Chemistry and bioactivities of natural steroidal alkaloids

  • Mei-Ling Xiang 1 ,  
  • Bin-Yuan Hu 1 ,  
  • Zi-Heng Qi 1 ,  
  • Xiao-Na Wang 1 ,  
  • Tian-Zhen Xie 1 ,  
  • Zhao-Jie Wang 1 ,  
  • Dan-Yu Ma 1 ,  
  • Qi Zeng 1 ,  
  • Xiao-Dong Luo 1,2
  •     

Abstract

Steroidal alkaloids possess the basic steroidal skeleton with a nitrogen atom in rings or side chains incorporated as an integral part of the molecule. They have demonstrated a wide range of biological activities, and some of them have even been developed as therapeutic drugs, such as abiraterone acetate (Zytiga®), a blockbuster drug, which has been used for the treatment of prostate cancer. Structurally diverse natural steroidal alkaloids present a wide spectrum of biological activities, which are attractive for natural product chemistry and medicinal chemistry communities. This review comprehensively covers the structural classification, isolation and various biological activities of 697 natural steroidal alkaloids discovered from 1926 to October 2021, with 363 references being cited.

Keywords

Steroidal alkaloids    Chemistry    Bioactivities    Solanaceae    Liliaceae    Apocynaceae    Buxaceae    

1 Introduction

Steroidal alkaloids are nitrogenous derivatives of natural steroids. They are an important class of alkaloids and conventional secondary metabolites that occur in plants including Solanaceae, Liliaceae, Apocynaceae, Buxaceae, amphibians and marine organisms. Previous research results exhibited that steroidal alkaloids possess potential anticancer, anticholinergic, antimicrobial, anti-inflammatory and analgesic, anti-myocardial ischemia, anti-giogenesis effects and other activities.

Steroidal alkaloids are already launched as drugs, such as abiraterone acetate, marketed as Zytiga® by Janssen Biotech (a subsidiary of Johnson & Johnson), is a steroidal antiandrogen medication approved by the Food and Drug Administration (FDA) for the treatment of metastatic castration resistant prostate cancer (mCRPC) in 2011 and metastatic high-risk castration-sensitive prostate cancer (mCSPC) in 2018 [1]. Zytiga® is a blockbuster drug on the prostate cancer market, and in 2020, it generated almost $2.4 billion in sales from the Johnson & Johnson annual report, with ongoing research into its application for additional indications. Natural steroidal alkaloid cyclovirobuxine D (203) is the main active component of oral drug "huangyangning" tablets listed in the Chinese pharmacopeia 2015. This drug, discovered from a folk prescription in the treatment of rheumatic disease, was approved by the China Food and Drug Administration (CFDA) in 2009 to treat cardiovascular and cerebrovascular diseases, such as coronary heart disease, angina pectoris, arrhythmia, heart failure, hypertension and cardiac neurosis [2]. Several steroidal glycoalkaloids from the local plant Solanum linnaeanum possess activity of slowing skin cancer growth in horses and cattle, in which α-solamargine (500) and α-solasonine (501) were identified. These two active compounds were subsequently developed into a topical treatment for keratoses, basal cell carcinomas, and squamous cell carcinomas, which were marketed in Australia signed Curaderm [3].

Sheep ranchers experienced outbreaks of cyclopic lambs, leading to the discovery of cyclopamine (432) as a plant derived teratogen [4]. Cyclopamine was the first compound found to antagonize the Hedgehog (Hh) signaling pathway, the constitutive activation of which is intimately implicated in many human malignancies [5]. Vismodegib and sonidegib, cyclopamine derivatives and Hh pathway inhibitors, were FDA-approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively [6]. In 2016 cyclopamine was identified as a potent inhibitor of human respiratory syncytial virus (hRSV) replication [7].

Phyllobates terribilis frogs, made into poison darts by Central American indigenous people, advertise their lethal armament with their gaudy colors. Batrachotoxin (615) is a potent neurotoxin in the skin secretions of these frogs and as a tool to study voltage-sensitive sodium channels of excitable membranes [8, 9]. Toxicity is widespread among living organisms and how these frogs avoid poisoning themselves remains a mystery. A study addressed that a single rat muscle Na+ channel mutation confers batrachotoxin autoresistance [10].

Some reviews related to steroidal alkaloids have been presented since 1953. For example, the chemistry of these alkaloids from the Liliaceae and Solanaceae [11-15], the Apocynaceaethe [16], the Buxaceae [17, 18], the marine organisms [19], synthesis of cephalostatins and ritterazines [20], biosynthesis of Buxaceae alkaloids [21], and biological activities [22, 23]. A comprehensive review was published in 1998 concerning the developments in the field of steroidal alkaloids [24]. In consideration of these reviews providing little information about recent research, we provide an updated review in a concise form, covering comprehensive structure classification, resources, biosynthesis and bioactivities of natural steroid alkaloids reported from 1926 to October 2021.

This review will help the scientific community understand natural steroidal alkaloids overall and compactly. We comprehensively summarize 16 structural subtypes of steroidal alkaloids along with their bioactivities and toxicity. In addition, steroidal alkaloids (362-365, 381) whose names were not proposed by authors were presented only with numbers in the tables.

2 Basic skeletal classification

Steroidal alkaloids possess the basic steroidal skeleton with a nitrogen atom in rings or side chains incorporated as an integral part of the molecule [24]. In general, steroidal alkaloids can be classified into monomeric and dimeric on the basis of the carbon framework. Monomeric steroidal alkaloids, possessing a pregnane (C21), cyclopregnane (C24), cholestane (C27) and other carbon heterocyclic skeletons, were isolated from plants, amphibians and some marine sponges. Dimeric steroidal alkaloids, a class of bis-steroidal pyrazine alkaloids, were only found in marine organisms. Figure 1 lists the different types of natural steroidal alkaloids.

Fig. 1

Classification of steroidal alkaloids

2.1 Monomeric steroidal alkaloids

2.1.1 Pregnane alkaloids

The occurrence of 177 pregnane alkaloids (1-177), however, is not restricted to the Apocynaceae family, which is also found in Buxaceae, such as Sarcococca and Pachysandra.

2.1.1.1 Conanine type

Conanine type alkaloids are characteristic of an 18, 20-epimino five-membered E ring, and most of them contain an amino or oxygen at C-3 (Fig. 2). Alkaloids (1-36) were isolated from various plants of the family Apocynaceae, such as Holarrhena, Funtumia, Malouetia, and Wrightia (Table 1).

Fig. 2

Structures of conanine type steroidal alkaloids 1-36

Table 1

Structures and sources of conanine type steroidal alkaloids 1-36

No Compounds Substitution groups and others Sources References
1 Conessine R1 = R2 = R5 = CH3; R3 = R4 = H Holarrhena antidysenterica [25]
2 7α-Hydroxy-conessine R1 = R2 = R5 = CH3; R3 = R4 = H; 7-α-OH H. antidysenterica [27]
3 Regholarrhenine D R1 = R2 = CH3; R3 = R4 = H; R5 = OH H. antidysenterica [28]
4 Antidysentericine R1 = R2 = CH3; R3 = R5 = H; R4 = O H. antidysenterica [29]
5 Isoconessimine R1 = R5 = CH3; R2 = R3 = R4 = H Funtumia elastica [30]
6 Holarrhetine R1 = R2 = R5 = CH3; R3 = β-(CH3)2C = CHCH2COO; R4 = H F. elastica [30]
7 Holarrhesine R1 = R4 = H; R2 = R5 = CH3; R3 = β-(CH3)2C = CHCH2COO F. elastica [30]
8 Conessimin R1 = R2 = CH3; R3 = R4 = R5 = H Holarrhena antidysenterica [31]
9 Conarrhimin R1 = R2 = R3 = R4 = R5 = H H. antidysenterica [31]
10 Conimin R1 = CH3; R2 = R3 = R4 = R5 = H H. antidysenterica [31]
11 Mokluangin A R1 = R3 = R5 = H; R2 = CH3; R4 = O H. pubescens [26]
12 Mokluangin C R1 = R2 = R3 = R5 = H; R4 = O H. pubescens [26]
13 N-Formylconessimine R1 = R2 = CH3; R3 = R4 = H; R5 = CHO H. antidysenterica [32]
14 Holonamine R1 = α-OH; R2 = H H. antidysenterica [27]
15 12α-Hydroxynorcona-N(18), 1, 4-trienin-3-one R1 = H; R2 = α-OH Funtumia africana [33]
16 11α, l2α-Dihydroxynorcona-N(18), 1, 4-trienin-3-one R1 = R2 = α-OH F. africana [33]
17 Conkurchine R1 = β-NH2; R2 = H; △5, 6 Holarrhena antidysenterica [34]
18 Malouetafrine R1 = O; R2 = H; △4, 5 Malouetia brachyloba [35]
19 Wrightiamine A R1 = β-NH2; R2 = α-OAc Wrightia javanica [36]
20 Regholarrhenine A R1 = α-OH; R2 = CH3; R3 = β-CH3 Holarrhena antidysenterica [37]
21 Regholarrhenine B R1 = α-OH; R2 = H; R3 = β-CH3 H. antidysenterica [37]
22 Holadiene R1 = H; R2 = R3 = CH3 H. pubescens [38]
23 Kurchinidine R1 = R2 = H; R3 = CH3 H. pubescens [38]
24 Kurchilidine (I) R1 = R2 = H; R3 = β-Et H. antidysenterica [39]
25 Kuchamide (II) R1 = OH; R2 = H; R3 = O H. antidysenterica [39]
26 Holamide R1 = H; R2 = CONHCH3; R3 = CH3 H. antidysenterica [40]
27 Pubescinine R1 = α-OAc; R2 = H; R3 = CH3; △17, 20 H. antidysenterica [40]
28 Regholarrhenine C R1 = NHCH3; R2 = R3 = H H. antidysenterica [37]
29 Funtudienine R1 = H; R2 = O; R3 = CH3 H. antidysenterica [32]
30 Kurcholessine R = β-OH H. antidysenterica [28]
31 Regholarrhenine E R = α-OH H. antidysenterica [28]
32 Mokluangin B H. pubescens [26]
33 Isoconkuressine R1 = R2 = H H. antidysenterica [32]
34 Conkuressine R1 = CH3; R2 = H H. antidysenterica [32]
35 Mokluangin D H. pubescens [41]
36 Irehline H. pubescens [41]

Conessine (1) was the first and most common conanine type alkaloid isolated from the seeds of Holarrhena antidysenterica [25]. Rings A and B of the pregnane moiety were dehydrogenated to form a conjugated system comprising two double bonds in regholarrhenine C (28), funtudienine (29), mokluangin D (35). Compounds 14-16 and 20-27 have secondary and tertiary amino group of the nitrogen in the heterocyclic ring, respectively, but both of them lack the C-3 amino function and possess a 1, 4-dien-3-one system in ring A. Mokluangin B (32) contains a novel structure with the amide carbonyl group instead of the methyl group at C-20, whose structure was elucidated by analysis of NMR and MS spectroscopic data [26].

