2. 湖北省肿瘤精准医学研究中心
2. Hubei Provincial Research Center for Precision Medicine of Cancer
放射治疗是肿瘤治疗的重要手段之一,约60%~70%的恶性肿瘤患者需要接受放射治疗[1]。随着对放疗研究的不断深入,肿瘤细胞对放射线的敏感性下降甚至出现放射抵抗则成为了一大难题,提高放射敏感性是“精准治疗”理念提出的新要求[2]。本文主要就近年来关于DNA损伤修复机制及其在恶性肿瘤放疗敏感性中的研究做一综述。
1 DNA损伤修复机制概述放射线导致的DNA损伤主要以DNA双链骨架—磷酸二酯键的断裂为主,也被称为双链断裂(double-strand breaks,DSBs)。DSBs是最严重的损伤,若非及时有效地准确修复,会导致基因突变,染色体重排,甚至导致细胞死亡[3]。细胞在出现DNA损伤后,便启动识别和修复机制,出现衰老,自噬和凋亡的现象[4]。DSBs的修复机制主要有两种:同源重组(homology recombination, HR)修复和非同源末端连接(non-homology end joining, NHEJ)修复[5]。
1.1 HR修复HR修复相比于NHEJ修复更加精确,并且需要模板,即一条与损伤DNA序列高度同源的完整姐妹染色单体[6]。HR修复只在细胞周期的S期和G2期出现[7]。当双链断裂,损伤识别蛋白(PARP或者MRN等)迅速结合到损伤位点,启动修复过程[8]。DNA损伤应答通路中的重要激酶ATM被PARP和MRN激活并募集,使H2AX磷酸化为γH2AX(DSBs的标志物)。γH2AX进而激活下游MDC1,促进泛素化连接酶RNF8和RNF168聚集并泛素化修饰组蛋白[9],促进BRCA1和CtIP等DNA末端修饰因子和重组酶Rad51聚集[10]。Rad51通过与末端剪切的DNA单链结合、识别同源臂、链配对,将DNA断端与模板链连接。在重构酶GEN1、BLM等协助下,最终完成同源修复[11]。最新研究表明,Rad52能够协助活化Rad51重组酶,并推动互补单链DNA退火过程,因此Rad52也在HR修复中起到不可忽视的作用[12]。
1.2 NHEJ修复NHEJ修复是哺乳动物细胞DSBs修复的最重要机制之一[13]。NHEJ无需同源序列并可发生在细胞周期的各时段(以G1期为主)[14],在一些修复元件处理DSBs两端后,直接连接断端构成DNA双链[15]。但简单的修复过程易导致碱基插入以及缺失等突变。NHEJ主要包括:DNA末端结合及搭桥(binding and bridging)、末端处理(terminal processing)、连接(ligation)[16]。检测到DSBs后,Ku异二聚体(Ku70-Ku80)与PARP等识别蛋白竞争性识别并结合在DNA末端,使其末端形成不易被DNA酶降解的环状结构[17]。Ku异二聚体与末端结合并募集活化DNA蛋白激酶(DNA-PK)以及Lig4/XRCC4(DNA Ligase IV/X-ray repair cross complementing protein 4)复合物[18]。其中XRCC4可以结合多聚核苷酸激酶(polynucleotidekinase, PNKP),而PNKP以其5’-激酶和3’-磷酸酶活性使DNA5’-磷酸和3’-羟基末端暴露,以满足DNA末端连接的必需条件[19]。有研究显示[20],核酸酶MRN复合物与DNA解旋酶WRN(Werner syndrome helicase, WRN)等也参与NHEJ过程。
2 DNA损伤修复对肿瘤放疗敏感性的影响 2.1 概述电离辐射能够对肿瘤细胞膜、胞浆蛋白质和DNA造成贯穿性损伤[21]。通过改变基因表达使某些大分子的特性随之改变。并可以干预细胞膜、核和胞浆内的信号传导通路,使细胞周期阻滞、DNA修复、氧化应激和细胞凋亡[22]。因此,DNA损伤感受器、细胞周期检测点、DNA损伤修复途径、氧化应激调节酶类、细胞凋亡途径调节因子均影响细胞对电离辐射的敏感性[23]。
2.2 DNA损伤修复影响肿瘤放疗敏感性的调控因子 2.2.1 PARP聚腺苷二磷酸核糖聚合酶(poly ADP ribose polymerase, PARP)通过切除受损碱基而参与DNA单链损伤修复[24]。PARP-1主要存在与细胞核,是PARP家族中最丰富的一种亚型。PARP-1能够在DNA损伤后迅速与受损位点结合,并使参与DNA修复的组蛋白等活化[25]。研究表明,PARP抑制剂可使BRCA1和BRCA2基因突变的乳腺癌和卵巢癌对射线敏感性增加[26]。PARP抑制剂可诱导S期阻滞,并在增强放疗后G2/M阻滞,导致放射增敏。此外,PARP抑制剂Olaparib、iniparib、veliparib能够抑制辐射后软组织肉瘤细胞Rad51焦点形成,干扰HR修复,从而使细胞对射线增敏[27]。但目前关于PARP抑制剂联合增敏的临床研究中,由于出现严重骨髓抑制,故仍在进一步探索中[28]。
2.2.2 MRN复合物MRN复合物包括三种蛋白Mre11、Rad50、Nbs1[29],负责DNA损伤信号感应、复制、细胞周期控制、端粒维持和基因组稳定等[30]。因其在调节DNA损伤修复中发挥重要作用,MRN复合物活性受到抑制后,下游ATM的激活和DSBs的修复过程也同样被抑制。病理学研究显示,中高表达MRN复合物的早期乳腺癌相比于低表达或无表达者对放疗更敏感[31]。新近研究提示,通过下调SMAD基因抑制MRN复合物的功能,可以提高神经胶质瘤细胞的放射敏感性[32]。
