2. 中国疾病预防控制中心营养与健康所食物营养评价室
同型半胱氨酸(homocysteine,Hcy)是人体必需氨基酸甲硫氨酸(methionine,Met)的重要中间代谢产物,高动物蛋白饮食中甲硫氨酸含量过高或甲硫氨酸代谢障碍可导致Hcy累积,引起高同型半胱氨酸血症(hyperhomocysteinemia)。近年来大量研究表明,同型半胱氨酸血症是多种疾病的危险因子,特别是冠状动脉粥样硬化、老年性痴呆、中风、静脉栓塞等心脑血管疾病[1, 2, 3]。人体内,正常的Hcy浓度在5~15 μmol/L,Hcy浓度每升高5 μmol/L则会导致60%~80%几率的冠心病发生[4, 5]。此外,血浆中同型半胱氨酸升高还可导致新生儿缺陷和习惯性流产。甜菜碱(betaine,Bet)是一种从天然植物的根、茎、叶及果实中提取的碱性物质,具有抗肿瘤,降血压,抗消化性溃疡及胃肠功能障碍的功效,可用于治疗肝脏疾病[6]。甜菜碱的有效成份为三甲基甘氨酸,具有甲基供体功能,可参与同型半胱氨酸作为底物的甲硫氨酸再生与循环。植物是外源性甜菜碱的主要来源,如甜菜、菠菜、麦麸、麦胚等均富含此种生物碱[7, 8]。研究表明甜菜碱可有效地抑制由胍基乙酸(guanidine acetic acid,GAA)添加[9]、胱硫醚β-合成酶缺乏[10],叶酸缺乏[11]以及甲硫氨酸过量[12]导致的高同型半胱氨酸血症的发生。本研究以Wistar大鼠为实验动物,在饲料中添加GAA建立高同型半胱氨酸血症大鼠模型,同时给予甜菜干燥粉和甜菜碱进行干预,探讨富含甜菜碱的甜菜对GAA诱导的高同型半胱氨酸血症的影响及作用机制,结果报告如下。 1 材料与方法 1.1 主要试剂与仪器
甜菜碱、重酒石酸胆碱及GAA(美国Sigma公司);酪蛋白(日本Nacalai Tesque公司);甜菜干燥粉(beet)(日本Kagome公司);矿物质(AIN-93G)、维生素(AIN-93)及膳食纤维(日本Oriental Yeast公司);其他化学分析试剂(日本Wako公司)。高效液相色谱分析仪(日本岛津公司);电子天平(瑞士梅特勒-托利多仪器公司);Model L-8500氨基酸自动生化分析仪(日本日立公司);冷冻高速离心机(美国Sigma公司);超低温冰箱(日本Sanyo公司)。 1.2 实验动物及分组
6周龄SPF级Wistar 雄性大鼠(军科院实验动物中心),许可证号:SCXK(军)2007-0004,共48只,体重110~130 g。含25% 酪蛋白基础饲料适应性饲养5 d后,将大鼠按体重随机分为6 组,分别为对照组、模型组(饲料中添加0.5% GAA),甜菜碱低、高剂量组(饲料中分别添加0.5% GAA+ 0.05%、0.10% Bet);甜菜低、高剂量组(饲料中分别添加0.5% GAA+ 3.94%、7.88% beet),每组8只。大鼠自由进食、饮水,每天称重并记录大鼠进食量,连续10 d,各组大鼠禁食12 h,称量体重,断头处死,取血(肝素抗凝),3 000 r/min离心15 min,分离红细胞和血浆,将血浆放于-20 ℃冻存备用。取肝脏组织称重,并置于-80 ℃冷冻备用。 1.3 指标与方法
血浆和肝脏中同型半胱氨酸(Hcy)和半胱氨酸(cysteine,Cys)浓度测定参照Durand等[13]方法,采用高效液相色谱分析仪(HPLC)进行;肝脏中S-腺苷蛋氨酸(S-adenosyl-L-methionie,SAM)和S-腺苷同型半胱氨酸(S-adenosine homocysteine,SAH)浓度检测参照Cook等[14]方法,采用HPLC测定;肝脏中丝氨酸(Ser)浓度采用氨基酸自动生化检测仪测定;同型半胱氨酸甜菜碱甲基转移酶(betaine-homocysteine methyltransferase,BHMT)和胱硫醚β-合成酶(cystathionine beta-synthase,CBS)活性测定参照Finkelstein等[15]方法,采用HPLC测定;肝脏中蛋白质浓度采用Lowry法测定;肝脏中甜菜碱(Bet)浓度测定参照Laryea等[16]方法,采用HPLC测定。 1.4 统计分析
数据以(x±s)表示,采用Mac 1.5软件进行统计分析,组间均数比较,采用单因素方差分析和t检验,P<0.05为差异有统计学意义。 2 结 果 2.1 甜菜对高同型半胱氨酸大鼠一般状况影响(表 1)
各组大鼠饮食摄入量无明显差异;与对照组比较,甜菜低、高剂量组大鼠体重增加(P<0.05),模型组、甜菜碱低、高剂量组、甜菜高剂量组大鼠的肝系数均明显降低(P<0.05)。
![]() | 表 1 甜菜对高同型半胱氨酸大鼠一般状况影响(x±s,n=8) |
与对照组比较,模型组大鼠血浆中Hcy浓度明显升高(P<0.05),提示GAA的添加成功诱导出高同型半胱氨酸血症;与模型组比较,甜菜碱和甜菜组大鼠血浆中Hcy浓度明显下降(P<0.05)。各组大鼠血浆中Cys浓度无明显变化。
![]() | 表 2 甜菜对大鼠血浆Hcy、Cys含量影响(μmol/L,x±s,n=8) |