2.1.1.2 Paravallarine type

Paravallarine type alkaloids bear a pregnane-(18 → 20)-lactone skeleton (Fig. 3) [42]. Currently, eight compounds (37-44) of this type have been found only in Apocynaceae family, including Kibatalia and Paravallaris (Table 2).

Fig. 3

Structures of paravallarine type steroidal alkaloids 37-44

Table 2

Structures and sources of paravallarine type steroidal alkaloids 37-44

No Compounds Substitution groups and others Sources References
37 20-Epi-kibataline Paravallaris macrophylla [43]
38 3-Epi-gitingensine R1 = R2 = H Kibatalia laurifolia [42]
39 Paravallarine R1 = CH3; R2 = H K. laurifolia [42]
40 7α-Hydroxyparavallarine R1 = CH3; R2 = OH K. laurifolia [42]
41 Gitingensine R = H K. laurifolia [42]
42 N-Methylgitingensine R = CH3 K. laurifolia [42]
43 N-Acetylgitingensine R = Ac K. laurifolia [42]
44 Kibalaurifoline K. laurifolia [42]

The structure of 20-epi-kibataline (37) contains a rare configuration 20R, while the configuration 20S is proposed for all remaining compounds [43]. Compounds 38-40 differ from others possessing an opposite orientation at C-3. The structure of kibalaurifoline (44) was carefully established from 2D NMR analyses, in which the conjugated system of the two double bonds Δ4(5) and Δ6(7) was determined from the HMBC spectrum [42].

2.1.1.3 Pregnane type

Nearly all the reported pregnane type alkaloids, share the 5α-pregnane steroidal skeleton with varying functionalities such as an amino function at C-3 and C-20 that may be modified by methyl, benzoyl and aliphatic groups (Fig. 4). A total of 133 new alkaloids (45-177) were isolated from Sarcococca and Pachysandra of the Buxaceae family and Holarrhena of the Apocynaceae family (Table 3).

