“太阳紫外线辐射的全球疾病负担”报告指出,由于过度暴露于紫外辐射,全世界每年共损失150多万疾病调整生命年[1],紫外线暴露评价方法研究为紫外线与疾病的关系研究提供了重要基础。流行病学研究表明,紫外线是白内障发病的重要危险因素。每年数百万人需要接受白内障手术治疗,未经手术治疗的白内障分别占全球盲症和中度至重度视力损害的35%和25%[2-3]。据WHO估计,世界上由白内障致盲的病人中,有20%可归因于紫外线暴露[4]。本文将从环境暴露学角度对紫外线定量评估与白内障流行病学调查进行综述。
1 紫外线暴露评价方法研究 1.1 环境紫外辐射监测环境紫外辐射强度的获取是进行紫外线健康风险评估的基础。臭氧层损耗增加了紫外辐射量,对世界各地的公共健康构成了潜在的威胁[5]。据估计,臭氧总量每减少1%,到达地面的UVB(Ultraviolet Radiation B)增加约1.5%~2%[6],到2050年,若臭氧总量减少5%至20%,皮质性白内障将增加16.7万至83万例[7]。联合国环境规划署(United Nations Environment Program,UNEP)报道称20世纪90年代与20世纪70年代相比,红斑紫外辐射强度在北极春季增加约22%;北半球中纬度冬春季增加约7%,夏秋季增加约4%;南极春季增加高达130%;南半球中纬度全年增加约6%[8]。欧洲光剂量计网络(The European Light Dosimeter Network,ELDONET)监测数据表明:紫外辐射强度随纬度变化呈梯度变化,纬度越低,紫外辐射越强[9]。中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)紫外辐射监测数据表明:海拔越高,紫外辐射越强[10]。在其它地理和气象因素相对稳定的情况下,紫外辐射强度日间变化与太阳高度角(Solar Elevation Angle,SEA)变化一致,SEA越高,地表紫外辐射越强;因此,近地面紫外辐射量,中午高于早晚,夏季高于冬季。Frederick基于Robertson-Berger紫外辐射计测得的历年数据发现,云量是影响紫外辐射的重要因素[11]。不同类型地面对紫外辐射的反射率不同,有研究表明雪面反射率最高,约为60%~80%,其次是水面、沙地和沥青地面,草地反射率最低[12-13]。
1.2 人体紫外线暴露研究人体紫外线暴露研究为评价个体紫外线暴露水平提供了定量方法。由于相同环境下,紫外辐射强度随紫外线剂量计角度的变化而变化[14],而人体实际受到的紫外辐射量依赖于接收者关于太阳的取向定位,并且人体紫外线接受面通常取向于太阳正交面、垂直面或其他倾斜面,故人体紫外线暴露量与水平面上环境辐射量不同。此外,环境紫外线辐射量和个体紫外线暴露量之间的正相关关系受到季节、纬度等因素的影响[15]。因此,基于人体体表不同解剖位置相应倾斜面测得的紫外辐射量对人体紫外线暴露量进行评估可能更为准确。通过在左肩部佩戴聚砜徽章的方式Kimlin测得户外工作者紫外线暴露量显著高于室外工作者[16]。基于手表式紫外线个体监测仪Liu等发现小学生的平均紫外线暴露量高于大学生;学习日紫外线暴露量显著高于周末[17]。
将个体紫外线剂量计安装于人体体表不同部位可以对个体紫外线暴露的解剖学分布进行研究。以人群为研究对象,研究者对其体表不同部位进行了紫外线暴露评价。Herlihy将聚砜薄膜置于对受试者脸颊、手部、肩部、背部、胸部、大腿部和腿肚共7个部位进行监测发现人体肩部紫外线暴露量最大[18]。研究对象除人群外,应用更多的是人体模型。借助紫外线辐射计Liu通过连续监测得到人体体表紫外线强度分布大小为:左肩>剑突>左肘=背部[19]。随着个体紫外线暴露研究的不断深入,研究者逐渐采用头部模型来更精确地评价面部不同解剖位点紫外线暴露量。将聚砜薄膜安装于人体模型头面部,Parisi等发现面部解剖结构影响紫外线暴露量,鼻部紫外线暴露量最大[20]。Hu将紫外传感器放置于人体模型前额、眼部、颊部、肩部和胸部进行监测得到人体体表不同部位紫外线暴露强度分布为:肩部>前额>胸部>脸颊>眼部[21]。