与对照组比较,模型组大鼠肝脏SAH和Hcy浓度明显升高(P<0.05),SAM浓度和SAM/SAH比值明显降低( P<0.05),提示GAA添加引起了肝脏甲硫氨酸代谢的改变。与模型组比较,高剂量甜菜碱与甜菜组大鼠肝脏SAM浓度和SAM/SAH比值升高、肝脏Hcy浓度降低(P<0.05),高剂量甜菜组大鼠肝脏SAH浓度降低(P<0.05);与低剂量甜菜碱组比较,高剂量甜菜组大鼠肝脏SAM浓度和SAM/SAH比值明显升高(P<0.05),且Hcy浓度明显降低(P<0.05)。
![]() | 表 3 甜菜对大鼠肝脏SAM、SAH、SAM/SAH及Hcy浓度影响(x±s,n=8) |
与对照组比较,模型组大鼠肝脏CBS活性和Bet浓度降低(P<0.05),而肝脏Ser浓度明显升高(P<0.05);与模型组比较,甜菜碱和甜菜组大鼠肝脏Bet浓度、BHMT、CBS活性升高(P<0.05),高剂量甜菜组大鼠肝脏BHMT活性明显高于对照组(P<0.05);与低剂量甜菜碱组比较,高剂量甜菜碱和甜菜组大鼠肝脏Bet浓度明显升高(P<0.05)。提示甜菜碱和甜菜的添加可激活Hcy代谢相关酶,促进Hcy的肝脏内代谢。
![]() | 表 4 甜菜对大鼠肝脏BHMT、CBS活性及Bet、Ser浓度影响(x±s,n=8) |
目前,膳食中的甜菜碱已成为衡量血液中同型半胱氨酸水平高低的决定因素之一[17]。甜菜碱影响同型半胱氨酸代谢主要是通过刺激BHMT途径的再甲基化,从而维持血浆Hcy水平稳定。Finkelstein等[15]研究表明在膳食中添加0.2%的胆碱或甜菜碱显著增强肝脏BHMT活性,降低血浆中Hcy浓度。SAM作为甲基供体可以激活肝脏CBS,使其活性增强,促进Hcy代谢[18]。本研究结果显示,甜菜碱和甜菜组大鼠肝脏BHMT和CBS活性升高,同时肝脏SAM浓度升高。提示甜菜降低血浆中Hcy浓度、抑制高同型半胱氨酸血症机制可能与下列途径有关:(1)甜菜碱通过激活肝脏BHMT,直接促进Hcy在BHMT催化下的再甲基化,从而降低肝脏和血液中Hcy浓度;(2)甜菜碱通过促进肝脏SAM浓度升高,激活肝脏CBS,进而促进胱硫醚合成,降低肝脏和血液中Hcy浓度。
GAA作为肌氨酸的前驱物在肌肉合成中扮演着重要角色。Stead等[19]报道大鼠0.34% GAA摄入可加速SAM至SAH的反应过程,明显增加血浆Hcy浓度。本研究结果表明,模型组大鼠肝脏中SAM和甜菜碱浓度均明显降低。其机制可能为:(1)通过GAA路径刺激甲硫氨酸代谢循环从而促进甜菜碱的消耗;(2)GAA通过降低SAM浓度,使磷脂酰乙醇胺(PE)在肝脏特异磷脂酰乙醇胺甲基转移酶(PEMT)催化下合成的磷脂酰胆碱(PC)减少,导致甜菜碱合成减少;(3)增强GAA-N甲基转移酶活性,降低PEMT活性,导致PC合成减少。本研究结果还表明,与模型组比较,甜菜碱组大鼠肝脏中SAM浓度明显升高,且甜菜效果比相同剂量的甜菜碱更加明显。可能与甜菜中叶酸和胆碱的含量较高有关。N5-甲基四氢叶酸作为甲基供体可与Hcy合成甲硫氨酸,而胆碱通过上述途径增强了PC的合成而升高甜菜碱的浓度刺激Hcy的再甲基化,维持了Hcy平衡。
综上所述,甜菜可降低大鼠肝脏和血液中Hcy浓度,对高同型半胱氨酸血症具有抑制作用,其效果等同或优于相同剂量的甜菜碱,提示可选择富含甜菜碱的蔬菜和水果替代甜菜碱预防和控制高同型半胱氨酸血症。
[1] | Ansari R,Mahta A,Mallack E,et al.Hyperhomocysteinemia and neurologic disorders:a review[J].J Clin Neurol,2014,10(4):281-288. |
[2] | Fang P,Zhang D,Cheng Z,et al.Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis[J].Diabetes,2014,63(12):4275-4290. |
[3] | 王健,张永泽,康美玉,等.同型半胱氨酸对大鼠学习记忆及海马APP代谢影响[J].中国公共卫生,2012,28(7):948-950. |
[4] | Llevadot J.Homocysteine and atherothrombotic coronary disease[J].Med Clin(Barc),2007,129(8):295-296. |
[5] | 谷兆侠,周延升,张煜,等.同型半胱氨酸对谷胱甘肽合成影响及致病作用[J].中国公共卫生,2006,22(8):973-974. |
[6] | Teixeira AG,Domenici F,Elias J,et al.Betaine:a potential agent for the treatment of hepatopathy associated with short bowel syndrome[J].Nutr Hosp,2014,29(6):1366-1371. |
[7] | Ueland PM.Choline and betaine in health and disease[J].J Inherit Metab Dis,2011,34(1):3-15. |