Fig. 4

Structures of pregnane type steroidal alkaloids 45-177

Table 3

Structures and sources of pregnane type steroidal alkaloids 45-177

No Compounds Substitution groups and others Sources References
45 Saracocinaene R1 = H; R2 = α-N(CH3)2; R3 = Ac Sarcococca saligna [48]
46 Sarconidine R1 = H; R2 = β-NHCH3; R3 = CH3 S. saligna [49]
47 Salonine B R1 = H; R2 = β-OCH3; R3 = CH3 S. saligna [50]
48 Salignamine R1 = R3 = H; R2 = β-OCH3 S. saligna [51]
49 2-Hydroxysalignamine R1 = β-OH; R2 = β-OCH3; R3 = CH3 S. saligna [51]
50 N-[Formyl(methyl)amino]salonine B R1 = H; R2 = β-OCH3; R3 = CHO S. saligna [51]
51 Wallichimine A R1 = H; R2 = β-N(CH3)2; R3 = CH3 S. wallichii [52]
52 Wallichimine B R1 = R3 = H; R2 = β-N(CH3)2 S. wallichii [52]
53 Sarcodine R1 = R2 = CH3; R3 = R4 = R5 = R6 = H; R7 = Ac S. saligna [48]
54 Paxillarine A R1 = Bz; R2 = R7 = CH3; R3 = β-OAc; R4 = R5 = H; R6 = β-OH Pachysandra axillaris [53]
55 Paxillarine B R1 = Bz; R2 = R7 = CH3; R3 = β-OAc; R4 = R6 = H; R5 = β-OH P. axillaris [53]
56 Pachysamine B R1 = Sen; R2 = R7 = CH3; R3 = R4 = R5 = R6 = H P. procumbens [46]
57 Pachysamine E R1 = Sen; R2 = R3 = R4 = R5 = R6 = H; R7 = CH3 P. terminalis [54]
58 (+)-(20S)-20-(Dimethylamino)-3α-(methylbenzoylamino)-11-methylene-5α-pregnane R1 = Bz; R2 = R3 = R5 = R6 = H; R4 = CH2; R7 = CH3 P. procumbens [55]
59 (+)-(20S)-20-(Dimethylamino)-3α-(methylbenzoylamino)-5α-pregn-12β-yl acetate R1 = Bz; R2 = R3 = R4 = R6 = H; R5 = β-OAc; R7 = CH3 P. procumbens [55]
60 (+)-(20S)-20-(Dimethylamino)-3α-(methylsenecioylamino)-5α-pregn-12β-ol R1 = Sen; R2 = R3 = R4 = R6 = H; R5 = β-OH; R7 = CH3 P. procumbens [55]
61 Hookerianine A R1 = CO-Bn; R2 = R3 = R4 = R5 = R6 = H; R7 = CH3 Sarcococca hookeriana [56]
62 Sarchookloide C R1 = Tig; R2 = R3 = R4 = R5 = R6 = H; R7 = CH3 S. hookeriana [57]
63 Pachyaximine A R1 = R3 = R4 = H; R2 = OCH3; R5 = R6 = CH3 S. saligna; P. procumbens [46, 48]
64 Sarsalignone R1 = R4 = H; R2 = NH-Tig; R3 = O; R5 = R6 = CH3 S. saligna [58]
65 Sarsaligenone R1 = R4 = H; R2 = NH-Tig; R3 = O; R5 = R6 = CH3; △14, 15 S. saligna [58]
66 Epipachysamine-E-5-en-4-one R1 = R4 = H; R2 = NH-Sen; R3 = O; R5 = R6 = CH3 S.brevifolia [59]
67 Nb-Demethylepipachysamine-E-5-ene-4-one R1 = R4 = R5 = H; R2 = NH-Sen; R3 = O; R6 = CH3 S. brevifolia [59]
68 Salignarine B R1 = β-OH; R2 = NH-Tig; R3 = R4 = H; R5 = R6 = CH3 S. saligna [44]
69 Salignarine C R1 = β-OH; R2 = NH-Sen; R3 = R4 = H; R5 = R6 = CH3 S. saligna [44]
70 Iso-N-formylchonemorphin-5-ene R1 = R3 = R4 = R5 = H; R2 = N(CH3)2; R6 = CHO S. zeylanica [60]
71 Alkaloid C R1 = R3 = R4 = H; R2 = OCH3; R5 = R6 = CH3 S. saligna [50]
72 Salignarine F R1 = R4 = H; R2 = NH-Tig; R3 = β-OH; R5 = R6 = CH3 S. saligna [51]
73 Saracosine R1 = R3 = R4 = H; R2 = N(CH3)2; R5 = Ac; R6 = CHO S. saligna [51]
74 Sarcodinine R1 = R3 = R4 = H; R2 = N(CH3)2; R5 = R6 = CH3 S. saligna [51]
75 5, 14-Dehydro-Na-demethylsaracodine R1 = R3 = R4 = H; R2 = NHCH3; R5 = Ac; R6 = CH3; △14, 15 S. saligna [61]
76 Holadysenterine R1 = R3 = H; R2 = NH2; R4 = R5 = OH; R6 = Ac Holarrhena antidysenterica [62]
77 (20S)-20α-Cinnamoylamino-3β-dimethylamino-5-en-pregnane R1 = R3 = R4 = R5 = H; R2 = N(CH3)2; R6 = COCH = CHph Pachysandra terminalis [63]
78 SarcovagineA R1 = R4 = β-OH; R2 = Tig; R3 = H; R5 = R6 = CH3 Sarcococca vegans [64]
79 Sarcovagine B R1 = α-OH; R2 = Tig; R3 = H; R4 = β-OAc; R5 = R6 = CH3 S. vegans [64]
80 Sarcovagine C R1 = R3 = H; R2 = Tig; R4 = β-OAc; R5 = R6 = CH3 S. vegans; S. hookeriana [64, 65]
81 N-Formylchonemorphine R1 = R2 = R4 = H; R3 = CHO; R5 = R6 = CH3 S. saligna [58]
82 Vaganine A R1 = R2 = H; R3 = Sen; R4 = β-OAc; R5 = R6 = CH3 S. saligna [58]
83 Sarcorine R1 = R2 = R4 = H; R3 = Ac; R5 = R6 = CH3 S. saligna [49]
84 Na-Demethylsaracodine R1 = R2 = R4 = H; R3 = R6 = CH3; R5 = Ac S. saligna [66]
85 Saligcinnamide R1 = R4 = H; R2 = R5 = R6 = CH3; R3 = Cin S. saligna [67]
86 Na-Methyl epipachysamine D R1 = R4 = H; R2 = R5 = R6 = CH3; R3 = Bz S. saligna; S. hookeriana [65, 67]
87 Epipachysamine D R1 = R2 = R4 = H; R3 = Bz; R5 = R6 = CH3 S. saligna [67]
88 Salignenamide A R1 = R2 = R4 = H; R3 = COCHC(CH3)CH(CH3)CH3; R5 = R6 = CH3 S. saligna; S. hookeriana [65, 68]
89 2, 4-Diacetoxyepipachysamine D R1 = β-OAc; R2 = H; R3 = Bz; R4 = β-OAc; R5 = R6 = CH3 S. saligna [68]
90 Iso-N-formylchonemorphine R1 = R4 = R5 = H; R2 = R3 = CH3; R6 = CHO S. brevifolia [59]
91 Epipachysamine E R1 = R3 = R4 = H; R2 = Sen; R5 = R6 = CH3 Pachysandra terminalis [54]
92 11-Hydroxyepipachysamine E R1 = R2 = R4 = H; R3 = Sen; R5 = R6 = CH3; 11-OH Sarcococca brevifolia [69]
93 Saligenamide C R1 = β-OH; R2 = H; R3 = Tig; R4 = β-OAc; R5 = R6 = CH3; △14, 15 S. saligna [70]
94 Saligenamide F R1 = R4 = H; R2 = CH3; R3 = COCHC(CH3)CH(CH3)CH3; R5 = R6 = CH3 S. saligna [70]
95 2β-Hydroxyepipachysamine D R1 = β-OH; R2 = R4 = R5 = H; R3 = Bz; R6 = CH3 S. saligna [70]
96 Axillarine C R1 = β-OH; R2 = H; R3 = Bz; R4 = β-OAc; R5 = R6 = CH3 S. saligna [70]
97 Axillarine F R1 = β-OH; R2 = H; R3 = Tig; R4 = β-OAc; R5 = R6 = CH3 S. saligna [70]
98 Salonine A R1 = β-OH; R2 = H; R3 = Tig; R4 = β-OH; R5 = R6 = CH3; △14, 15 S. saligna [50]
99 Dictyophlebine R1 = R2 = R4 = H; R3 = R5 = R6 = CH3 S. saligna; S. hookeriana [51, 65]
100 Hookerianamine A R1 = R2 = R4 = H; R3 = R5 = R6 = CH3; △14, 15 S. hookeriana [71]
101 Isosarcodine R1 = R4 = H; R2 = R5 = R6 = CH3; R3 = Ac S. saligna [72]
102 Hookerianamide B R1 = α-OH; R2 = H; R3 = Sen; R4 = β-OH; R5 = R6 = CH3 S. hookeriana [71]
103 Hookerianamide C R1 = β-OAc; R2 = R4 = H; R3 = Sen; R5 = R6 = CH3 S. hookeriana [71]
104 Hookerianamide D R1 = R4 = H; R2 = R5 = CH3; R3 = COCHC(CH3)CH(CH3)CH3; R6 = CHO S. hookeriana [73]
105 Hookerianamide E R1 = β-OAc; R3 = R4 = H; R2 = Sen; R5 = R6 = CH3; △14, 15 S. hookeriana [73]
106 Hookerianamide G R1 = H; R2 = R5 = R6 = CH3; R3 = Bz; R4 = β-OAc S. hookeriana [73]
107 Hookerianamide I R1 = R4 = R5 = H; R2 = R6 = CH3; R3 = Bz S. hookeriana [74]
108 Chonemorphine R1 = R2 = R3 = R4 = H; R5 = R6 = CH3 S. hookeriana [65]
109 N-Methypachysamine A R1 = R4 = H; R2 = R3 = R5 = R6 = CH3 S. hookeriana [65]
110 Pachysamine J R1 = α-OH; R2 = R4 = H; R3 = Sen; R5 = R6 = CH3 Pachysandra axillaris [75]
111 Pachysamine O R1 = R2 = R4 = H; R3 = Cin; R5 = R6 = CH3 P. axillaris [75]
112 Pachysamine P R1 = R2 = H; R3 = COCH2C(CH3)C(CH3)CH3; R4 = β-OH; R5 = R6 = CH3 P. axillaris [75]
113 (20S)-2α, 4β-Bis(acetoxy)-20-(N, N-dimethylamino)-3β-tigloylamino-5α-pregnane R1 = α-OAc; R2 = H; R3 = Tig; R4 = β-OAc; R5 = R6 = CH3 Sarcococca hookeriana [76]
114 (20S)-20α-Cinnamoylamino-3β-dimethylamino-pregnane R1 = R4 = R5 = H; R2 = R3 = CH3; R6 = COCH = CHph Pachysandra terminalis [63]
115 (20S)-(Bennzamido)-3β-(N, N-dimethyamino)-pregnane R1 = R4 = H; R2 = R3 = R6 = CH3; R5 = Bz Sarcococca. saligna [77]
116 Sarcovagine D R1 = Tig; R2 = O; R3 = R4 = H; R5 = CH3 S. vegans; S. hookeriana [64, 65]
117 Sarcovagenine C R1 = Tig; R2 = O; R3 = R4 = H; R5 = CH3; △16, 17 S. vegans; S. hookeriana [65, 78]
118 Axillaridine A R1 = Bz; R2 = O; R3 = R4 = H; R5 = CH3 S. saligna; P. procumbens [46, 69]
119 2, 3-Dehydrosarsalignone R1 = Tig; R2 = O; R3 = R4 = H; R5 = CH3; △5, 6 S. saligna [61]
120 14, 15-Dehydrosarcovagine D R1 = Tig; R2 = O; R3 = R4 = H; R5 = CH3; △14, 15 S. saligna [61]
121 Phulchowkiamide A R1 = Tig; R2 = O; R3 = R4 = R5 = H S. hookeriana [72]
122 Hookerianamide F R1 = Tig; R2 = O; R3 = R4 = R5 = H; △14, 15 S. hookeriana [71]
123 Hookerianamide H R1 = CHO; R2 = O; R3 = R4 = H; R5 = CH3 S. hookeriana [73]
124 (+)-(20S)-3-(Benzoylamino)-20-(dimethylamino)-5α-pregn-2-en-4β-yl acetate R1 = Bz; R2 = β-OAc; R3 = R4 = H; R5 = CH3 Pachysandra procumbens [46]
125 Pachysamine L R1 = Tig; R2 = β-OAc; R3 = R4 = H; R5 = CH3 P. axillaris [75]
126 Pachysamine M R1 = Sen; R2 = O; R3 = R4 = H; R5 = CH3 P. axillaris [75]
127 Pachysamine N R1 = Sen; R2 = O; R3 = H; R4 = β-OH; R5 = CH3 P. axillaris [75]
128 Sarsaligenine A R1 = Sen; R2 = O; R3 = R4 = H; R5 = CH3; △16, 17 Sarcococca saligna [79]
129 Sarsaligenine B R1 = Sen; R2 = O; R3 = α-OH; R4 = H; R5 = CH3 S. saligna [79]
130 Sarcovagenines A R1 = R3 = β-OH; R2 = Tig; R4 = CH3 S. vegans [78]
131 Sarcovagenines B R1 = α-OH; R2 = Tig; R3 = β-OAc; R4 = CH3 S. vegans [78]
132 Salignarine D R1 = R3 = H; R2 = Sen; R4 = CH3 S. saligna [44]
133 (-)-Vaganine D R1 = H; R2 = Sen; R3 = β-OAc; R4 = CH3 S. coriacea [80]
134 (+)-Nepapakistamine A R1 = R3 = β-OAc; R2 = Tig; R4 = H S. coriacea [80]
135 5, 6-Dihydrosarconidine R1 = R3 = H; R2 = R4 = CH3 S. saligna [51]
136 16-Dehydrosarcorine R1 = R3 = H; R3 = Ac; R4 = CH3 S. saligna [61]
137 Hookerianamide A R1 = R3 = β-OH; R2 = Sen; R4 = CH3 S..hookeriana [72]
138 Saligenamide B R1 = β-OH; R2 = Sen; △14, 15 S. saligna [67]
139 Salignarine E R1 = H; R2 = Tig S. saligna [44]
140 Saligenamide D R1 = α-OH; R2 = Tig; △16, 17 S. saligna [69]
141 2-Hydroxysalignarine E R1 = β-OH; R2 = Tig S. saligna [51]
142 Salonine C R1 = H; R2 = Tig; △14, 15 S. saligna [51]
143 E-salignone S. saligna [65]
144 Z-salignone S. saligna [65]
145 Holamine R1 = α-NH2; R2 = R3 = R4 = H; R5 = R6 = α-H; △5, 6 Holarrhena curtisii [81]
146 3α-Amino-14β-hydroxypregnan-20-one R1 = α-NH2; R2 = R3 = R4 = R6 = H; R5 = β-OH H. curtisii [81]
147 15α-Hydroxyholamine R1 = α-NH2; R2 = R3 = R4 = H; R5 = α-H; R6 = α-OH; △5, 6 H. curtisii [81]
148 Pachysanone R1 = O; R2 = H; R3 = α-OCOCH2C(CH3)C(CH3)CH3; R4 = β-OAc; R5 = R6 = H Pachysandra axillaris [45]
149 Pachysanonin R1 = β-N(CH3)2; R2 = H; R3 = α-OCOCH2C(CH3)C(CH3)CH3; R4 = β-OAc; R5 = R6 = H P. axillaris [45]
150 Pachysamine Q R1 = β-N(CH3)2; R2 = R4 = β-OAc; R3 = α-OCO-Bn; R5 = R6 = H P. axillaris [75]
151 Pachysamine R R1 = β-N(CH3)2; R2 = R4 = β-OAc; R3 = α-OCOCH2C(CH3)C(CH3)CH3; R5 = R6 = H P. axillaris [75]
152 Terminamine F R1 = α-NCH3-Sen; R2 = R3 = R4 = R5 = R6 = H P. terminalis [82]
153 Terminamine G R1 = α-NCH3-Bz; R2 = R3 = R4 = R5 = R6 = H P. terminalis [82]
154 Funtumine R1 = α-NH2; R2 = R3 = R4 = R5 = R6 = H Holarrhena floribunda [83]
155 (+)-(20S)-20-(Dimethylamino)-3-(3′α-isopropyl)-lactam-5α-pregn-2-en-4-one R1 = R3 = R4 = H; R2 = O; △1, 2 Pachysandra procumbens [46]
156 (+)-(20S)-20-(Dimethylamino)-16α-hydroxy-3-(3′α-isopropyl)-lactam-5α-pregn-2-en-4-one R1 = R3 = H; R2 = O; R4 = α-OH; △1, 2 P. procumbens [46]
157 Pachystermine A R1 = R3 = R4 = H; R2 = O P. terminalis [54]
158 (+)-(20S)-20-(Dimethylamino)-16α-hydroxy-3β-(3′α-isopropyl)-lactam-5α-pregn-4-one R1 = R3 = H; R2 = O; R4 = α-OH P. procumbens [55]
159 Terminamine A R1 = R3 = H; R2 = O; R4 = β-OH P. terminalis [82]
160 Terminamine B R1 = β-OAc; R2 = R4 = β-OH; R3 = α-OAc P. terminalis [82]
161 Terminamine C R1 = β-OAc; R2 = R4 = β-OH; R3 = val P. terminalis [82]
162 Pachystermine B R1 = R3 = R4 = H; R2 = β-OH P. terminalis [82]
163 Terminamine D R = OH P. terminalis [82]
164 Terminamine E R = H P. terminalis [82]
165 (+)-(20S)-2α-Hydroxy-20-(dimethylamino)-3β-phthalimido-5α-pregnan-4β-yl acetate P. procumbens [46]
166 Spiropachysine P. procumbens [46]
167 Salignarine A Sarcococca saligna [44]
168 Epoxynepapakistamin A R1 = R3 = β-OAc; R2 = β-NH-Tig; R4 = H S. coriacea [47]
169 Epoxysarcovagenine D R1 = R4 = H; R2 = β-NH-Tig; R3 = O; △2, 3 S. coriacea [47]
170 (S)-20-(N, N-Dimethylamino)-16α, 17α-epoxy-3β-methoxy-pregn-5-ene R1 = R3 = R4 = H; R2 = β-OCH3; △5, 6 S. hookeriana [76]
171 Hookerianine B R1 = R3 = H; R2 = α-NH-Bz; R4 = CH3 S. hookeriana [56]
172 N-methylfuntumafrine S. coriacea [47]
173 Pachysamines K R1 = R4 = H; R2 = α-OH; R3 = Bz; R5 = α-OH Pachysandra axillaris [75]
174 Archosokloide A R1 = R5 = H; R2 = β-OH; R3 = Tig; R4 = β-OH Sarcococca hookeriana [57]
175 Sarchookloide B R1 = R4 = R5 = H; R2 = β-OH; R3 = Tig S. hookeriana [57]
176 4-Dehydroxyepisarcovagine A R1 = β-OH; R2 = R4 = R5 = H; R3 = Tig; △14, 15 S. pruniformis [84]
177 (20S)-(Bennzamido)-pregnane-3-one S. saligna [77]