1.3 眼紫外线暴露模型研究已有研究直接采用眼紫外线暴露模型来模拟眼紫外线暴露状态并计算其暴露量。眉骨、眼睑等面部解剖结构[22]和帽子、眼镜等防护措施[23]是影响眼紫外线暴露的重要因素。阴天时,尽管云层使环境紫外辐射减弱,但此时眼睑打开的更大,因此眼睛比在晴天时接收到更多的紫外辐射[22];严重阴天时眼紫外线暴露量减少,佩戴棒球帽可使眼紫外线暴露量降低22%~95%[23]。Sydenham基于户外工作人员测得眼与环境紫外辐射比值在4%~23%范围内[24],Rosenthal基于人体模特的监测得到该比值在16.6%~22.4%范围内[23],造成该比值不同的主要原因是监测环境和监测方法不同。
Hu等通过旋转式眼紫外线暴露模型监测发现:当日间SEA范围较小时,眼部紫外辐射强度日间变化呈单峰分布;当日间SEA范围较大时,眼部紫外辐射强度日间变化呈双峰分布[21]。Sasaki监测得到相似的结论[25]。当SEA较小时,眼部接收的紫外辐射有直射、散射和地面反射;当SEA增大时,眼部接收到的直射量越来越大;而SEA达到眉骨或眼睑之上后,眉骨、脸颊等解剖结构对直射量具有明显削减作用[22]导致眼部接收到的直射量迅速下降,甚至全部被遮挡,此时眼部接收到的紫外辐射只有散射和地面反射。低纬度地区夏季SEA可达90°,眼部紫外线暴露日间分布会在双峰之间出现“平台期”[26-17]。日光直射、散射和反射对眼部紫外线暴露贡献权重进一步解释了眼紫外线暴露日间分布的双峰现象[28]。多次眼部紫外线监测的结果表明,最大暴露剂量出现在SEA约为30°~50°时(上午9 :00~10 :00和下午14 :00~15 :30)[21, 25-26],该SEA范围主要是面部模型形态学差异所致。
将眼部紫外线暴露物理强度转换成生物有效强度可直接反映紫外线对眼部的生物损伤水平。结合晶体损伤生物有效紫外辐射权重[29]Wang计算得到不同紫外线谱段对眼损伤风险不同:SEA在7°~30°范围内,UVB致白内障的生物高效波长是300nm;其他SEA范围内,UVB致白内障的生物高效波长是307nm[27]。根据国际非电离辐射防护委员会[30](The International Commission on Non-Ionizing Radiation Protection,ICNIRP)提供的眼损伤效应光谱加权,Wang等指出不同朝向UVR对眼损伤风险大小取决于该朝向日间最大SEA[31],并且不同视角范围内眼紫外线暴露风险不同[32]。
2 紫外线暴露致白内障流行病学研究 2.1 白内障流行病学研究白内障的流行病学研究表明,紫外线暴露是白内障发病的重要环境物理因素。Zhu和Wang等根据美国航空航天局(National Aeronautics and Space Administration,NASA)紫外线红斑数据库和第二次我国残疾人抽样调查结果得到环境紫外线红斑剂量越高,白内障伤残调整寿命年(Disability Adjusted of Life,DALY)和年龄标化白内障伤残患病率越高,前者与后两者存在明显的在剂量反应关系[33-34]。在法国波尔多地区进行的研究指出长期紫外线高暴露人群白内障患病风险比低暴露人群高约53%[35]。影响紫外线暴露致白内障的因素有很多。Sasaki等通过比较不同纬度地区白内障流行特征发现低纬度地区人群白内障发病率较高[36]。在中国拉萨和绍兴地区进行的研究指出高海拔地区环境紫外线高暴露导致人群白内障发病率较高[37-38]。除纬度和海拔等自然因素外,户外活动和防护措施也是影响紫外线暴露致白内障的重要因素。在沙滩工作[39]、登山导游[40]、空军和海军空勤人员[41]等接触高紫外线暴露的活动会增加白内障的发病率。而佩戴帽子、眼镜等防护工具会有效减少眼部紫外线暴露量[39-40],进而降低白内障的发病风险。综上所述,多数流行病学调查支持紫外线暴露是白内障发展的潜在危险因素。但也存在与之相矛盾的研究结果:Pastor基于西班牙巴伦西亚眼科门诊343名白内障患者和334名对照者进行的病例对照研究发现,常年室外阳光暴露与白内障发病风险之间没有显著关联[42]。这可能是由于缺乏眼部紫外线暴露的准确评估以及调查人群样本量的限制。
