2. 天津医科大学公共卫生学院营养与食品卫生学系
DNA甲基化作为表观遗传现象的分子基础由Holliday和Pugh于20世纪70年代发现[1]。表观遗传是指DNA序列不发生变化但基因表达却发生了可遗传改变,这些信息能经有丝分裂和减数分裂在细胞和个体世代间传递,而不借助于DNA序列的改变,即表观遗传是非DNA序列差异的核遗传[2, 3]。DNA甲基化是表观遗传学重要改变之一。研究表明,除遗传机制外,环境因素还可通过表观遗传机制,如诱导DNA甲基化模式改变等,在不改变DNA序列前提下,改变基因表达,从而引起表型发生变化。本研究针对DNA甲基化、表型效应、环境因素三者之间关系及DNA甲基化在环境因素所致表型效应中的作用综述如下。 1 DNA甲基化与表观遗传重编程
DNA甲基化是指在DNA的某些碱基上增加一个甲基的可逆化学修饰过程。被修饰的碱基包括胞嘧啶C-5位及N-4位,腺嘌呤N-6位等。催化此反应的DNA甲基转移酶包括DNA甲基转移酶1(DNA methyltransferase 1,Dnmt1)、Dnmt2、DNA甲基转移酶3a(DNA methyltransferase 3a,Dnmt3a)、Dnmt3b和DNA甲基转移酶3L(DNA methyltransferase 3L,Dnmt3L)。在哺乳动物细胞中,5-甲基胞嘧啶是最常见的DNA甲基化形式,甲基化的主要位点是CpG二核苷酸。5-甲基胞嘧啶的甲基基团延伸到DNA大沟内,募集5-甲基胞嘧啶结合蛋白,阻止转录因子与DNA结合并募集转录抑制因子或组蛋白修饰复合物,促进异染色质形成,从而沉默转录[4, 5]。因为5-甲基胞嘧啶在进化过程中可自主地变为胸腺嘧啶,所以CpG在哺乳动物基因组的分布呈不均匀性。研究显示,占CpG总量50%以上的未甲基化CpG多位于管家基因的启动子区或第一外显子,而组织特异基因的启动子和调节区转座元件通常被甲基化[6, 7]。
DNA甲基化在体细胞内比较稳定,然而在2个发育阶段会发生表观遗传重编程:配子发生期和胚胎植入前期[8]。在配子发生期,原始生殖细胞从胚外中胚层向生殖嵴迁移,基因组广泛去甲基化,小鼠的这一过程发生在E11.5-E12.5[9],而后E16-E18.5雄性生殖细胞基因组进行从头甲基化,雌性生殖细胞发生在出生后的成熟卵细胞中。这种去甲基化并重新甲基化过程被认为是去除亲本印迹并建立性别特异印迹的必要生理途径,也同样会清除因环境因素或疾病而获得的表观遗传修饰[10]。受精后亲本基因组进行又一循环的甲基化/去甲基化,首先去甲基化以获得受精卵发育的全能性,但有些位点逃逸此期的去甲基化,如印迹基因、重复序列(IAPs)及近着丝粒的异染色质区。受精卵植入子宫时基因组再次甲基化,表现为胚系内细胞团比滋养外胚层有较高甲基化修饰[8, 11, 12]。 2 DNA甲基化与表型效应
同卵双生子具有完全相同基因组,根据基因论应发育成完全相似的两个个体,然而绝大多数均有所不同,包括个性和疾病易感性等差异。表观遗传学研究表明,这些有差异的同卵双生子,他们之间的基因组甲基化模式存在不同,测序发现52%的差异发生在重复区域,余下的多发生在基因启动子区,可能对基因的表达产生影响。进一步芯片分析还表明,3岁的双生子间DNA甲基化分布模式基本一致,但在50岁的双生子间差异非常显著[13]。目前认为同卵双生子之间的差异,是在生长发育和生活过程中,随体内外环境不同,表观遗传学修饰差异积累的结果[14]。传统遗传学认为来自双亲的等位基因共同决定了表型/性状,而在印迹基因决定性状的遗传中,不符合孟德尔定律,表现的性状取决于来源的亲本,如小鼠胰岛素生长因子2(insulin-like growth factor 2,Igf2)基因只表达父源等位基因,Igf2受体基因只表达母源而不表达父源的等位基因[15, 16],此现象是因为其中一个特定亲本等位基因在启动子差异甲基化区高甲基化后沉默,另一个未甲基化的等位基因则表达产物。
亚稳态表等位基因(metastable epiallele)的发现加深了对DNA甲基化与表型效应的认识。Avy等位基因(agouti-viable yellow allele)、axinFu等位基因(axin-fused allele)和CabpIAP(CDK5 activator binding protein,IAP insertion)等位基因均是小鼠亚稳态表等位基因[10],即在基因型相同的个体中,因发育早期建立的表观遗传修饰易受到环境因素的影响而最终影响等位基因的表达,以至于改变个体表型。“亚稳态”反映了这类表等位基因的表观遗传学状态易受母体环境影响发生改变的本质。Avy是小鼠毛色色素Agouti基因上游插入一个IAP(intracisternal A particle,源自逆转座子LTR序列),IAP序列中的启动子调控Agouti基因使之持续表达,使小鼠毛色呈黄色,而野生型Agouti基因只在鼠毛生长的某一时期短暂表达,使鼠毛的近末端一段呈黄色,整体上小鼠呈棕褐色。饲以孕鼠(a/a,怀Avy/a小鼠)富含甲基供体饲料(叶酸、维生素B12、胆碱、甜菜碱),其仔鼠毛色出现多样化的棕色斑块,甚至棕褐色为主;而饲以普通饲料的孕鼠后代(Avy/a)毛色为黄色。进一步研究发现,饲以富含甲基供体饲料的孕鼠所产仔鼠的IAP启动子区CpG岛的甲基化水平高于普通饲料组,即Avy转录调控区高甲基化使原本持续表达的Agouti基因趋于沉默,毛色趋于棕褐色,表型接近野生型[17, 18]。 3 DNA甲基化与环境因素诱发的表型改变 3.1 营养因素