For alkaloids with nitrogen substituents at C-3, only 53-62 and 172-176 bear 3α substituents, whereas most compounds possess the 3β configuration. All of them except 143-154 contain nitrogen substituents at C-20, which is a common feature of pregnane type alkaloids. Salignarine A (167) has a novel structure with an epoxide functionality at C-5-C-6 [44]. Two compounds, pachysanone (148) and pachysanonin (149) bear a 3, 4-dimethylpent-3-enoyloxy substituent at C-11, a rare functional group in natural products [45]. Compounds 155-164, bear a (3′sopropyl)-β-lactam ring at the C-3 position, whereas compound 165 bears a phthalimido moiety at the same position [46]. Spiropachysine (166) possesses a five membered-ring spiro-lactam and a disubstituted benzene ring at C-3 [46]. Compounds 168-171 display a structural modification that has not been reported from this genus, viz. the epoxy ring at C-16/C-17. N-methylfuntumafrine (172) shows a novel structure with an acetyl group at C-17 [47].

2.1.2 Cyclopregnane alkaloids

The Buxus genus of the Buxaceae family is a rich source of cyclopregnane alkaloids, and 116 cyclopregnane alkaloids (178-293) have been reported from B. sempervirens, B. longifolia, B. hildebrandtii, B. bodinieri, B. hyrcana, B. microphylla, B. papillosa, B. wallichiana, B. rugulosa, B. natalensis, and B. macowanii.

Cyclopregnane alkaloids, also known as triterpenoid alkaloids, possess a unique pregnane type structure with C-4 methyl groups, a 9β, 10β-cycloartenol system, and a degraded C-20 side chain. All alkaloids possess a nitrogen function at C-3 and/or C-20, which may be unmethylated, partially methylated, or fully methylated. Structurally, the majority of these alkaloids contain either a 9β, 19-cyclo-14α-methylpregnane type or a 9(10 → 19)abeo-14α-methylpregnane type, having a characteristic substituent pattern at C-4.

2.1.2.1 9β, 19-Cyclo-14α-methylpregnane type

Out of the 116 cyclopregnane alkaloids, 50 (178-227) belong to this type, which are characteristic of the genus Buxus (Table 4). This type of compound is characterized by a pentacyclic 4, 4, 14-trimethyl-9, 19-cyclopregnane skeleton (Fig. 5).

Table 4

Structures and sources of 9β, 19-Cyclo-14α-methylpregnane type steroidal alkaloids 178-227

No Compounds Substitution groups and others Sources References
178 Cyclobuxine R1 = H; R2 = α-OH Buxus sempervirens [85]
179 Cyclobuxamidine R1 = Ac; R2 = H B. longifolia [86]
180 Cyclobuxoviridine R1 = O; R2 = R4 = CH3; R3 = H; △1, 2 B. hildebrandtii [91]
181 Buxbodine A R1 = R3 = H; R2 = R4 = CH3 B. bodinieri [87]
182 Buxbodine B R1 = O; R2 = R4 = CH3; R3 = β-OH; △1, 2 B. bodinieri [87]
183 Nb-Demethylcyclomikurane R1 = O; R2 = CH3; R3 = R4 = H B. sempervirens [92]
184 Cyclimikuranine R1 = O; R2 = R4 = CH3; R3 = H B. sempervirens [92]
185 Nb-Demethylcyclobuxoviricine R1 = O; R2 = R4 = CH3; R3 = α-OH; △1, 2 B. hyrcana [93]
186 Buxmicrophylline K R1 = β-OH; R2 = CH3; R3 = α-OH; R4 = H B. microphylla [88]
187 N-Demethylcyclomikuranine R1 = O; R2 = CH3; R3 = α-OH; R4 = H B. microphylla [88]
188 31-Demethylcyclobuxoviridine R1 = O; R2 = H; R3 = H; R4 = CH3; △1, 2 B. hyrcana [94]
189 Cyclomicrobuxamine R1 = R3 = H; R2 = CH2 B. hildebrandtii [91]
190 Cyclomicrobuxeine R1 = R3 = H; R2 = CH2; △16, 17 B. sempervirens [95]
191 30-Hydroxycyclomicobuxene R1 = R3 = H; R2 = CH2OH; △4, 5 B. sempervirens [96]
192 Buxippine K R1 = CH3; R2 = CH2; R3 = α-OH B. hyrcana [93]
193 Cyclorolfeine B. hildebrandtii [91]
194 Cyclobuxomicreinine B. longifolia [97]
195 Isodihydrocyclomicrophylline A R1 = R2 = R5 = R6 = CH3; R3 = CH2OH; R4 = α -OH B. sempervirens [98]
196 Buxasamarine R1 = R2 = R3 = CH3; R4 = α-OH; R5 = H; R6 = CH3; △1, 2 B. longifolia [86]
197 Buxmicrophylline C R1 = H; R2 = Isobu; R3 = CH2OH; R4 = α-OH; R5 = R6 = CH3; △6, 7 B. microphylla [99]
198 Buxbodine D R1 = R2 = R3 = CH3; R4 = R5 = H; R6 = Ac; △6, 7 B. bodinieri [87]
199 Buxbodine E R1 = R2 = R3 = CH3; R4 = R5 = R6 = H; △6, 7 B. bodinieri [87]
200 Buxakashmiramine R1 = Syr; R2 = R5 = R6 = CH3; R3 = CH2OH; R4 = H B. papillosa [100]
201 Cycloprotobuxine C R1 = R2 = R3 = R5 = R6 = CH3; R4 = H; △6, 7 B. papillosa [100]
202 Cyclovirobuxeine A R1 = R2 = R3 = R5 = R6 = CH3; R4 = α-OH; △6, 7 B. papillosa [100]
203 Cyclovirobuxine D R1 = R5 = H; R2 = R3 = R6 = CH3; R4 = α-OH B. wallichiana [101]
204 Hyrcamine R1 = H R2 = Tig; R3 = CH2OH; R4 = α -OAc; R5 = R6 = CH3 B. hyrcana [93]
205 Buxidine R1 = H R2 = Bz; R3 = CH2OH; R4 = α-OH; R5 = R6 = CH3; △6, 7 B. hyrcana [93]
206 Buxandrine R1 = H R2 = Bz; R3 = CH2OH; R4 = α -OAc; R5 = R6 = CH3; △6, 7 B. hyrcana [93]
207 Buxrugulosamine R1 = H; R2 = Ac; R3 = CH3; R4 = H; R5 = H; R6 = CH3 B.rugulosa [102]
208 Buxmicrophylline E R1 = H; R2 = Bz; R3 = CH2OH; R4 = O-Bz; R5 = R6 = CH3 B. microphylla [103]
209 Buxmicrophylline F R1 = H; R2 = Isobu; R3 = CH2OH; R4 = O-Bz; R5 = R6 = CH3; △6, 7 B. microphylla [103]
210 Buxmicrophylline G R1 = H; R2 = Isofer; R3 = CH2OH; R4 = α -OH; R5 = R6 = CH3 B. microphylla [103]
211 Buxmicrophylline H R1 = H; R2 = Syr; R3 = CH2OH; R4 = α -OH; R5 = R6 = CH3 B. microphylla [103]
212 Cyclonataminol R1 = R2 = R3 = R5 = R6 = CH3; R4 = α-OH; 2-α-OH; △6, 7 B. natalensis [104]
213 trans-Cyclosuffrobuxinine B. longifolia [86]
214 Buxozine C B. papillosa [90]
215 Sempervirone B. papillosa [89]
216 Buxmicrophylline D R1 = R2 = CH3; R3 = R4 = H B. microphylla [99]
217 Buxmicrophylline I R1 = R2 = R3 = H; R4 = Syr B. microphylla [103]
218 Buxmicrophylline J R1 = H; R2 = R3 = CH3; R4 = Bz B. microphylla [88]
219 Buxmicrophylline P R1 = R2 = H; R3 = β-CH3; R4 = H B. microphylla [105]
220 Buxmicrophylline Q R1 = R2 = H; R3 = β-CH3; R4 = Syr B. microphylla [105]
221 Buxmicrophylline R R1 = R2 = H; R3 = β-CH3; R4 = Van B. microphylla [105]
222 Buxmicrophylline B R1 = R3 = H; R2 = CH3 B. microphylla [99]
223 E-cyclobuxaphylamine R1 = R3 = H; R2 = CH3; △7, 8 B. sempervirens [95]
224 Z-cyclobuxaphylamine R1 = R2 = H; R3 = CH3; △7, 8 B. sempervirens [95]
225 Buxbodine C R1 = R2 = CH3; R3 = H; △6, 7 B. bodinieri [87]
226 Cyclobuxaphylline R1 = R2 = CH3; R3 = H B. sempervirens [92]
227 17-Oxocycloprotobuxine B. sempervirens [106]

