2. 山东大学齐鲁医院放射科, 山东 济南 250012
2. Department of Radiology, Qilu Hospital of Shandong University, Jinan 250112 China
脑白质损伤又称脑白质疏松、脑白质病变等,主要表现为脑室周围或皮质下不同大小的多灶性或弥漫性病变。计算机断层扫描(computed tomography,CT)图像呈弥漫性低密度影,在磁共振成像(magnetic resonance imaging,MRI)的T2加权像(T2-weighted imaging,T2WI)和液体衰减反转恢复序列(fluid attenuated inversion recovery,FLAIR)上呈高信号 [1]。脑白质损伤是与年龄呈正相关的神经退行性病变,在老年人群中普遍存在,60岁左右人群患病率为15%,而在80岁左右人群中患病率则高达94%[2]。研究表明脑白质损伤可导致痴呆[3]、脑卒中[4]、抑郁[5]、认知能力下降[6]等的风险增加。随着人口老龄化加剧,脑白质损伤严重影响老年人的生活与生命质量,给社会和家庭带来了巨大经济和生活负担。研究表明,慢性脑血流低灌注是引起脑白质损伤的主要因素[7-8]。脑血管储备(cerebrovascular reserve,CVR)功能是指在生理或病理刺激下颅内小动脉血管和毛细血管通过代偿性收缩和舒张调节脑血流量的能力,反映脑血流灌注状况和脑血管的健康程度,CVR受损时可导致脑血流低灌注[9]。而脑血流低灌注所致缺血缺氧引起的慢性炎症反应是脑白质损伤发生发展的重要病理生理机制。目前关于老年人CVR功能损伤与脑白质损伤之间的关系尚不清楚,本研究通过对年龄 ≥ 60岁的老年人的CVR功能和脑白质受损情况评估,旨在探讨老年人CVR功能与脑白质损伤之间的相关性。
1 资料与方法 1.1 研究对象选择2018年5月—2019年7月山东省济南地区年龄 ≥ 60岁的老年人315例。
纳入标准:年龄 ≥ 60岁。排除标准:有脑卒中史或短暂性脑缺血发作、脑肿瘤、帕金森病、阿尔茨海默症、颅内动脉狭窄、痴呆、心力衰竭、心肌梗死、肝肾功能不全、甲状腺功能亢进或减退、恶性肿瘤、精神疾病、沟通障碍、酗酒、药物滥用、经颅多普勒(transcranial doppler,TCD)超声检测时双侧颞窗透声不良、MRI检查禁忌症者、不能签署知情同意书者。本研究通过山东第一医科大学(山东省医学科学院)临床与基础医学院(基础医学研究所)伦理委员会审核并批准。所有受试者签署知情同意书。
1.2 一般资料收集受试者一般临床资料、血压与体质量指数(Body Mass Index,BMI)。受试者禁食8~12 h后,使用EDTA抗凝真空管采集肘静脉血5 mL,采用日立7060全自动生化分析仪检测血浆总胆固醇 (serum total cholesterol,TC)、甘油三酯(triglyceride,TG)、高密度脂蛋白胆固醇(high density liptein cholesterol,HDL-C)、低密度脂蛋白胆固醇(low density liptein cholesterol,HDL-C)和空腹血糖(fasting plasma glucose,FPG)。颈总动脉内膜中层厚度(carotid intima-mediathickness,cIMT)采用Vividi便携式彩色多普勒超声诊断仪(美国GE公司)测量。
1.3 MRI 检查受试者采用MRI(3.0T,Magnetom Verio,德国Siemens)进行颅脑扫描,扫描序列:T1WI序列(TR = 1900 ms,TE = 8.5 ms,TI = 823 ms,层厚 = 6 mm,层间距1.2 mm,FOV = 220 mm × 198 mm);T2加权快速自旋回波序列(TR = 4000 ms,TE = 93 ms,层厚 = 6 mm,层间距1.2 mm,FOV = 220 mm × 198 mm);FLAIR序列(TR = 6600 ms,TE = 94 ms,TI = 2140 ms,层厚 = 6 mm,层间距1.2 mm,FOV = 220 mm × 198 mm)。计算脑白质高信号(white matter hyperintensivity,WMH)体积,总WMH体积 = 脑室周围WMH体积 + 皮质下WMH体积。采用Fazekas评分法对脑室周围WMH和皮质下WMH进行可视化评分,将Fazekas评分分为 < 2分(无病变和点状病变)和 ≥ 2分(点状病变开始融合和病变大片融合),总评分取Fazekas取脑室周围与皮质下评分较高分[10]。Fazekas评分由2位影像科医生独立完成,若两者结果不一致,则由第三位经验丰富的影像科医生裁决。
1.4 CVR 评估采用TCD (DWL Doppler-BoxTM型,德国Compumedics)超声2 MHz脉冲探头进行脑血流检测。受试者平卧位,休息4~5 min,经双侧颞窗检测深度60 mm左右,测量并记录双侧大脑中动脉(middle cerebral artery,MCA)M1段的静息平均血流速度(mean flow velocity,Vm),收缩期峰值血流速度(peak systolic velocity,Vs)、舒张末期血流速度(end diastolic velocity,Vd)。计算搏动指数(pulsatility index,PI),PI = (Vs−Vd)/Vm。屏气试验时,受试者正常吸气后屏气30~40 s,测量双侧MCA的屏气平均Vm。取两侧MCA的Vm平均值分别计算CVR和屏气指数(breath-holding index,BHI)。CVR = (屏气Vm-静息Vm) × 100%/静息Vm,BHI = (屏气Vm-静息Vm)/(静息Vm × 屏气时间)。根据CVR分为正常组(CVR ≥ 20%)和受损组(CVR < 20%)。
1.5 统计学方法采用SPSS26.0统计软件处理数据,计量资料以