营养素提供的甲基原料及其共作用因子为合成S-腺苷甲硫氨酸(S-adenosylmethionine,SAM)所必需,而SAM是DNA甲基化的甲基供体,故影响关键时期的关键营养素的摄入、吸收、转运、利用或SAM合成的因素均可能改变整个基因组或特异位点(尤其是表观可变区)的甲基化模式,从而改变表型。母体维生素B12、叶酸、蛋氨酸等营养素缺乏,蛋白限制性饮食或高脂饮食引起的子代DNA甲基化模式改变,与子代神经管畸形、孤独症,成年后胰岛素抵抗、高血压等许多疾病敏感性增高有关[19, 20, 21, 22, 23, 24]。第二次世界大战期间出生前经历荷兰大饥荒的人,成年后超重、高血压、冠状动脉粥样硬化、精神分裂症等发病率显著增高,与这些人印记基因Igf2的甲基化程度降低密切相关[25, 26, 27, 28]。母鼠营养素缺乏引起DNA甲基化改变所导致的对健康不良影响,可以通过在怀孕期间添加叶酸等营养素而改善[29]。雄鼠的营养状况也可以通过子代甲基化模式改变引起后者表型异常。研究表明,雄鼠低蛋白饮食,可以改变子鼠DNA甲基化模式,从而影响子代胆固醇、脂质的代谢[30]。另外,出生后的营养素变化也可改变表观遗传效应。如给予离乳后的小鼠缺乏甲基供体的饮食,可导致Igf2的遗传印迹丢失,即使恢复了正常饮食此效应还继续保持,与癌症等疾病发生密切相关[31]。营养因素对DNA甲基化的影响还具有性别特异性[32, 33, 34]。 3.2 化学毒物
双酚基丙烷(bisphenol A,BPA)是塑料制品(食品盒、奶嘴、齿科复合树脂)的常用添加剂,在大多数受检对象尿样中可检测到[35, 36]。胚胎期及新生儿期接触BPA与性状改变,成年后体重过高,乳腺癌、前列腺癌等癌症发病率增高等表型改变密切相关。Dolinoy等[37]研究表明,BPA可降低Agouti基因上游逆转座子甲基化程度,使小鼠毛色为黄色;BPA还可降低CabpIAP基因座内甲基化水平。Ho等[38]认为,BPA可引起新生大鼠前列腺组织中多个特异基因发生DNA甲基化模式改变,包括与前列腺癌关联的磷酸二酯酶4亚型4(phosphodiesterase type 4 variant 4,PDE4D)基因的低甲基化改变,从而增加大鼠成年后对前列腺癌的易感性。Ma等[39]发现,在怀孕和哺乳期间给予大鼠BPA,子代出生后第3周,肝脏全基因组DNA甲基化水平降低,Dnmt 3b mRNA过表达,同时肝葡萄糖激酶启动子区高甲基化,基因表达降低;第21周时Gck基因启动子区高甲基化,与成年后胰岛素抵抗及糖尿病发生密切相关。而母体营养强化剂叶酸等可抵抗BPA引起的甲基化改变[37]。研究显示,乙醇可以通过干扰Dnmt基因表达,或拮抗叶酸甲基代谢,改变DNA甲基化模式,从而促进慢性酒精中毒、酒精性肝病、肝癌等疾病发生[40, 41, 42]。成年小鼠摄入亚砷酸钠(除草剂成分)致基因组甲基化水平下降,协同甲基供体缺乏饮食,导致Ha-ras(原癌基因)启动子区低甲基化[43],与癌症发生密切相关。其他如重金属镉、镍等均可引起DNA甲基化模式改变,促进癌症等疾病发生[44, 45]。 4 小 结
表观遗传学修饰在生物体的发育过程中具有重要意义,而环境因素除通过引起遗传物质改变之外,还可以通过改变表观遗传修饰的方式,影响发育和疾病的易感性。DNA甲基化是表观遗传修饰的重要组成部分,营养因素、化学毒物如BPA、乙醇、重金属镉、镍等许多环境因素均可通过DNA甲基化模式的改变,影响生物体的表型或促进疾病发生。因此,对于环境因素引起DNA甲基化改变的深入研究,可为环境因素引起的不良健康效应提供生物学标志;DNA甲基化也可以作为治疗和预防环境因素造成有害效应的分子靶点;深入研究环境因素引起的DNA甲基化改变具有广泛的生物学意义。
[1] | Holliday R,Pugh JE.DNA modification mechanisms and gene activity during development[J].Science,1975,187(4173):226-232. |
[2] | Wolffe AP,Matzke MA.Epigenetics:regulation through repression[J].Science,1999,286(5439):481-486. |
[3] | 康静婷,梁前进,梁辰,等.表观遗传学研究进展[J].科技导报,2013,31(19):66-74. |
[4] | Jaenisch R,Bird A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J].Nat Genet,2003,33(Suppl):245-254. |
[5] | Robertson KD.DNA methylation and chromatin-unraveling the tangled web[J].Oncogene,2002,21(35):5361-5379. |
[6] | Gardiner-Garden M,Frommer M.CpG islands in vertebrate genomes[J].J Mol Biol,1987,196(2):261-282. |
[7] | Murphy SK,Jirtle RL.Imprinting evolution and the price of silence[J].Bioessays,2003,25(6):577-588. |
[8] | Reik W,Dean W,Walter J.Epigenetic reprogramming in mammalian development[J].Science,2001,293(5532):1089-1093. |
[9] | Morgan HD,Santos F,Green K,et al.Epigenetic reprogramming in mammals[J].Hum Mol Genet,2005,14(Spec No 1):R47-R58. |
[10] | Dolinoy DC,Weidman JR,Jirtle RL.Epigenetic gene regulation:linking early developmental environment to adult disease[J].Reprod Toxicol,2007,23(3):297-307. |
[11] | Lane N,Dean W,Erhardt S,et al.Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse[J].Genesis,2003,35(2):88-93. |
