于炎性环境,从而可能对其神经发育产生影响,进一步导致神经发育障碍。尽管母亲孕前肥胖和孕期过度增重引起子代神经发育障碍的确切途径还不是很明确,肥胖状态导致的母体全身炎症和胎盘炎症在联结子代神经发育障碍中值得关注。因为在发育编程的背景下,生命早期暴露所导致的发育编程表型可在生命后期持续呈现。在今后的研究中,建立出生队列(birth cohort)进一步探讨孕前肥胖和孕期过度增重所致的母体全身炎症和胎盘炎症对子代神经发育影响的代际效应具有重大意义。
| [1] | World Health Organization.Obesity and overweight[EB/OL].[2015-01].http://www.who.int/mediacentre/factsheets/fs311/en/. |
| [2] | 孙铭. 孕期膳食营养指导对孕期营养状况及妊娠结局影响[J]. 中国公共卫生 , 2015, 31 (3) : 367–368. |
| [3] | Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States,2011-2012[J]. JAMA , 2014, 311 (8) : 806–814. DOI:10.1001/jama.2014.732 |
| [4] | Ruager-Martin R, Hyde MJ, Modi N. Maternal obesity and infant outcomes[J]. Early Hum Dev , 2010, 86 (11) : 715–722. DOI:10.1016/j.earlhumdev.2010.08.007 |
| [5] | 李晓燕, 姜勇, 胡楠, 等. 2010年我国成年人超重及肥胖流行特征[J]. 中华预防医学杂志 , 2012, 46 (8) : 683–686. |
| [6] | Rasmussen KM, Yaktine AL. Weight gain during pregnancy:reexamining the guidelines[M]. Washington DC: National Academies Press(US), 2009 : 1 -4. |
| [7] | 赖建强. 北京市妇女孕前体重与孕期体重增加及产后滞留体重的关系[J]. 中华预防医学杂志 , 2011, 45 (9) : 794–797. |
| [8] | Furber CM, McGowan L, Bower P, et al. Antenatal interventions for reducing weight in obese women for improving pregnancy outcome[J]. Cochrane Database Syst Rev , 2013, 1 : CD009334. DOI:10.1002/14651858.CD009334 |
| [9] | Kang SS, Kurti A, Fair DA, et al. Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring[J]. J Neuroinflammation , 2014, 11 : 156. DOI:10.1186/s12974-014-0156-9 |
| [10] | Pan C, Deroche CB, Mann JR, et al. Is prepregnancy obesity associated with risk of cerebral palsy and epilepsy in children?[J]. J Child Neurol , 2014, 29 (12) : NP196–201. DOI:10.1177/0883073813510971 |
| [11] | Bilder DA, Bakian AV, Viskochil J, et al. Maternal prenatal weight gain and autism spectrum disorders[J]. Pediatrics , 2013, 132 (5) : 1276–1283. DOI:10.1542/peds.2013-1188 |
| [12] | Khandaker GM, Dibben CR, Jones PB. Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?[J]. Obes Rev , 2012, 13 (6) : 518–527. DOI:10.1111/obr.2012.13.issue-6 |
| [13] | Bolton JL, Bilbo SD. Developmental programming of brain and behavior by perinatal diet:focus on inflammatory mechanisms[J]. Dialogues Clin Neurosci , 2014, 16 (3) : 307–320. |
| [14] | Kim DW, Young SL, Grattan DR, et al. Obesity during pregnancy disrupts placental morphology,cell proliferation,and inflammation in a sex-specific manner across gestation in the mouse[J]. Biol Reprod , 2014, 90 (6) : 1–11. |
| [15] | Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue.Adipose cell size and number in nonobese and obese patients[J]. J Clin Invest , 1973, 52 (4) : 929–941. DOI:10.1172/JCI107258 |
| [16] | Ge Q, Maury E, Rycken L, et al. Endocannabinoids regulate adipokine production and the immune balance of omental adipose tissue inhuman obesity[J]. Int J Obesity (Lond) , 2013, 37 (6) : 874–880. DOI:10.1038/ijo.2012.123 |
| [17] | Ingvorsen C, Thysen AH, Fernandez-Twinn D, et al. Effects of pregnancy on obesity-induced inflammation in a mouse model of fetal programming[J]. Int J Obesity (Lond) , 2014, 38 (10) : 1282–1289. DOI:10.1038/ijo.2014.69 |
| [18] | Madan JC, Davis JM, Craig WY, et al. Maternal obesity and markers of inflammation in pregnancy[J]. Cytokine , 2009, 47 (1) : 61–64. DOI:10.1016/j.cyto.2009.05.004 |
| [19] | Aye IL, Lager S, Ramirez VI, et al. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways[J]. Biol Reprod , 2014, 90 (6) : 1–9. |
| [20] | Borst SE. The role of TNF-alpha in insulin resistance[J]. Endocrine , 2004, 23 (2-3) : 177–182. DOI:10.1385/ENDO:23:2-3 |
| [21] | Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue,insulin resistance,and hepatic steatosis in obesity[J]. J Clin Invest , 2006, 116 (6) : 1494–1505. DOI:10.1172/JCI26498 |
| [22] | Basu S, Haghiac M, Surace P, et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation[J]. Obesity (Silver Spring) , 2011, 19 (3) : 476–482. DOI:10.1038/oby.2010.215 |
| [23] | Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals[J]. Placenta , 2006, 27 (8) : 794–798. DOI:10.1016/j.placenta.2005.08.009 |
| [24] | Schaiff WT, Knapp FF, Barak Y, et al. Ligand-activated peroxisome proliferator activated receptor gamma alters placental morphology and placental fatty acid uptake in mice[J]. Endocrinology , 2007, 148 (8) : 3625–3634. DOI:10.1210/en.2007-0211 |