Fig. 5

Structures of 9β, 19-cyclo-14α-methylpregnane type steroidal alkaloids 178-227

Cyclobuxine D (178) was the first steroidal alkaloid from Buxus bearing a C-4 methylene substituent [85]. Later, cyclobuxamidine (179) and trans-cyclosuffrobuxinine (213) of this type were isolated from B. longifolia [86]. Buxbodine A (181) has a unique structure due to the lack of a keto or an amino functionality at the C-3 position [87]. Typically, all alkaloids of this type have a C-3 amino or carbonyl group, except for buxmicrophylline K (186), which has a hydroxyl group substituted at C-3 [88]. In compounds trans-cyclosuffrobuxinine (213) and sempervirone (215), the methylamino group at C-20 is eliminated and the secondary alcohol at C-16 is oxidized [86, 89]. Buxozine C (214) with a tetrahydro-oxazine ring joining the C-16α and the C-20 nitrogen has been isolated from B. papillosa. The mass spectra of compound 214 exhibit the ions at m/z 127 and 113 due to cleavage of ring D, and these ions serve as diagnostic features to determine the presence of a tetrahydro-oxazine ring in ring D [90].

2.1.2.2 9(10 → 19)Abeo-14α-methylpregnane alkaloids

This type contains a tetracyclic system in which 9, 19 bond fission has occurred to give seven-membered ring B (Fig. 6). Sixty-six alkaloids (228-293) were isolated from the genus Buxus (Table 5).

Fig. 6

Structures of 9(10 → 19)abeo-14α-methylpregnane type steroidal alkaloids 228-293

Table 5

Structures and sources of 9(10 → 19)abeo-14α-methylpregnane type steroidal alkaloids 228-293

No Compounds Substitution groups and others Sources References
228 Buxamine A R1 = N(CH3)2; R2 = R4 = R5 = CH3; R3 = H Buxus hildebrandtii; B. natalensis [91, 104]
229 Buxamine C R1 = NHCH3; R2 = R4 = R5 = CH3; R3 = H B. hildebrandtii [91]
230 30-O-benzoyl-16-deoxybuxidienine C R1 = H; R2 = CH2O-Bz; R3 = H; R4 = R5 = CH3 B. hildebrandtii [91]
231 30-Hydroxybuxamine A R1 = R4 = R5 = CH3; R2 = CH2OH; R3 = H B.hildebrandtii [91]
232 30-Norbuxamine A R1 = R4 = R5 = CH3; R2 = R3 = H B.hildebrandtii [91]
233 N-benzoyl-O-acetylbuxalongifoline R1 = NH-Bz; R2 = COH; R3 = α-OH; R4 = R5 = CH3 B. longifolia [86]
234 16α-Acetoxy-buxabenzamidienine R1 = NH-Bz; R2 = R4 = R5 = CH3; R3 = α-OAc B. longifolia [86]
235 Buxaminol C R1 = NHCH3; R2 = R4 = R5 = CH3; R3 = α-OH B. sempervirens [95]
236 Papilamine R1 = NHCH3; R2 = R5 = CH3; R3 = R4 = H B. sempervirens [95]
237 16α-Hydro-xypapillamidine R1 = NH-Ac; R2 = R4 = R5 = CH3; R3 = α-OH B. papillosa [109]
238 (+)-Benzoylbuxidienine R1 = NH-Bz; R2 = R4 = R5 = CH3; R3 = α-OH B. hyrcana [110]
239 Buxamine F R1 = NH2; R2 = R4 = R5 = CH3; R3 = H B. sempervirens [106]
240 N20-Formylbuxaminol E R1 = N(CH3)2; R2 = CH3; R3 = α-OH; R4 = H; R5 = COH B. sempervirens [111]
241 O16-syringylbuxaminol E R1 = N(CH3)2; R2 = CH3; R3 = α-O-Syr; R4 = R5 = H B. sempervirens [111]
242 N20-acetylbuxamine G R1 = NHCH3; R2 = CH3; R3 = H; R4 = H; R5 = Ac B. sempervirens [111]
243 N20-acetylbuxamine E R1 = N(CH3)2; R2 = CH3; R3 = H; R4 = H; R5 = Ac B. sempervirens [111]
244 Buxakarachiamine R1 = NH-COCH(OH)CH(CH3)2; R2 = CH2OH; R3 = H; R4 = R5 = CH3 B. papillosa [100]
245 Buxahejramine R1 = NH-COCH(OH)CH(CH3)CH2CH; R2 = CH2OH; R3 = H; R4 = R5 = CH3 B. papillosa [100]
246 31-Demethylbuxaminol A R1 = N(CH3)2; R2 = H; R3 = α-OH; R4 = R5 = CH3 B. natalensis [104]
247 Buxaminol A R1 = N(CH3)2; R2 = R4 = R5 = CH3; R3 = α-OH B. natalensis [104]
248 Moenjodarmine R1 = CH3; R2 = R3 = H; R4 = N(CH3)2 B. hildebrandtii; B. hyrcana [91, 112]
249 Nb-Demethylharapamine R1 = CH3; R2 = R3 = H; R4 = NH2 B. papillosa [113]
250 Homomoenjodaramine R1 = R2 = CH3; R3 = H; R4 = N(CH3)2 B. hyrcana [112]
251 Buxhyrcamine R1 = R2 = R3 = H; R4 = N(CH3) 2 B. hyrcana [94]
252 Macowanioxazine R1 = CH3; R2 = H; R3 = α-OH; R4 = N(CH3) 2 B. macowanii [114]
253 16α-Hydroxymacowanitriene R1 = CH3; R2 = H; R3 = α-OH; R4 = N(CH3) 2; △1, 2 B. macowanii [114]
254 Macowanitriene R1 = CH3; R2 = R3 = H; R4 = N(CH3) 2; △1, 2 B. macowanii [114]
255 Papillotrienine R1 = β-NHCH3; R2 = R3 = CH3 B. papillosa [113]
256 Nb-Demethylpapilliotrienine R1 = β-NHCH3; R2 = CH3; R3 = H B. papillosa [113]
257 Hyrcatrienine R1 = β-NH-Bz; R2 = R3 = CH3 B. hyrcana [93]
258 31-Hydroxybuxatrienone R1 = O; R2 = CH2OH; R3 = CH3 B. macowanii [114]
259 O2-Buxafuranamine R1 = H; R2 = H B. hildebrandtii [115]
260 6-Hydroxy-O2-buxafuranamine R1 = OH; R2 = H B. hildebrandtii [115]
261 O10-Buxafurana-mine R1 = Bz; R2 = OH; R3 = R4 = H B. hildebrandtii [115]
262 O10-Natafuranamine R1 = Bz; R2 = OH; R3 = α-OH; R4 = H B. natalensis [104]
263 Buxusemine B R1 = Bz; R2 = OH; R3 = α-OH; R4 = O B. sempervirens [108]
264 Buxusemine C R1 = Bz; R2 = R3 = R4 = H B. sempervirens [108]
265 (-)-16-Hydroxybuxaminone R1 = CH3; R2 = α-OH; △10, 19 B. sempervirens [97]
266 Semperviraminone R1 = CH3; R2 = H; △1, 10; △16, 17 B. sempervirens [95]
267 Na-Demethylsemperviraminone R1 = R2 = H; △1, 10; △16, 17 B. sempervirens [95]
268 Buxalongifolamidine R1 = R4 = H; R2 = NH-Bz; R3 = CH2OH; R5 = α-OH; R6 = α-OAc; △1, 2; △9, 11 B. longifolia [107]
269 Semperviraminol R1 = α-OH; R2 = NH-Bz; R3 = CH3; R4 = β-OAc; R5 = /; R6 = H; △1, 10 B. sempervirens; B. papillosa [100, 106]
270 N-Benzoylbuxahyrcanine R1 = R4 = R6 = H; R2 = NH-Bz; R5 = β-OH; R3 = CH3; △9, 11 B. hyrcana [116]
271 N-Tigloylbuxahyrcanine R1 = R4 = R6 = H; R2 = NH-Tig; R3 = CH3; R5 = β-OH; △9, 11 B. hyrcana [116]
272 N-Isobutyroyl-buxahyrcanine R1 = R4 = R6 = H; R2 = Isobu; R3 = CH3; R5 = β-OH; △9, 11 B. hyrcana [116]
273 Hyrcanone R1 = R4 = R6 = H; R2 = NH-Bz; R3 = CH3; R5 = /; 11-O; △1, 10 B. hyrcana [93]
274 2α, 16α, 31-Triacetyl-9, 11-dihydrobuxiran R1 = R6 = α-OAc; R2 = NH-Bz; R3 = CH2 OAc; R4 = H; R5 = /; △1, 10 B. hyrcana [117]
275 Macowamine R1 = R4 = R5 = R6 = H; R2 = NCH3-Van; R3 = CH2OH; △9, 11 B. macowanii [114]
276 16α-Hydroxy-Na-benzoylbuxadine R1 = R4 = H; R2 = NH-Bz; R3 = CH3; R5 = α-OH; R6 = OH B. sempervirens [95]
277 Nb-Dimethylbuxupapine R1 = R4 = R5 = H; R2 = N(CH3)2; R3 = R6 = CH3 B. papillosa [109]
278 (+)-16α, 31-Diacetylbuxadine R1 = R4 = H; R2 = NH-Bz; R3 = CH2OAc; R5 = α-OAc; R6 = CH3 B. sempervirens [92]
279 Hyrcanol R1 = β-OH; R2 = NH-Bz; R3 = R6 = CH3; R4 = α-OAc; R5 = H B. hyrcana [93]
280 Buxabenzacinine R1 = R3 = H; R2 = NH-Bz; R4 = CH2OAc; R5 = α-OH; R6 = CH3 B. hyrcana [93]
281 2α, 16α, 31-Triacetylbuxiran R1 = α-OAc; R2 = NH-Bz; R3 = H; R4 = CH2OAc; R5 = α-OAc; R6 = CH3 B. hyrcana [117]
282 Cyclovirobuxeine F R1 = R2 = H B. longifolia [86]
283 (+)-O6-Buxafurandiene R1 = α-OH; R2 = β-OH B. hyrcana [110]
284 (+)-7-deoxy-O6-Buxafurandiene R1 = α-OH; R2 = β-H B. hyrcana [110]
285 2α, 16α-Diacetoxy-9β, 11b-epoxybuxamidine R1 = OAc; R2 = Bz; R3 = H; R4 = α-OAc B. papillosa [89]
286 Buxapapillinine R1 = OAc; R2 = Bz; R3 = α-OAc; R4 = H B. sempervirens; B. hyrcana [106, 110]
287 Buxusemine D R1 = R4 = H; R2 = Bz; R3 = α-OAc B. sempervirens [108]
288 Papillozine C B. papillosa [89]
289 Sempervirooxazolidine B. sempervirens [96]
290 Hyrcanine B. hyrcana [112]
291 Buxaquamarine B. hyrcana [110]
292 O2-Natafuranamine B. natalensis [104]
293 17-Oxo-3-benzoylbuxadine B. hyrcana [94]