与CVR正常组相比较,CVR受损组的收缩压、TC、LDL-C、FPG、cIMT显著升高(t = −6.95、−4.14、−5.24、−6.97、3.57,P < 0.01);而降压、降糖和调脂治疗比例显著降低(χ2 = 15.73,4.25,4.42,P < 0.05),详见表1。
受损组的CVR、BHI明显低于正常组,PI明显高于正常组,两组间的差异有统计学意义(t = 33.96、6.10、−5.49,P < 0.01);与CVR正常组相比,受损组脑室周围、皮质下和总WMH体积明显升高(t = −9.20、−9.44、−10.02,P < 0.01),受损组脑室周围、皮质下和总Fazekas评分 ≥ 2分患病率明显升高(χ2 = 14.8、13.21、15.60,P < 0.01),详见表2。总Fazekas评分 ≥ 2分与总Fazekas评分 < 2分 MRI的FLAIR 图像如图1所示。
Pearson相关分析结果显示,脑室周围、皮质下和总WMH体积分别与CVR(r = −0.70、−0.66、−0.73,P < 0.01)、BHI(r = −0.64、−0.65、−0.68,P < 0.01)呈负相关关系;与PI呈正相关关系(r = 0.60、0.65、0.65,P < 0.01)(表3)。校正年龄、性别、BMI、吸烟、饮酒、高血压史、糖尿病史、血脂异常史、降压治疗、降糖治疗、调脂治疗、收缩压、舒张压、TC、HDL-C、LDL-C、TG、FPG、cIMT混杂因素后,多元线性回归分析结果表明CVR(β = −0.46、−0.36、−0.45,P < 0.01)、BHI(β = −0.30、−0.28、−0.28,P < 0.01)仍然与脑室周围WMH、皮质下WMH和总WMH体积负相关,PI(β = 0.26、0.32、0.22,P < 0.01)仍然与脑室周围WMH、皮质下WMH和总WMH的体积正相关(表4)。
分别以脑室周围、皮质下和总WMH的Fazekas 评分为因变量,以年龄、性别、BMI、吸烟、饮酒、高血压史、糖尿病史、血脂异常史、降压治疗、降糖治疗、调脂治疗、收缩压、舒张压、TC、HDL-C、LDL-C、TG、FPG、cIMT、BHI、PI及CVR是否受损为自变量,进行二元Logistic回归分析,结果表明:与CVR正常组比较,CVR受损组受试者脑室周围(OR = 1.96,95%CI:1.17~3.27,P < 0.01)、皮质下(OR = 1.84,95%CI:1.11~3.05,P < 0.05)和总(OR = 2.33,95%CI:1.30~4.18,P < 0.01)WMH的Fazekas 评分 ≥ 2分的风险明显增高;BHI分别与受试者脑室周围(OR = 0.11,95%CI:0.33~0.39,P < 0.01)、皮质下(OR = 0.12,95%CI:0.03~0.43,P < 0.01)和总(OR = 0.13,95%CI:0.03~0.50,P < 0.01)WMH的Fazekas评分 ≥ 2的风险呈负相关(表5)。
双侧大脑半球脑白质区由长穿支动脉供血,侧支循环少,发生脑缺血或脑血流低灌注时可导致脑白质损伤,特别是处于远端供血区的脑室周围部分白质,脑血流量减少时更易受影响[11]。CVR反映脑血流动力学状态可作为脑组织缺血的早期标志物,CVR下降时脑血流低灌注,脑微小血管发生病变,是脑小血管病及缺血性脑卒中的独立危险因素[12-13]。Sam等[14]的随访研究发现随时间推移受试者CVR降低的脑区易发生脑白质损伤,慢性脑血流动力学损害参与了与年龄相关脑白质损伤的发生与发展机制。Yang等[15]在脑白质损伤患者的研究中发现中、重度脑白质损伤患者的左侧枕中回CVR显著低于轻度脑白质损伤患者。Ni等[16]的研究发现脑白质损伤患者(Fazekas评分 ≥ 2分)与正常对照组相比大脑左侧半球的CVR显著降低,且脑白质损伤伴认知障碍患者额叶区域的CVR进一步降低。本研究结果显示,与CVR正常组相比,受损组受试者脑室周围、皮质下及总WMH体积显著升高。CVR值与脑室周围、皮质下及总WMH体积显著负相关,校正混杂因素后,这种相关性仍显著存在。为进一步阐明CVR与脑白质损伤的关系,本研究对脑白质损伤进行了Fazekas可视化评分,校正混杂因素后,CVR受损组受试者发生Fazekas评分 ≥ 2分的风险明显增高,受损组发生脑白质损伤的风险是正常组的2.33倍。这提示CVR受损与老年人脑白质损伤密切相关,是脑白质损伤的独立危险因素。
PI是评估脑血流灌注状态和脑小血管病变的指标,反映血管硬化程度,与脑血流阻力相关[17-18]。在一项受试对象平均年龄为50.9岁的研究中发现,大脑中动脉PI与动脉硬化程度密切相关[18]。另一项研究也发现,大脑中动脉和基底动脉的PI与主动脉硬化程度呈正相关关系[19]。基于相位对比磁共振成像的研究表明PI与深部白质 Fazekas 评分及总WMH体积显著正相关[20]。本研究的结果表明,CVR受损组的PI显著高于正常组,PI分别与脑室周围、皮质下和总WMH体积呈正相关关系。PI升高时,表明血管硬化程度与脑血流阻力增大,提示CVR功能受损,脑血流量下降,最终可导致脑白质受损。
BHI是评估CVR功能的重要指标之一,BHI下降提示慢性脑低血流灌注和存在潜在的脑小血管病变[21]。研究发现在脑白质损伤患者中BHI与脑白质损伤负相关[22]。本研究结果显示,与正常组相比CVR受损组的BHI明显下降;BHI与WMH体积呈负相关,校正混杂因素后,这种相关关系依然存在;Logistic回归结果表明BHI升高,受试者发生Fazekas评分 ≥ 2分的风险明显降低。BHI下降时,脑血流动力学状态受损,CVR功能降低,可能导致脑白质损伤的发生与进展。
鉴于横断面研究设计内在的局限性,本研究结果无法明确CVR受损与脑白质损伤之间的因果关系,需前瞻性研究进行验证。此外,本研究受试者均为山东济南地区的老年人,研究结论是否适用于其他人群,需进一步研究验证。
综上所述,CVR与老年人脑白质损伤密切相关,CVR受损是脑白质损伤的独立危险因素,CVR受损可导致老年人脑白质损伤的风险增加。因此,关注老年人脑血管健康,积极对脑白质受损危险因素进行干预,对该人群脑白质病变的预防与治疗具有重要意义。