2.2.3 Rad51Rad51作为中心蛋白参与HR修复工作。有研究报道,抑制Rad51的功能可显著提高细胞的放疗敏感性[33]。Short等[34]也发现,人胶质瘤细胞系中Rad51的水平与其放射敏感性呈负相关,并且Rad51的降低可以增强瘤细胞对放射线和替莫唑胺(Temozolomide)的敏感性。Collis等[35]通过下调前列腺癌细胞中Rad51蛋白的表达,发现癌细胞放射敏感性提高了40%~70%。
2.2.4 BRCA1/2BRCA1/2是参与HR修复的重要因子,与CtIP共同参与DNA末端剪切,并招募Rad51[36]。当BRCA1/2缺失时,DNA的HR修复能力显著降低。有研究表明,BRAC1突变与细胞对射线的高敏感性密切相关[37]。一部分微小RNA可以通过靶向调控BRCA1的活性,从而影响细胞的放射敏感性。Has-miR-212靶向作用于BRCA1的3’编码区使其表达下调,降低HR修复效率,进而起到了增敏作用[38]。
2.2.5 Ku70/80基因Ku70/80基因在转录过程中能够激活下游NHEJ通路,后者可在DNA-PK的催化亚单位、连接酶和聚合酶等辅助下,促进DSBs的修复。已证实,当用氯硝柳胺抑制鼻咽癌细胞中Ku70/80的转录时,NHEJ通路被抑制,DNA损伤修复效率明显降低,癌细胞的放射敏感性显著提高[39]。在恶性胶质瘤细胞系M059K中,当Ku蛋白表达受到抑制后,DNA单链损伤修复停止,放疗后细胞凋亡显著增加,提示放射敏感性增加[40]。因此抑制Ku70/80基因的表达,也是放射增敏的重要途径。
2.2.6 DNA蛋白激酶Ku异二聚体通过与DNA末端结合,招募并激活DNA-PK,发挥向下游蛋白传递信号的作用。由于其在NHEJ通路的重要作用,DNA-PK已被视为放疗增敏的靶点[41]。有研究表明[42],在放射过程中,DNA-PK抑制剂NU7441能够使DNA-PK激酶活性和NHEJ修复效率降低,从而达到放射增敏的目的。除此之外,另一种DNA-PK抑制剂NU7027联合X线照射通过促进凋亡和抑制细胞克隆,从而大幅度地提高放射敏感性。
2.2.7 ATMATM是参与DSBs修复的中心激酶之一,在检测G1/S细胞周期过程中有重要作用[43]。ATM基因编码的产物通过参与检测DSBs和启动DNA修复从而影响放射敏感性[44],同时,ATM又可通过调控p53翻译后修饰和Mdm2的磷酸化而介导细胞凋亡[45]。因此ATM在某种意义上是影响癌细胞对电离辐射发生响应的关键因素。目前,已有多个ATM抑制剂被筛选出,且已证实具有良好的放射增敏效果。Karlin等[46]发现,ATM抑制剂AZ32能穿透血脑屏障,能够提高小鼠颅内胶质瘤的放射敏感性。AZD1390作为另一种高效并且高特异性的ATM抑制剂,对胶质瘤也有放射增敏作用,通过促进细胞凋亡,从而提高放射疗效[47]。
3 总结与展望综上所述,通过靶向抑制DNA的损伤修复而提高肿瘤放射敏感性的探索已取得了一定的进展,其中某些靶点的效能值得我们期待。归纳起来,上述靶点主要通过①调控细胞周期,②抑制DNA损伤修复,③增强细胞凋亡等环节来提高肿瘤的放射敏感性。
然而又面临一些问题:首先,肿瘤的发展是受多基因、多通路共同调控的,单独抑制某种基因或蛋白能否取得最佳效果?发掘多靶点抑制剂或许是开发此类药物的方向。其次,针对上述靶点的干预是否存在副作用,目前了解甚少,进一步取得更有力的证据也是今后研究重点。总之,全面了解肿瘤细胞DNA损伤修复的机制,对于发掘高效的干预靶点至关重要。随着越来越多的与DNA损伤修复相关的基因和蛋白被发现,肿瘤的放疗增敏问题将得到更好的解决。
[1] |
Fleming A M, Ding Y, Burrows C J. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair[J]. Proc Natl Acad Sci USA, 2017, 114(10): 2604-2609. DOI:10.1073/pnas.1619809114 |
[2] |
Fontugne J, Steeq HV, Wit JD. DNA Damage Repair[M]. 2018.
|
[3] |
Mouw K W, Goldberg M S, Konstantinopoulos P A, et al. DNA damage and repair biomarkers of immunotherapy response[J]. Cancer Discov, 2017, 7(7): 675-693. DOI:10.1158/2159-8290.CD-17-0226 |
[4] |
Arjumand W, Asiaf A, Ahmad S T. Noncoding RNAs in DNA damage response: opportunities for cancer therapeutics[J]. Methods Mol Biol, 2018, 1699: 3-21. |
[5] |
Turgeon MO, Perry Nicholas JS, George P, et al. DNA Damage, Repair, and Cancer Metabolism[J]. Front in Oncol, 2018, 8(6): 15-20. |
[6] |
Shubassi G, Robert T, Vanoli F, et al. Acetylation: a novel link between double-strand break repair and autophagy[J]. Cancer Res, 2012, 72(6): 1332-1335. DOI:10.1158/0008-5472.CAN-11-3172 |
[7] |