Alkaloids 248-254 and 290-291 are members of the class having a tetrahydro-oxazine moiety incorporated in ring A, while in compound 288 an oxazine ring is attached to ring D [89]. The presence of this ring can be easily recognized by the 1H NMR spectrum exhibiting the presence of two pairs of AB doublets at δ 3.20-4.50 [91]. Compounds 255-258 belong to a unique class having a conjugated triene system at △1, 2, △10, 19 and △9, 11. Compounds 259-264, 282-284 and 292 belong to the rarely occurring class having an additional tetrahydrofuran ring incorporated in their structures through the ether linkage between C-10, C-2, or C-10 and C-23. Buxalongifolamidine (268) and 270-272 containing a hydroxyl group at C-10 may support the plausible biosynthesis of the ether linkage in these alkaloids [107]. Compounds 285-287 and 292 are rare cyclopregnane alkaloids featuring an epoxy motif [108]. Sempervirooxazolidine (289) also represents a novel structure having an oxazolidine moiety incorporated in its structure at C-2 and C-3 [96]. The compound 17-Oxo-3-benzoylbuxadine (293) having a carbonyl group at C-17 has been isolated from B. hyrcana [94].

2.1.3 Cholestane alkaloids

Based on the carbon framework, C27 alkaloids can be divided into two types: C-nor-D-homosteroidal alkaloids and cholestane alkaloids. The former, usually referred to as Veratrum steroidal alkaloids, characterised by a five-membered C-ring and six-membered D-ring system, can be further divided into cevanine, veratramine, and jervine types. The latter, usually named Solanum steroidal alkaloids, containing the common ABCD steroid skeleton, generally occurring as glycosides, can be grouped into spirosolane, solanidine and verazine types.

A total of 310 new members (294-603) were derived mainly from the genus Solanum in the Solanaceae family, and the genera Veratrum and Fritillaria in Liliaceae family.

2.1.3.1 Cevanine type

Members of the cevanine type are characterized by the hexacyclic benzo [7, 8] fluoreno[2, 1-β]quinolizine nucleus (Fig. 7) [15]. This type is the largest representative group of C-nor-D-homosteroidal alkaloids, and currently comprises 91 new members (294-384) from Veratrum and Fritillaria genera in the Liliaceae family (Table 6).