[12] | Santos F,Hendrich B,Reik W,et al.Dynamic reprogramming of DNA methylation in the early mouse embryo[J].Dev Biol,2002,241(1):172-182. |
[13] | Fraga MF,Ballestar E,Paz MF,et al.Epigenetic differences arise during the lifetime of monozygotic twins[J].Proc Natl Acad Sci USA,2005,102(30):10604-10609. |
[14] | Bell JT,Spector TD.A twin approach to unraveling epigenetics[J].Trends Genet,2011,27(3):116-125. |
[15] | DeChiara TM,Robertson EJ,Efstratiadis A.Parental imprinting of the mouse insulin-like growth factor II gene[J].Cell,1991,64(4):849-859. |
[16] | Barlow DP,Stoger R,Herrmann BG,et al.The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus[J].Nature,1991,349(6304):84-87. |
[17] | Waterland RA,Jirtle RL.Transposable elements:targets for early nutritional effects on epigenetic gene regulation[J].Mol Cell Biol,2003,23(15):5293-5300. |
[18] | Wolff GL,Kodell RL,Moore SR,et al.Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice[J].FASEB J,1998,12(11):949-957. |
[19] | Schaevitz LR,Berger-Sweeney JE.Gene-environment interactions and epigenetic pathways in autism:the importance of one-carbon metabolism[J].ILAR J,2012,53(3-4):322-340. |
[20] | Lillycrop KA,Slater-Jefferies JL,Hanson MA,et al.Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications[J].Br J Nutr,2007,97(6):1064-1073. |
[21] | Lillycrop KA,Phillips ES,Torrens C,et al.Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring[J].Br J Nutr,2008,100(2):278-282. |
[22] | Sinclair KD,Allegrucci C,Singh R,et al.DNA methylation,insulin resistance,and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status[J].Proc Natl Acad Sci USA,2007,104(49):19351-19356. |
[23] | Haggarty P,Hoad G,Campbell DM,et al.Folate in pregnancy and imprinted gene and repeat element methylation in the offspring[J].Am J Clin Nutr,2013,97(1):94-99. |
[24] | Steegers-Theunissen RP,Obermann-Borst SA,Kremer D,et al.Periconceptional maternal folic acid use of 400 μg per day is related to increased methylation of the IGF2 gene in the very young child[J].PLoS One,2009,4(11):e7845. |
[25] | Roseboom TJ,Painter RC,van Abeelen AF,et al.Hungry in the womb:what are the consequences? Lessons from the Dutch famine[J].Maturitas,2011,70(2):141-145. |
[26] | de Rooij SR,Wouters H,Yonker JE,et al.Prenatal undernutrition and cognitive function in late adulthood[J].Proc Natl Acad Sci USA,2010,107(39):16881-16886. |
[27] | 史春梅,季晨博,郭锡熔.孕期营养影响子代肥胖发生的表观遗传学机制[J].临床儿科杂志,2013,31(4):380-384. |