李梅, 刘梦雅, 王新钢, 等. NHEJ通路相关基因在电离辐射所致脑损伤中的表达情况研究[J]. 中国辐射卫生, 2019, 28(3): 223-227. DOI:10.13491/j.issn.1004-714x.2019.03.001 |
[8] |
Bharti S K, Brosh R M Jr. Fine-tuning DNA repair by protein acetylation[J]. Cell Cycle, 2016, 15(15): 1952-1953. DOI:10.1080/15384101.2016.1191250 |
[9] |
Song J, Kemp M G, Choi J H. Detection of the excised, damage-containing oligonucleotide products of nucleotide excision repair in human cells[J]. Photochem Photobiol, 2017, 93(1): 192-198. DOI:10.1111/php.12638 |
[10] |
Song X, Wang S M, Hong X, et al. Single nucleotide polymorphisms of nucleotide excision repair pathway are significantly associated with outcomes of platinum-based chemotherapy in lung cancer[J]. Sci Rep, 2017, 7(1): 11785. DOI:10.1038/s41598-017-08257-7 |
[11] |
Muñoz M J, Nieto Moreno N, Giono L E, et al. Major roles for pyrimidine dimers, nucleotide excision repair, and ATR in the alternative splicing response to UV irradiation[J]. Cell Rep, 2017, 18(12): 2868-2879. DOI:10.1016/j.celrep.2017.02.066 |
[12] |
Rupp W D. Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair[J]. Yale J Biol Med, 2013, 86(4): 499-505. |
[13] |
Pollet M, Shaik S, Mescher M, et al. The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis[J]. Cell Death Differ, 2018, 25(10): 1823-1836. DOI:10.1038/s41418-018-0160-1 |
[14] |
Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy[J]. Nat Rev Cancer, 2008, 8(3): 193-204. DOI:10.1038/nrc2342 |
[15] |
Kusakabe M, Onishi Y, Tada H, et al. Mechanism and regulation of DNA damage recognition in nucleotide excision repair[J]. Genes Environ, 2019, 41: 2. DOI:10.1186/s41021-019-0119-6 |
[16] |
Kim B J, Kim B R, Kook Y H, et al. Role of the DNA mismatch repair gene MutS4 in driving the evolution of Mycobacterium yongonense type I via homologous recombination
[J]. Front Microbiol, 2017, 8(3): 2578-2585. |
[17] |
Liu J Y, Qian C Y, Gao Y F, et al. Association between DNA mismatch repair gene polymorphisms and platinum-based chemotherapy toxicity in non-small cell lung cancer patients[J]. Chin J Cancer, 2017, 36(12): 267-273. |
[18] |
Smyth E C, Wotherspoon A, Peckitt C, et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial[J]. JAMA Oncol, 2017, 3(9): 1197-1203. DOI:10.1001/jamaoncol.2016.6762 |
[19] |
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing[J]. Mech Ageing Dev, 2008, 129(7/8): 391-407. |
[20] |
Naboush A, Roman C A, Shapira I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge[J]. J Investig Med, 2017, 65(4): 754-758. DOI:10.1136/jim-2016-000342 |