Fig. 7

Structures of cevanine type steroidal alkaloids 294-384

Table 6

Structures and sources of cevanine type steroidal alkaloids 294-384

No Compounds Substitution groups and others Sources References
294 Veratrenone Veratrum album [118]
295 Shinonomenine R1 = β-OH; R2 = R4 = H; R3 = CH3 V. grandiflorum [127]
296 Veraflorizine R1 = β-OH; R2 = H; R3 = OH; R4 = CH3 V. grandiflorum [127]
297 Fritillarizine R1 = α-OH; R2 = H; R3 = OH; R4 = CH3 Fritillaria verticillata [128]
298 Veramarine-3-yl formate R1 = β-OCOH; R2 = β-OH; R3 = OH; R4 = CH3 Veratrum nigrum [129]
299 Baimonidine: R1 = α-OH; R2 = β-OH; R3 = OH; R4 = CH3; R5 = H; R6 = β-CH3 Fritillaria verticillata [130]
300 Isoverticine R1 = R2 = β-OH; R3 = OH; R4 = CH3; R5 = H; R6 = β-CH3 F. verticillata [130]
301 Isobaimonidine R1 = R2 = α-OH; R3 = OH; R4 = CH3; R5 = H; R6 = β-CH3 F. verticillata [119]
302 3-β-d-Petilinineglucoside R1 = d-Glc; R2 = α-OH; R3 = H; R4 = CH3; R5 = H; R6 = α-CH3 Fritillaria ussuriensis [131]
303 Ebeiedinone R1 = β-OH; R2 = O; R3 = H; R4 = CH3; R5 = H; R6 = β-CH3 F. ebeiensis [132]
304 Delafrine R1 = R2 = β-OH; R3 = CH3; R4 = H; R5 = H; R6 = β-CH3 F. delavayi [133]
305 Delafrinone R1 = β-OH; R2 = O; R3 = CH3; R4 = H; R5 = H; R6 = β-CH3 F. delavayi [133]
306 Zhebeinine R1 = β-OH; R2 = α-OH; R3 = OH; R4 = CH3; R5 = H; R6 = α-CH3 F. thunbergii [134]
307 Puqiedinone R1 = β-OH; R2 = O; R3 = H; R4 = CH3; R5 = H; R6 = α-CH3 F. puqiensis [135]
308 Zhebeinone R1 = β-OH; R2 = O; R3 = OH; R4 = CH3; R5 = H; R6 = α-CH3 F. thunbergii [136]
309 Dongbeinine R1 = β-OH; R2 = O; R3 = CH3; R4 = H; R5 = H; R6 = β-CH3 F. thunbergii [137]
310 Dongbeirine R1 = β-OH; R2 = O; R3 = CH3; R4 = H; R5 = H; R6 = α-CH3 F. thunbergii [137]
311 Ebeiedine R1 = R2 = β-OH; R3 = H; R4 = CH3; R5 = H; R6 = β-CH3 F. ebeiensis [138]
312 Impericine R1 = R2 = β-OH; R3 = CH3; R4 = H; R5 = H; R6 = β-CH3; △23, 24 F. imperialis [139]
313 Forticine R1 = R2 = β-OH; R3 = CH3; R4 = H; R5 = H; R6 = β-CH3 F. imperialis [139]
314 Lichuanine R1 = R2 = β-OH; R3 = CH3; R4 = H; R5 = H; R6 = α-CH3 F. lichuanensis [140]
315 Puqiedine R1 = R2 = β-OH; R3 = H; R4 = CH3; R5 = H; R6 = α-CH3 F. puqiensis [141]
316 3α-Puqiedin-7-ol R1 = R3 = α-OH; R2 = β-OH; R4 = H; R5 = H; R6 = β-CH3 F. puqiensis [141]
317 Yibeinone F R1 = O-β-d-Glc; R2 = α-OH; R3 = H; R4 = CH3; R5 = α-OH; R6 = β-CH3 F. pallidiflora [142]
318 Verticine N-oxide R1 = α-OH; R2 = OH; R3 = CH3 F. thunbergii [143]
319 Verticinone N-oxide R1 = O; R2 = OH; R3 = CH3 F. thunbergii [143]
320 Isoverticine-β-N-oxide R1 = β-OH; R2 = OH; R3 = CH3 F. wabuensia [144]
321 Lichuanisinine R1 = β-OH; R2 = CH3; R3 = H F. lichuanensis [140]
322 Pingbeimine A R1 = α-OH; R2 = H F. ussuriensis [145]
323 Pingbeimine B R1 = α-OH; R2 = OH F. ussuriensis [146]
324 Pingbeimine C R1 = O; R2 = H F. ussuriensis [147]
325 Delavine R1 = R2 = β-OH; R3 = H; R4 = CH3 F. delavayi [148]
326 Hupeheninoside R1 = β-d-Glc; R2 = β-OH; R3 = H; R4 = CH3 F. hupehensis [149]
327 Delavinone R1 = R3 = H; R2 = O; R4 = CH3 F. delavayi [148]
328 Hupehenirine R1 = O; R2 = β-OH; R3 = H; R4 = CH3 F. hupehensis [150]
329 Yibeinoside A R1 = O-β-d-Glc; R2 = O; R3 = H; R4 = CH3 F. pallidiflora [151]
330 Hupehemonoside R1 = β-d-Glc; R2 = O; R3 = OH; R4 = CH3 F. delavayi [152]
331 Delavine-3-O-β-d-Glucopyranoside R1 = O-β-d-Glc; R2 = β-OH; R3 = H; R4 = CH3 F. persica [153]
332 Yubeinine R1 = α-OH; R2 = O; R3 = OH; R4 = CH3 F. yuminensis [154]
333 Yubeiside R1 = O; R2 = β-O-β-d-Glc; R3 = R4 = H F. yuminensis [154]
334 Hupeheninate R1 = Ac; R2 = β-OH; R3 = H; R4 = CH3 F. delavayi [155]
335 Imperialine R1 = β-OH; R2 = O; R3 = OH; R4 = CH3 F. pallidiflora [156]
336 Chuanbeinone R1 = R3 = H; R2 = O; R4 = CH3; R5 = β-CH3; R6 = β-H F. delavayi [157]
337 Hareperminside R1 = d-Glc; R2 = β-OH; R3 = H; R4 = CH3; R5 = α-CH3; R6 = β-H F. karelinii [158]
338 Tortifoline R1 = R4 = H; R2 = β-OH; R3 = CH3; R5 = β-CH3; R6 = β-H F. tortifolia [159]
339 Siechuansine R1 = H; R2 = α-OH; R3 = OH; R4 = CH3; R5 = α-CH3; R6 = β-H F. siechuanica [160]
340 Songbeinone R1 = R4 = H; R2 = O; R3 = CH3; R5 = β-CH3; R6 = β-H F. unibracteata [161]
341 Yibeinoside B R1 = d-Glc; R2 = O; R3 = H; R4 = CH3; R5 = β-CH3; R6 = β-H F. pallidiflora [151]
342 Persicanidine B/Harepermine R1 = R3 = H; R2 = β-OH; R4 = CH3; R5 = α-CH3; R6 = β-H F. karelinii; F. persica [158, 162]
343 Yibeinone D R1 = d-Glc; R2 = O; R3 = CH3; R4 = OH; R5 = β-CH3; R6 = α-H F. pallidiflora [156]
344 Wanpeinine A R1 = α-OH; R2 = OH; R3 = CH3; R4 = β-CH3; R5 = α-H; R6 = R7 = β-H F. anhuiensis [163]
345 Persicanidine A R1 = β-OH; R2 = H; R3 = CH3; R4 = α-CH3; R5 = R7 = α-H; R6 = β-H F. persica [164]
346 Yibeirine R1 = β-OH; R2 = OH; R3 = CH3; R4 = β-CH3; R5 = R7 = β-H; R6 = α-H F. pallidiflora [123]
347 Yibeinone C R1 = O; R2 = OH; R3 = CH3; R4 = α-CH3; R5 = R7 = β-H; R6 = α-H F. pallidiflora [156]
348 Yibeinone E R1 = O; R2 = CH3; R3 = H; R4 = α-CH3; R5 = R6 = α-H; R7 = H F. pallidiflora [165]
349 Germaline R1 = R3 = R6 = H; R2 = COC(OH)(CH3)CH(OAc)CH3; R4 = α-OH; R5 = α-O-2-methylbutyroyl Veratrum. lobelianum [166]
350 Germatetrine R1 = R3 = R6 = H; R2 = COC(OH)(CH3)CH(OAc)CH3; R4 = α-OAc; R5 = α-O-2-methylbutyroyl V. lobelianum [166]
351 Stenophylline A R1 = R3 = R6 = H; R2 = Ang; R4 = α-OH; R5 = α-O-Ang V. stenophyllum [167]
352 Maackinine R1 = R3 = R6 = H; R2 = Ang; R4 = α-OAc; R5 = α-O-Ang V. maackii [168]
353 Verussurinine R1 = R2 = R3 = H; R4 = R5 = α-OH; R6 = 2-methylbutyroyl V. nigrum var. ussuriense [169]
354 Verussurine R1 = R3 = R6 = H; R2 = Ver; R4 = α-OAc; R5 = α-OCOCH(CH3)CH2CH3 V. nigrum var. ussuriense [170]
355 Verabenzoamine R1 = R3 = R6 = H; R2 = Ver; R4 = α-OH; R5 = α-OCOCH(CH3)CH2CH3 V. nigrum var. ussuriense [170]
356 Angeloylzygadenine R1 = R3 = R4 = R6 = H; R2 = Ang; R5 = α-OH V. viride [171]
357 Zygadenine R1 = R2 = R3 = R4 = R6 = H; R5 = α-OH V. viride [171]
358 Germine R1 = R2 = R3 = R6 = H; R4 = β-OH; R5 = α-OH V. viride [171]
359 15-O-Methylbutyroylgermine R1 = R2 = R3 = R6 = H; R4 = β-OH; R5 = α-O-Methylbutyroyl V. viride [171]
360 Neojerminalanine R1 = α-OAc; R2 = R3 = R6 = H; R4 = α-OH; R5 = α-OOCOCH(CH3)CH2CH3 V. album [172]
361 15-Angeloylgermine R1 = R2 = R3 = R6 = H; R4 = α-OH; R5 = Ang V. taliense [173]
362 R1 = R3 = R6 = H; R2 = Ac; R4 = α-OAc; R5 = Ang V. dahuricum [174]
363 R1 = R3 = R5 = R6 = H; R2 = Ver; R4 = α-OH V. dahuricum [174]
364 R1 = R3 = R6 = H; R2 = Ac; R4 = α-OH; R5 = Ang V. dahuricum [174]
365 R1 = R3 = R6 = H; R2 = Ver; R4 = α-OH; R5 = Ang V. dahuricum [174]
366 15-O-(2-Methylbutanoyl)-3-O-veratroylprotoverine R1 = R6 = H; R2 = Ver; R3 = R4 = α-OH; R5 = α-OCOCH(CH3)CH2CH3 V. nigrum [175]
367 Veramadine A R1 = R3 = R5 = R6 = H; R2 = Ver; R4 = α-OH V. maackii var. japonicum [176]
368 Veramadine B R1 = R2 = R3 = R4 = R5 = R6 = H V. maackii var. japonicum [176]
369 Ebeienine R1 = R2 = β-OH Fritillaria ebeiensis [138]
370 Ziebeimine R1 = α-OH; R2 = β-OH F. ebeiensis [132]
371 Heilonine F. ussuriensis [121]
372 Pingbeinone F. ussuriensis [120]
373 Ussuriedine R1 = β-OH; R2 = H F. ussuriensis [177]
374 Ussuriedinone R1 = O; R2 = H F. ussuriensis [177]
375 Ussurienine R1 = β-OH; R2 = CH3 F. ussuriensis [177]
376 Ussurienone R1 = O; R2 = CH3 F. ussuriensis [177]
377 Taipaienine R1 = H; R2 = β-H F. taipaiensis [122]
378 Yibeisine R1 = OH; R2 = α-H F. pallidiflora [123]
379 Neoverataline A R = H Veratrum taliense [125]
380 Neoverataline B R = α-OH V. taliense [125]
381 R = Ver V. nigrum [126]
382 Frithunbol A Fritillaria thunbergii [178]
383 Frititorine A F. tortifolia [124]
384 Frititorine B R = d-Glc F. tortifolia [124]

Veratrenone (294), the first alkaloid with a cevanine skeleton from V. album, was investigated in 1974 [118]. The structure of isobaimonidine (301), the C-6 epimer of baimonidine (299), was deduced by chemical transformation [119]. Eleven glycoalkaloids (302, 317, 326, 329-331, 333, 337, 341, 343 and 384) have been isolated from various Fritillaria species in cevanine-type alkaloids. Alkaloid pingbeinone (372) has a unique structure with a lack of a C-18 methylene unit, and its structure could be unequivocally established by X-ray diffraction of its corresponding hydroiodide salt [120]. Alkaloids 349-368 belong to the rarely occurring class of cholestane alkaloids having a tetrahydrofuran ring incorporated in their structures. Heilonine (371), the first example with an aromatic D-ring in the group of cevanine alkaloids, was isolated from Fritillaria ussuriensis in the group of Kaneko [121]. Compounds 373-376 are four unique steroidal alkaloids with a seven-membered G-ring formed by a connection between C-18 and C-27. Taipaienine (377) [122] and yibeisine (378) [123], which are unique in bearing a C-25 hydroxyl moiety as of a cevanine system, have been isolated from Fritillaria taipaiensis and Fritillaria pallidiflora, respectively. Compounds 318-321 and frititorine B (384) [124] are steroidal alkaloid N-oxide derivatives. Neoverataline A (379) and neoverataline B (380), having a novel 3, 4-secocevane-4, 9-olid-3-oic acid skeleton, were obtained from the genus Veratrum [125]. Compound 381 possesses a rare 9-hydroxy moiety within cevanine-type alkaloids [126].

2.1.3.2 Veratramine type

The veratramine type of steroidal alkaloids, in which ring E of cevane has been opened at C-18 (Fig. 8). Compounds 385-411, a total of 27 veratramine alkaloids, have been found in Veratrum and Fritillaria (Table 7).