[28] | Heijmans BT,Tobi EW,Stein AD,et al.Persistent epigenetic differences associated with prenatal exposure to famine in humans[J].Proc Natl Acad Sci USA,2008,105(44):17046-17049. |
[29] | Lillycrop KA,Phillips ES,Jackson AA,et al.Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring[J].J Nutr,2005,135(6):1382-1386. |
[30] | Carone BR,Fauquier L,Habib N,et al.Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals[J].Cell,2010,143(7):1084-1096. |
[31] | Waterland RA,Lin JR,Smith CA,et al.Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2(Igf2) locus[J].Hum Mol Genet,2006,15(5):705-716. |
[32] | Cooper WN,Khulan B,Owens S,et al.DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans:results of a pilot randomized controlled trial[J].FASEB J,2012,26(5):1782-1790. |
[33] | Gabory A,Ferry L,Fajardy I,et al.Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta[J].PLoS One,2012,7(11):e47986. |
[34] | Gallou-Kabani C,Gabory A,Tost J,et al.Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet[J].PLoS One,2010,5(12):e14398. |
[35] | Calafat AM,Kuklenyik Z,Reidy JA,et al.Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population[J].Environ Health Perspect,2005,113(4):391-395. |
[36] | 杨淋清,庄志雄.低剂量双酚A与乳腺癌关系研究进展[J].中国公共卫生,2010,26(12):1557-1559. |
[37] | Dolinoy DC,Huang D,Jirtle RL.Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development[J].Proc Natl Acad Sci USA,2007,104(32):13056-13061. |
[38] | Ho SM,Tang WY,Belmonte de Frausto J,et al.Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4[J].Cancer Res,2006,66(11):5624-5632. |
[39] | Ma Y,Xia W,Wang DQ,et al.Hepatic DNA methylation modifications in early development of rats resulting from perinatal BPA exposure contribute to insulin resistance in adulthood[J].Diabetologia,2013,56(9):2059-2067. |
[40] | Bonsch D,Lenz B,Fiszer R,et al.Lowered DNA methyltransferase(DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism[J].J Neural Transm,2006,113(9):1299-1304. |
[41] | Halsted CH,Villanueva JA,Devlin AM,et al.Metabolic interactions of alcohol and folate[J].J Nutr,2002,132(8 Suppl):2367S-2372S. |
[42] | Dumitrescu RG,Shields PG.The etiology of alcohol-induced breast cancer[J].Alcohol,2005,35(3):213-225. |
[43] | Okoji RS,Yu RC,Maronpot RR,et al.Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice[J].Carcinogenesis,2002,23(5):777-785. |
[44] | Poirier LA,Vlasova TI.The prospective role of abnormal methyl metabolism in cadmium toxicity[J].Environ Health Perspect,110(Suppl 5):793-795. |
[45] | Salnikow K,Costa M.Epigenetic mechanisms of nickel carcinogenesis[J].J Environ Pathol Toxicol Oncol,2000,19(3):307-318. |