[21] |
Ranjha L, Howard S M, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes[J]. Chromosoma, 2018, 127(2): 187-214. DOI:10.1007/s00412-017-0658-1 |
[22] |
Klement K, Goodarzi A A. Analyzing heterochromatic DNA double strand break (DSB) repair in response to ionizing radiation[J]. Methods Mol Biol, 2017, 1599: 303-315. |
[23] |
Sibanda B L, Chirgadze D Y, Ascher D B, et al. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair[J]. Science, 2017, 355(6324): 520-524. DOI:10.1126/science.aak9654 |
[24] |
Saha J, Wang S Y, Davis A J. Examining DNA double-strand break repair in a cell cycle-dependent manner[J]. Meth Enzymol, 2017, 591: 97-118. DOI:10.1016/bs.mie.2017.03.012 |
[25] |
Đermić E, Zahradka D, Vujaklija D, et al. 3'-terminated overhangs regulate DNA double-strand break processing in Escherichia coli
[J]. G3 (Bethesda), 2017, 7(9): 3091-3102. DOI:10.1534/g3.117.043521 |
[26] |
Adkins N L, Swygert S G, Kaur P, et al. Nucleosome-like, single-stranded DNA (ssDNA)-histone octamer complexes and the implication for DNA double strand break repair[J]. J Biol Chem, 2017, 292(13): 5271-5281. DOI:10.1074/jbc.M117.776369 |
[27] |
董怡萍, 张丹, 韩苏夏. DNA损伤修复机制的研究进展[J]. 中华放射肿瘤学杂志, 2017, 26(9): 1103-1108. DOI:10.3760/cma.j.issn.1004-4221.2017.09.025 |
[28] |
Dahal S, Dubey S, Raghavan S C. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria[J]. Cell Mol Life Sci, 2018, 75(9): 1641-1655. DOI:10.1007/s00018-017-2702-y |
[29] |
Yin L L, Liu Y H, Peng Y C, et al. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 153-168. DOI:10.1186/s13046-018-0810-7 |
[30] |
Collis S J, Tighe A, Scott S D, et al. Ribozyme minigene-mediated RAD51 down-regulation increases radiosensitivity of human prostate cancer cells[J]. Nucleic Acids Res, 2001, 29(7): 1534-1538. DOI:10.1093/nar/29.7.1534 |
[31] |
Belenkov A I, Paiement J P, Panasci L C, et al. An antisense oligonucleotide targeted to human Ku86 messenger RNA sensitizes M059K malignant glioma cells to ionizing radiation, bleomycin, and etoposide but not DNA cross-linking agents[J]. Cancer Res, 2002, 62(20): 5888-5896. |
[32] |
Mullenders L H F. Solar UV damage to cellular DNA: from mechanisms to biological effects[J]. Photochem Photobiol Sci, 2018, 17(12): 1842-1852. DOI:10.1039/C8PP00182K |
[33] |