[1] |
Etherton MR, Wu O, Rost NS. Recent advances in leukoaraiosis: white matter structural integrity and functional outcomes after acute ischemic stroke[J]. Curr Cardiol Rep, 2016, 18(12): 123. DOI:10.1007/s11886-016-0803-0 |
[2] |
Fang EF, Xie CL, Schenkel JA, et al. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks[J]. Ageing Res Rev, 2020, 64: 101174. DOI:10.1016/j.arr.2020.101174 |
[3] |
Kim S, Choi SH, Lee YM, et al. Periventricular white matter hyperintensities and the risk of dementia: a CREDOS study[J]. Int Psychogeriatr, 2015, 27(12): 2069-2077. DOI:10.1017/S1041610215001076 |
[4] |
Huo LW, Chen PH, Wang ZX, et al. Impact of leukoaraiosis severity on the association of outcomes of mechanical thrombectomy for acute ischemic stroke: a systematic review and a meta-analysis[J]. J Neurol, 2021, 268(11): 4108-4116. DOI:10.1007/s00415-020-10167-0 |
[5] |
Wang L, Leonards CO, Sterzer P, et al. White matter lesions and depression: a systematic review and meta-analysis[J]. J Psychiatr Res, 2014, 56: 56-64. DOI:10.1016/j.jpsychires.2014.05.005 |
[6] |
Zeng WY, Chen YJ, Zhu ZB, et al. Severity of white matter hyperintensities: Lesion patterns, cognition, and microstructural changes[J]. J Cereb Blood Flow Metab, 2020, 40(12): 2454-2463. DOI:10.1177/0271678X19893600 |
[7] |
Liu Q, Bhuiyan MIH, Liu RJ, et al. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function[J]. J Neuroinflamm, 2021, 18(1): 187. DOI:10.1186/s12974-021-02234-8 |
[8] |
宫文儒, 吕文成, 崔谊. 基于多模态MRI对颈动脉狭窄患者脑网络研究进展[J]. 中国辐射卫生, 2023, 32(1): 70-74. Gong WR, Lv WC, Cui Y. Advances in multimodal MRI-based study of brain networks in patients with carotid artery stenosis[J]. Chin J Radiol Health, 2023, 32(1): 70-74. DOI:10.13491/j.issn.1004-714X.2023.01.015 |
[9] |
Suri S, Bulte D, Chiesa ST, et al. Study protocol: the heart and brain study[J]. Front Physiol, 2021, 12: 643725. DOI:10.3389/fphys.2021.643725 |
[10] |
Lee KO, Woo MH, Chung D, et al. Differential impact of plasma homocysteine levels on the periventricular and subcortical white matter hyperintensities on the brain[J]. Front Neurol, 2019, 10: 1174. DOI:10.3389/fneur.2019.01174 |
[11] |
张弘菁, 赵虹, 刘慧瑛, 等. 脑白质病变与认知障碍的研究进展[J]. 老年医学与保健, 2021, 27(4): 865-867. Zhang HJ, Zhao H, Liu HY, et al. Research progress of white matter lesions and cognitive impairment[J]. Geriatr Health Care, 2021, 27(4): 865-867. DOI:10.3969/j.issn.1008-8296.2021.04.045 |
[12] |
Rane S, Koh N, Boord P, et al. Quantitative cerebrovascular pathology in a community-based cohort of older adults[J]. Neurobiol Aging, 2018, 65: 77-85. DOI:10.1016/j.neurobiolaging.2018.01.006 |