2.2 不同类型白内障流行病学研究白内障分为皮质性、核性和后囊下白内障,其中紫外辐射与皮质性白内障密切相关。早期研究指出眼损伤以累积暴露为基础,皮质性白内障与紫外辐射之间存在剂量反应关系,当UVB累积暴露量增加一倍,患皮质性白内障的风险增加1.6倍[43],索尔兹伯里眼睛评估项目得到患皮质混浊的几率随眼部UVB暴露量的增加而增加(OR=1.10)[44]。海拔3000米以上紫外线暴露是皮质性白内障的危险因素(OR=1.16)[40]。Tang Y等研究发现户外活动是皮质性白内障的独立危险因素(OR=1.043),户外活动时间每增加一小时,皮质性白内障的患病风险增加4.3%[45]。对于后囊下和核性白内障,Taylor指出UVB和核性白内障无关联[43],Neale通过病例对照研究得出职业性日光暴露与核性白内障患病率成正相关的结论(OR=5.95)[46],2015年Tang Y的研究指出户外活动不是核性和后囊下白内障的危险因素[45]。
3 小结眼紫外线暴露与白内障发病密切相关。在臭氧层破坏的大环境下,高海拔和低纬度地区的环境紫外线高暴露背景对眼部的危害应得到高度重视。眼紫外暴露强度日间双峰分布的研究结果提示我们眼防护不应仅限于WHO建议的10 :00~14 :00时环境紫外线高暴露的时段,这对指导人们在户外合理进行眼部防护具有公共卫生意义。总之,眼部紫外线暴露研究将使紫外线与白内障剂量反应关系的评估更具有合理性和科学性。
[1] |
WHO. Health consequences of excessive solar UV radiation[EB/OL].[2018-07-18]. http://www.who.int/mediacentre/news/notes/2006/np16/en/.
|
[2] |
Wu F, Wang S, Zhu J, et al. Public impact, prevention, and treatment of cataracts[J]. Science China-Life Sciences, 2015, 58(11): 1157-1159. DOI:10.1007/s11427-015-4939-8 |
[3] |
Bourne R, Flaxman S R, Braithwaite T, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment:a systematic review and meta-analysis[J]. Lancet Glob Health, 2017, 5(9): e888-e897. DOI:10.1016/S2214-109X(17)30293-0 |
[4] |
Robman L, Taylor H. External factors in the development of cataract[J]. Eye, 2005, 19(10): 1074-1082. DOI:10.1038/sj.eye.6701964 |
[5] |
Mckenzie R L, Aucamp P J, Bais A F, et al. Ozone depletion and climate change:impacts on UV radiation[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology, 2011, 10(2): 182-198. |
[6] |
Godlee F. Dangers of ozone depletion[J]. BMJ (Clinical research ed.), 1991, 303(6813): 1326-1328. DOI:10.1136/bmj.303.6813.1326 |
[7] |
Dobson R. Ozone depletion will bring big rise in number of cataracts.[J]. 2005, 331(7528): 1292.