Kysela B P, Michael B D, Arrand J E. Relative contributions of levels of initial DNA damage and repair of double strand breaks to the ionizing radiation-sensitive phenotype of the Chinese hamster cell mutant, XR-V15B. Part I. X-rays[J]. Int J Radiat Biol, 1993, 63(5): 609-616. DOI:10.1080/09553009314450791 |
[34] |
王艳俊, 蒋永新, 刘姗, 等. 肿瘤放疗增敏药物新靶点[J]. 国际肿瘤学杂志, 2017, 44(2): 129-132. DOI:10.3760/cma.j.issn.1673-422X.2017.02.013 |
[35] |
马晓洁, 谭榜宪. 辐射损伤修复应答与放射增敏[J]. 肿瘤预防与治疗, 2010, 23(3): 256-258, 243. |
[36] |
Wu R, Forget M A, Chacon J, et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook[J]. Cancer J, 2012, 18(2): 160-175. DOI:10.1097/PPO.0b013e31824d4465 |
[37] |
Li J J, Li H W, Zhan D C, et al. Niclosamide sensitizes nasopharyngeal carcinoma to radiation by downregulating Ku70/80 expression[J]. J Cancer, 2018, 9(4): 736-744. DOI:10.7150/jca.20963 |
[38] |
王麟华, 吴玉梅, 于新平. DNA损伤修复在宫颈癌放疗敏感性中的研究进展[J]. 解放军预防医学杂志, 2019, 17(8): 122-126. |
[39] |
Lin Y F, Shih H Y, Shang Z F, et al. PIDD mediates the association of DNA-PKcs and ATR at stalled replication Forks to facilitate the ATR signaling pathway[J]. Nucleic Acids Res, 2018, 46(4): 1847-1859. DOI:10.1093/nar/gkx1298 |
[40] |
Verhagen C V, de Haan R, Hageman F, et al. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells[J]. Radiother Oncol, 2015, 116(3): 358-365. DOI:10.1016/j.radonc.2015.03.028 |
[41] |
Jiang Y H, Liu Y M, Hu H. Studies on DNA damage repair and precision radiotherapy for breast cancer[J]. Adv Exp Med Biol, 2017, 1026: 105-123. |
[42] |
Mahamud O, So J, Chua M L K, et al. Targeting DNA repair for precision radiotherapy: Balancing the therapeutic ratio[J]. Curr Probl Cancer, 2017, 41(4): 265-272. DOI:10.1016/j.currproblcancer.2017.04.002 |
[43] |
Khosravi R, Maya R, Gottlieb T, et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage[J]. Proc Natl Acad Sci USA, 1999, 96(26): 14973-14977. DOI:10.1073/pnas.96.26.14973 |
[44] |
马承贤, 蔡梦娇, 韩苏夏. DNA损伤修复与肿瘤放射敏感性的研究进展[J]. 医学版, 2020, 41(1): 1-6. |
[45] |
徐维强, 唐庚, 刘纯岩, 等. 辐射对沉默ATRX的H460细胞增殖以及DNA损伤修复的影响[J]. 中国辐射卫生, 2019, 28(4): 364-367. DOI:10.13491/j.issn.1004-714x.2019.04.004 |
[46] |
Karlin J, Allen J, Ahmad S F, et al. Orally bioavailable and blood-brain barrier-penetrating ATM inhibitor (AZ32) radiosensitizes intracranial gliomas in mice[J]. Mol Cancer Ther, 2018, 17(8): 1637-1647. DOI:10.1158/1535-7163.MCT-17-0975 |
[47] |
Durant S T, Zheng L, Wang Y C, et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models[J]. Sci Adv, 2018, 4(6): 1719-1725. DOI:10.1126/sciadv.aat1719 |