| [25] | Zhu MJ, Du M, Nathanielsz PW, et al. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta[J]. Placenta , 2010, 31 (5) : 387–391. DOI:10.1016/j.placenta.2010.02.002 |
| [26] | Keaney JF Jr., Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress:clinical correlates of oxidative stress in the Framingham Study[J]. Arterioscl Throm Vas , 2003, 23 (3) : 434–439. DOI:10.1161/01.ATV.0000058402.34138.11 |
| [27] | Nguyen MT, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem , 2007, 282 (48) : 35279–35292. DOI:10.1074/jbc.M706762200 |
| [28] | Abrahams VM. The role of the Nod-like receptor family in trophoblast innate immune responses[J]. J Reprod Immunol , 2011, 88 (2) : 112–117. DOI:10.1016/j.jri.2010.12.003 |
| [29] | Koga K, Mor G, Izumi G, et al. Toll-like receptors at the maternal-fetal interface in normal pregnancy and pregnancy complications[J]. Am J Reprod Immunol , 2014, 72 (2) : 192–205. DOI:10.1111/aji.2014.72.issue-2 |
| [30] | Keelan JA. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth[J]. J Reprod Immunol , 2011, 88 (2) : 176–184. DOI:10.1016/j.jri.2010.11.003 |
| [31] | Saben J, Zhong Y, Gomez-Acevedo H, et al. Early growth response protein-1 mediates lipotoxicity-associated placental inflammation:role in maternal obesity[J]. Am J Physiol-Endoc M , 2013, 305 (1) : 1–14. DOI:10.1152/ajpcell.00017.2013 |
| [32] | Challier JC, Basu S, Bintein T, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta[J]. Placenta , 2008, 29 (3) : 274–281. DOI:10.1016/j.placenta.2007.12.010 |
| [33] | Lieb W, Pencina MJ, Lanier KJ, et al. Association of parental obesity with concentrations of select systemic biomarkers in nonobese offspring:the Framingham Heart Study[J]. Diabetes , 2009, 58 (1) : 134–137. DOI:10.2337/db08-0918 |
| [34] | Odaka Y, Nakano M, Tanaka T, et al. The influence of a high-fat dietary environment in the fetal period on postnatal metabolic and immune function[J]. Obesity (Silver Spring) , 2010, 18 (9) : 1688–1694. DOI:10.1038/oby.2009.513 |
| [35] | Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior[J]. Front Neuroendocrin , 2012, 33 (3) : 267–286. DOI:10.1016/j.yfrne.2012.08.006 |
| [36] | Patterson PH. Maternal infection and immune involvement in autism[J]. Trends Mol Med , 2011, 17 (7) : 389–394. DOI:10.1016/j.molmed.2011.03.001 |
| [37] | Patterson PH. Maternal infection and autism[J]. Brain Behav Immun , 2012, 26 (3) : 393. DOI:10.1016/j.bbi.2011.09.008 |
| [38] | Williamson LL, Sholar PW, Mistry RS, et al. Microglia and memory:modulation by early-life infection[J]. J Neurosci , 2011, 31 (43) : 15511–15521. DOI:10.1523/JNEUROSCI.3688-11.2011 |
| [39] | White CL, Pistell PJ, Purpera MN, et al. Effects of high fat diet on Morris maze performance,oxidative stress,and inflammation in rats:contributions of maternal diet[J]. Neurobiol Dis , 2009, 35 (1) : 3–13. DOI:10.1016/j.nbd.2009.04.002 |
| [40] | Bilbo SD, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring[J]. Faseb J , 2010, 24 (6) : 2104–2115. DOI:10.1096/fj.09-144014 |
| [41] | Prat A, Biernacki K, Wosik K, et al. Glial cell influence on the human blood-brain barrier[J]. Glia , 2001, 36 (2) : 145–155. DOI:10.1002/(ISSN)1098-1136 |
| [42] | Hsiao EY, Patterson PH. Placental regulation of maternal-fetal interactions and brain development[J]. Dev Neur , 2012, 72 (10) : 1317–1326. DOI:10.1002/dneu.22045 |
| [43] | Hutton LC, Castillo-Melendez M, Walker DW. Uteroplacental inflammation results in blood brain barrier breakdown,increased activated caspase 3 and lipid peroxidation in the late gestation ovine fetal cerebellum[J]. Dev Neurosci , 2007, 29 (4-5) : 341–354. DOI:10.1159/000105475 |
| [44] | Malkova NV, Yu CZ, Hsiao EY, et al. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism[J]. Brain Behav Immun , 2012, 26 (4) : 607–616. DOI:10.1016/j.bbi.2012.01.011 |
| [45] | Hinkle SN, Sharma AJ, Kim SY, et al. Maternal prepregnancy weight status and associations with children's development and disabilities at kindergarten[J]. Int J Obesity (Lond) , 2013, 37 (10) : 1344–1351. DOI:10.1038/ijo.2013.128 |
2016, Vol. 32