|
[8] |
Leun J C V D, Tang X, Tevini M. Environmental effects of ozone depletion:1998 assessment[J]. Journal of Photochemistry & Photobiology B Biology, 1998, 46(1/3): 45111-45113. |
[9] |
Hader D P, Lebert M, Schuster M, et al. ELDONET-a decade of monitoring solar radiation on five continents[J]. Photochem Photobiol, 2007, 83(6): 1348-1357. DOI:10.1111/php.2007.83.issue-6 |
[10] |
Godar D E, Wengraitis S P, Shreffler J, et al. UV doses of Americans[J]. Photochem Photobiol, 2001, 73(6): 621-629. DOI:10.1562/0031-8655(2001)073<0621:UDOA>2.0.CO;2 |
[11] |
Frederick J E, Weatherhead E C. TEMPORAL CHANGES IN SURFACE ULTRAVIOLET RADIATION:A STUDY OF THE ROBERTSON-BERGER METER AND DOBSON DATA RECORDS[J]. Photochemistry & Photobiology, 2010, 56(1): 123-131. |
[12] |
Turner J, Parisi A V, Turnbull D J. Reflected solar radiation from horizontal, vertical and inclined surfaces:ultraviolet and visible spectral and broadband behaviour due to solar zenith angle, orientation and surface type[J]. Journal of Photochemistry & Photobiology B Biology, 2008, 92(1): 29-37. |
[13] |
Chadysiene R, Girgzdys A. Ultraviolet radiation albedo of natural surfaces[J]. Jouraal of Environmental Engineering and Landscape Management, 2008, 16(2): 83-88. DOI:10.3846/1648-6897.2008.16.83-88 |
[14] |
Baczynska K A, Pearson A J, O'Hagan J B, et al. Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured in Wagrain, Austria in winter[J]. Radiation Protection Dosimetry, 2013, 154(4): 497-504. DOI:10.1093/rpd/ncs261 |
[15] |
Sun J, Lucas R M, Harrison S, et al. The relationship between ambient ultraviolet radiation (UVR) and objectively measured personal UVR exposure dose is modified by season and latitude[J]. Photochemical & Photobiological Sciences, 2014, 13(12): 1711-1718. |
[16] |
Kimlin M G, Parisi A V, Wong J C. Quantification of personal solar UV exposure of outdoor workers, indoor workers and adolescents at two locations in Southeast Queensland[J]. Photodermatology, photoimmunology & photomedicine, 1998, 14(1): 7-11. |
[17] |
Liu Y, Ono M, Yu D, et al. Individual solar-UV doses of pupils and undergraduates in China[J]. Journal of Exposure Science and Environmental Epidemiology, 2006, 16(6): 531-537. DOI:10.1038/sj.jes.7500492 |
[18] |
Herlihy E, Gies P H, Roy C R, et al. Personal dosimetry of solar UV radiation for different outdoor activities[J]. Photochemistry and photobiology, 1994, 60(3): 288-294. DOI:10.1111/php.1994.60.issue-3 |
[19] |
Liu J, Zhang W. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light[J]. Plos One, 2015, 10(4): e0124758. DOI:10.1371/journal.pone.0124758 |
[20] |
Parisi A V, Kimlin M G. Personal solar UV exposure measurements employing modified polysulphone with an extended dynamic range[J]. Photochemistry and Photobiology, 2004, 79(5): 411-415. DOI:10.1562/0031-8655(2004)79<411:SPSUEM>2.0.CO;2 |
[21] |
Hu L, Gao Q, Xu W, et al. Diurnal Variations in Solar Ultraviolet Radiation at Typical Anatomical Sites[J]. Biomedical and Environmental Sciences, 2010, 23(3): 234-243. DOI:10.1016/S0895-3988(10)60058-X |
[22] |
Sliney D H. Exposure geometry and spectral environment determine photobiological effects on the human eye[J]. Photochemistry and Photobiology, 2005, 81(3): 483-489. DOI:10.1562/2005-02-14-RA-439.1 |
[23] |
Rosenthal F S, Safran M, Taylor H R. The ocular dose of ultraviolet radiation from sunlight exposure[J]. Photochemistry and photobiology, 1985, 42(2): 163-171. DOI:10.1111/php.1985.42.issue-2 |
[24] |
Sydenham M M, Collins M J, Hirst L W. Measurement of ultraviolet radiation at the surface of the eye[J]. Investigative ophthalmology & visual science, 1997, 38(8): 1485-1492. |
[25] |
Sasaki H, Sakamoto Y, Schnider C, et al. UV-B Exposure to the Eye Depending on Solar Altitude[J]. Eye & Contact Lens-Science and Clinical Practice, 2011, 37(4): 191-195. |
[26] |
Gao N, Hu L, Gao Q, et al. Diurnal Variation of Ocular Exposure to Solar Ultraviolet Radiation Based on Data from a Manikin Head[J]. Photochemistry and Photobiology, 2012, 88(3): 736-743. DOI:10.1111/php.2012.88.issue-3 |
[27] |