[13] |
Douvas I, Moris D, Karaolanis G, et al. Evaluation of cerebrovascular reserve capacity in symptomatic and asymptomatic internal carotid stenosis with transcranial Doppler[J]. Physiol Res, 2016, 65(6): 917-925. DOI:10.33549/physiolres.933303 |
[14] |
Sam K, Crawley AP, Conklin J, et al. Development of white matter hyperintensity is preceded by reduced cerebrovascular reactivity[J]. Ann Neurol, 2016, 80(2): 277-285. DOI:10.1002/ana.24712 |
[15] |
Yang D, Qin RM, Chu L, et al. Abnormal cerebrovascular reactivity and functional connectivity caused by white matter hyperintensity contribute to cognitive decline[J]. Front Neurosci, 2022, 16: 807585. DOI:10.3389/fnins.2022.807585 |
[16] |
Ni L, Zhang B, Yang D, et al. Lower cerebrovascular reactivity contributed to white matter hyperintensity‐related cognitive impairment: a resting‐state functional MRI study[J]. J Magn Reson Imaging, 2021, 53(3): 703-711. DOI:10.1002/jmri.27376 |
[17] |
陈丽, 张小娟, 黄丽芬. 经阴道彩色多普勒超声用于鉴别卵巢囊肿良恶性的价值[J]. 中国辐射卫生, 2022, 31(6): 731-734. Chen L, Zhang XJ, Huang LF. Clinical significance of transvaginal color Doppler ultrasound for the differential diagnosis of benign and malignant ovarian cysts[J]. Chin J Radiol Health, 2022, 31(6): 731-734. DOI:10.13491/j.issn.1004-714X.2022.06.016 |
[18] |
Xu TY, Staessen JA, Wei FF, et al. Blood flow pattern in the middle cerebral artery in relation to indices of arterial stiffness in the systemic circulation[J]. Am J Hypertens, 2012, 25(3): 319-324. DOI:10.1038/ajh.2011.223 |
[19] |
Fico BG, Miller KB, Rivera-Rivera LA, et al. The impact of aging on the association between aortic stiffness and cerebral pulsatility index[J]. Front Cardiovasc Med, 2022, 9: 821151. DOI:10.3389/fcvm.2022.821151 |
[20] |
Pahlavian SH, Wang XH, Ma S, et al. Cerebroarterial pulsatility and resistivity indices are associated with cognitive impairment and white matter hyperintensity in elderly subjects: a phase-contrast MRI study[J]. J Cereb Blood Flow Metab, 2021, 41(3): 670-683. DOI:10.1177/0271678X20927101 |
[21] |
Urbanova BS, Schwabova JP, Magerova H, et al. Reduced Cerebrovascular reserve capacity as a biomarker of microangiopathy in Alzheimer’s disease and mild cognitive impairment[J]. J Alzheimer's Dis, 2018, 63(2): 465-477. DOI:10.3233/JAD-170815 |
[22] |
Luo XG, Bian Y, Wang JC, et al. Assessment of cerebrovascular reserve impairment using the breath-holding index in patients with leukoaraiosis[J]. Neural Regen Res, 2019, 14(8): 1412-1418. DOI:10.4103/1673-5374.251332 |