[8] | Zeisel SH,Mar MH,Howe JC,et al.Concentrations of choline-containing compounds and betaine in common foods[J].J Nutr,2003,133(5):1302-1307. |
[9] | Setoue M,Ohuchi S,Morita T,et al.Hyperhomocysteinemia induced by guanidinoacetic acid is effectively suppressed by choline and betaine in rats[J].Biosci Biotechnol Biochem,2008,72(7):1696-1703. |
[10] | Schwahn BC,Wendel U,Lussier-Cacan S,et al.Effects of betaine in a murine model of mild cystathionine-synthase deficiency[J].Metab,2004,53(5):594-599. |
[11] | Schwahn BC,Laryea MD,Chen Z,et al.Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency[J].Biochem J,2004,382(Pt 3):831-840. |
[12] | Yagisawa M,Shigematsu N,Nakata R.Effects of chronic betaine ingestion on methionine-loading induced plasma homocysteine elevation in rats[J].J Nutr Sci Vitaminol,2006,52(3):194-199. |
[13] | Durand P,Fortin LJ,Lussier-Cacan S,et al.Hyperhomocysteinemia induced by folic acid deficiency and methionine load-applications of a modified HPLC method[J].Clinica Chimica Acta,1996,252:83-93. |
[14] | Cook RJ,Horne DW,Wagner C.Effect of dietary methyl group deficiency on one-carbon metabolism in rats[J].J Nut,1989,119:612-617. |
[15] | Finkelstein JD,Martin JJ,Harris BJ,et al.Regulation of hepatic betaine-homocysteine methyltransferase by dietary betaine[J].J Nutr,1983,113:519-521. |
[16] | Laryea MD,Steinhagen F,Wendel U.Simple method for the routine determination of betaine and N,N-dimethylglycine in blood and urine[J].Clin Chem,1998,44:1937-1941. |
[17] | Yagisawa M,Doi Y,Uenohara T,et al.Betaine supplementation suppresses plasma homocysteine level elevation induced by folate deficiency in rats[J].Nutr Rev,2006,26(6):266-270. |
[18] | Módis K,Coletta C,Asimakopoulou A,et al.Effect of S-adenosyl-L-methionine(SAM),an allosteric activator of cystathionine-β-synthase(CBS)on colorectal cancer cell proliferation and bioenergetics in vitro[J].Nitric Oxide,2014,41:146-156. |
[19] | Stead LM,Au KP,Jacobs RL,et al.Methylation demand and homocysteine metabolism:effects of dietary provision of creatine and guanidinoacetate[J].J Physiol Endocrinol Metab,2001,281(5):E1095-1100. |