Wang F, Gao Q, Hu L, et al. Risk of Eye Damage from the Wavelength-Dependent Biologically Effective UVB Spectrum Irradiances[J]. Plos One, 2012, 7(12): e52259. DOI:10.1371/journal.pone.0052259 |
[28] |
Yu J, Hua H, Liu Y, et al. Distributions of Direct, Reflected, and Diffuse Irradiance for Ocular UV Exposure at Different Solar Elevation Angles[J]. Plos One, 2016, 11(11): e0166729. DOI:10.1371/journal.pone.0166729 |
[29] |
Oriowo O M, Cullen A P, Chou B R, et al. Action spectrum and recovery for in vitro UV-induced cataract using whole lenses[J]. Investigative Ophthalmology & Visual Science, 2001, 42(11): 2596. |
[30] |
Matthes R. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation)[J]. Health Physics, 2004, 87(2): 171-186. DOI:10.1097/00004032-200408000-00006 |
[31] |
Wang F, Hu L, Gao Q, et al. Risk of Ocular Exposure to Biologically Effective UV Radiation in Different Geographical Directions[J]. Photochemistry and Photobiology, 2014, 90(5): 1174-1183. |
[32] |
Hu L, Wang F, Ou-Yang N, et al. Quantification of Ocular Biologically Effective UV Exposure for Different Rotation Angle Ranges Based on Data from a Manikin[J]. Photochemistry and Photobiology, 2014, 90(4): 925-934. |
[33] |
Zhu M, Yu J, Gao Q, et al. The Relationship Between Disability-Adjusted Life Years of Cataracts and Ambient Erythemal Ultraviolet Radiation in China[J]. Journal of Epidemiology, 2015, 25(1): 57-65. |
[34] |
Wang Y, Yu J, Gao Q, et al. The Relationship between the Disability Prevalence of Cataracts and Ambient Erythemal Ultraviolet Radiation in China[J]. Plos One, 2012, 7(11): e51137. DOI:10.1371/journal.pone.0051137 |
[35] |
Delcourt C, Cougnard-Gregoire A, Boniol M, et al. Lifetime Exposure to Ambient Ultraviolet Radiation and the Risk for Cataract Extraction and Age-Related Macular Degeneration:The Alienor Study[J]. Investigative Ophthalmology & Visual Science, 2014, 55(11): 7619-7627. |
[36] |
Sasaki H, Kawakami Y, Ono M, et al. Localization of cortical cataract in subjects of diverse races and latitude[J]. Investigative Ophthalmology & Visual Science, 2003, 44(10): 4210-4214. |
[37] |
Wang G, Bai Z, Shi J, et al. Prevalence and risk factors for eye diseases, blindness, and low vision in Lhasa, Tibet[J]. International Journal of Ophthalmology, 2013, 6(2): 237-241. |
[38] |
Yu J M, Yang D Q, Wang H, et al. Prevalence and risk factors of lens opacities in rural populations living at two different altitudes in China[J]. International Journal of Ophthalmology, 2016, 9(4): 610-616. |
[39] |
Theodoropoulou S, Theodossiadis P, Samoli E, et al. The epidemiology of cataract:a study in Greece[J]. Acta Ophthalmologica, 2011, 89(2): E167-E173. DOI:10.1111/aos.2011.89.issue-2 |
[40] |
El Chehab H, Blein J P, Herry J P, et al. Ocular phototoxicity and altitude among mountain guides[J]. Journal Francais D Ophtalmologie, 2012, 35(10): 809-815. DOI:10.1016/j.jfo.2012.06.012 |
[41] |
Jones J A, McCarten M, Manuel K, et al. Cataract formation mechanisms and risk in aviation and space crews[J]. Aviat Space Environ Med, 2007, 78(4 Suppl): A56-A66. |
[42] |
Pastor-Valero M, Fletcher A E, de Stavola B L, et al. Years of sunlight exposure and cataract:a case-control study in a Mediterranean population[J]. BMC ophthalmology, 2007, 7: 18. DOI:10.1186/1471-2415-7-18 |
[43] |
Taylor H R, West S K, Rosenthal F S, et al. Effect of ultraviolet radiation on cataract formation[J]. The New England journal of medicine, 1988, 319(22): 1429-1433. DOI:10.1056/NEJM198812013192201 |
[44] |
West S K, Duncan D D, Munoz B, et al. Sunlight exposure and risk of lens opacities in a population-based study:the Salisbury Eye Evaluation project[J]. Jama, 1998, 280(8): 714-718. DOI:10.1001/jama.280.8.714 |
[45] |
Tang Y, Ji Y, Ye X, et al. The Association of Outdoor Activity and Age-Related Cataract in a Rural Population of Taizhou Eye Study:Phase 1 Report[J]. PLoS One, 2015, 10(8): e135870. |
[46] |
Neale R E, Purdie J L, Hirst L W, et al. Sun exposure as a risk factor for nuclear cataract[J]. Epidemiology, 2003, 14(6): 707-712. DOI:10.1097/01.ede.0000086881.84657.98 |