Fig. 8

Structures of veratramine type steroidal alkaloids 385-411

Table 7

Structures and sources of veratramine type steroidal alkaloids 385-411

No Compounds Substitution groups and others Sources References
385 Hosukinidine R1 = R2 = R4 = H; R3 = β-CH3 Veratrum grandiflorum [180]
386 Veratramanol A R1 = X; R2 = β-H; R3 = α-CH3; R2 = β-OAc Veratrum maackii var. japonicum [181]
387 Veratramine-N-oxide V. mentzeanum [182]
388 Ningpeisine R = H Fritillaria ningguoensis [183]
389 Ningpeisinoside R = d-Glc F. ningguoensis [183]
390 20-Isoveratramine R1 = H; R2 = H; R3 = β-CH3 Veratrum patulum [184]
391 Veratramine-3-yl acetate R1 = Ac; R2 = H; R3 = α-CH3 V. nigrum [129]
392 Veratramine R1 = H; R2 = H; R3 = α-CH3 V. dahuricum [185]
393 Veratrosine R1 = d-Glc; R2 = H; R3 = α-CH3 V. dahuricum [185]
394 Veratravine E R1 = H; R2 = OH; R3 = α-CH3 Veratrum taliense [186]
395 23-O-β-d-Glucopyranosyl-20-isoveratramine R = d-Glc V. patulum [187]
396 (22S, 23R, 25S)-23-O-β-d-glucopyranosyl-5, 11, 13-veratratriene-3b, 23-diol R = d-Glc V. patulum [187]
397 Veramarine V. album [172]
398 Impranine R = O Fritillaria imperialis [179]
399 Dihydroimpranine R = β-OH F. imperialis [179]
400 Puqienine A R = β-OH F. puqiensis [188]
401 Puqienine B R = O F. puqiensis [188]
402 Yibeinone B R1 = H; R2 = β-OH; R3 = α-H; R4 = O F. pallidiflora [156]
403 Veratravine F R1 = α-OH; R2 = α-OH; R3 = β-H; R4 = H Veratrum taliense [186]
404 Veratravine G R1 = α-OH; R2 = β-OH; R3 = β-H; R4 = H Veratrum taliense [186]
405 Veratravine A R = d-Glc Veratrum taliense [186]
406 Veratravine B Veratrum taliense [186]
407 Veratravine C Veratrum taliense [186]
408 Veratravine D Veratrum taliense [186]
409 5(20R, 24R)23-oxo-24-methylsolacongetidine R = β- CH3 Veratrum grandiflorum [189]
410 5(20S, 24R)23-oxo-24-methylsolacongetidine R = α-CH3 V. grandiflorum [189]
411 Zhebeisine Fritillaria thunbergii [190]

Thirteen alkaloids, 387, 390-394, 402-408 containing an aromatic D-ring are unusual in C27 steroidal alkaloids, and concurrently 387 is a steroidal alkaloid N-oxide derivative. A chemical investigation of the hypogeal parts of Fritillaria imperialis furnished two unique bases, impranine (398) and dihydroimpranine (399), which have a methyl group at C-12. This is the first time the novel "impranane" class derived from the veratramine skeleton has been found in the genus Fritillaria [179]. Veratravine A (405) and zhebeisine (411) contain a new oxazinane ring F forming a rare 6/6/5/6/6/6 fused-ring system.

2.1.3.3 Jervine type

The steroidal alkaloids of the jervine subgroup are hexacyclic compounds that have the tetrahydrofuran E ring fused onto a methylpiperidine F ring system forming an ether bridge between carbon atoms C17 and C23 (Fig. 9) [15]. The jervine type currently consists of 29 new members (412-440) from Veratrum and Fritillaria (Table 8).

Fig. 9

Structures of jervine type steroidal alkaloids 412-440

Table 8

Structures and sources of jervine type steroidal alkaloids 412-440

No Compounds Substitution groups and others Sources References
412 Verdine R1 = β-OH; R2 = H; R3 = R4 = α-OH Veratrum dahuricum [191]
413 1-Hydroxy-5, 6-dihydrojervine R1 = α-OH; R2 = R4 = H; R3 = β-OH V. album [196]
414 2β-Hydroxyverdine R1 = R2 = β-OH; R3 = R4 = α-OH V. dahuricum [197]
415 (1β, 3α, 5β)-1, 3-Dihydroxyjervanin-12-en-11- one R1 = β-OH; R2 = R4 = H; R3 = α-OH V. nigrum [198]
416 Veratraline C R1 = R3 = α-OH; R2 = R4 = H V. taliense [199]
417 Kuroyurinidine R1 = β-OH; R2 = α-OH; R3 = β-OH; R4 = α-H Fritillaria camtschatcensis [193]
418 23-Isokuroyurinidine R1 = β-OH; R2 = α-OH; R3 = β-OH; R4 = β-H F. maximowiczii [194]
419 Frithunbol B R1 = H; R2 = β-OH; R3 = O; R4 = β-H F. thunbergii [178]
420 Frititorinec R1 = H; R2 = α-OH; R3 = O; R4 = α-H Fritillaria tortifolia [124]
421 Yibeissine R1 = β-OH; R2 = β-CH3 F. pallidiflora [200]
422 Tortifolisine R1 = H; R2 = α-CH3 F. tortifolia [201]
423 Verapatulin R1 = H; R2 = O; R3 = COOCH3 Veratrum patulum [184]
424 O-Acetyljervine R1 = Ac; R2 = O; R3 = H V. album [202]
425 Methyljervine-N-3′-propanoate R1 = H; R2 = O; R3 = (CH2)2COOCH3 V. album [202]
426 Neoverapatuline R1 = H; R2 = α-OH; R3 = COOCH3 V. nigrum [198]
427 Jervine R1 = R3 = H; R2 = O V. dahuricum [185]
428 Jervine-3-yl formate R1 = COH; R2 = O; R3 = H V. nigrum [129]
429 Veratraline A R1 = H; R2 = O; R3 = CH2NHAc V. taliense [199]
430 Jervinone V. album [196]
431 23-Methoxycyclopamine R1 = H; R2 = CH3 V. nigrum [175]
432 Cyclopamine R1 = R2 = H V. californicum [4]
433 23-methoxycyclopamine 3-O-β-d-glucopyranoside R1 = d-Glc; R2 = CH3 V. maackii [203]
434 Veraussine A R1 = R3 = α-OH; R2 = β-OH; R4 = COOEt V. nigrum var. ussuriense [204]
435 Veraussine B R1 = R3 = α-OH; R2 = β-OH; R4 = COOCH3 V. nigrum var. ussuriense [204]
436 (1β, 3β, 5β)-1, 3-Dihydroxyjervanin-12(13)-en-11-one R1 = R3 = β-OH; R2 = R4 = H V. nigrum [129]
437 6, 7-Epoxyverdine V. taliense [195]
438 Jerv-5, 11-diene-3β, 13β-diol V. nigrum [129]
439 Yibeinone A Fritillaria pallidiflora [156]
440 Veratraline B Veratrum taliense [199]

Verdine (412) was first separated from the bulbs of Veratrum dahuricum in 1980 [191], and its structure was finally elucidated in 1984 by X-ray diffraction [192]. Two new steroidal alkaloids, kuroyurinidine (417) [193] and 23-isokuroyurinidine (418) [194], bearing C-2β, C-3α, and C-6β hydroxyl groups, were found in the genus Fritillaria. Whole plants of Veratrum taliense have yielded a novel steroidal alkaloid, 6, 7-epoxyverdine (437), whose structure with an epoxide functionality at C-5/C-6 was determined by 2D NMR spectroscopic analysis [195]. Yibeinone A (439) features a jervine skeleton with a rare 12α, 13α-epoxy ring [156].

2.1.3.4 Spirosolane type

Spirosolane alkaloids (441-526) have a unique 1-oxa-6-azaspiro[4.5] decane ring system in ring E, which can form a spirosolane 22-α N type and 22-β N type (Fig. 10) [205]. They were reported from Solanum and Lycopersicon in the Solanaceae family, Fritillaria meleagris and Lilium longiflorum in the Liliaceae family (Table 9).

Fig. 10

Structures of spirosolane type steroidal alkaloids 441-526

Table 9

Structures and sources of spirosolane type steroidal alkaloids 441-526

No Compounds Substitution groups and others Sources References
441 β-Soladulcine R1 = Solatriose; R2 = R3 = R5 = H; R4 = CH3 Solanum dulcamara [210]
442 Soladulcidine R1 = R2 = R3 = R4 = R5 = H S. dulcamara [211]
443 Soladulcine A R1 = Chacotriose; R2 = R3 = R5 = H; R4 = CH3 S. dulcamara [212]
444 Soladulcine B R1 = Lycotetraose; R2 = R3 = R5 = H; R4 = CH3 S. dulcamara [212]
445 Dihydrosolasuaveoline R1 = l-Rha-(1 → 2)-[D-Glc-(1 → 2)-d-Glc-(1 → 4)]-d-Gal; R2 = R3 = R5 = H; R4 = CH3 S. suaveolens [213]
446 Solalyratine A R1 = d-Xyl-(1 → 3)-d-Gal; R2 = R3 = R5 = H; R4 = CH3 S. lyratum [214]
447 Solalyratine B R1 = [d-Xyl-(1 → 2)-d-Glc-(1 → 4)-d-Gal]; R2 = R3 = R5 = H; R4 = CH3 S. lyratum [214]
448 Esculeoside A R1 = Lycotetraose; R2 = OAc; R3 = R4 = H; R5 = CH2-O-d-Glc Lycopersicon esculentum var. cerasiforme [206]
449 Lycotetraose G R1 = Lycotetraose; R2 = OAc; R3 = O-d-Glc; R4 = CH3; R5 = H Lycopersicon esculentum var. cerasiforme [206]
450 22-Imido-3-[4ʹ-(6ʺ-deoxy-α-l-mannoside)-β-d-glucoside]-5-dehydro spirostane R1 = l-Rha-(1 → 4)-d-Glc; R2 = R3 = R4 = H; R5 = CH3 Solanum xanthocarpum [215]
451 Neorickiioside B R1 = Lycotetraose; R2 = OH; R3 = R5 = H; R4 = CH3 S. neorickii [216]
452 β2-Tomatine R = d-Xyl-(1 → 3)-d-Glc-(1 → 4)-d-Gal Lycopersicon esculentum [217]
453 Dihydro-β-Solamarine R = Chacotriose Solanum dulcamara [218]
454 Polyanine R = d-Xyl-(1 → 2)-d-Xyl-(1 → 3)-d-Glc S. polyadenium [219]
455 Sisunine R = Commertetraose S. ajanhuiri [220]
456 Tomatidine-3-O-β-d-glucopyranoside R = d-Glc S. arboreum [221]
457 Tomatidine-3-O-β-[d-xylopyranosyl-(1 → 6)]-β-d-glucopyranoside R = d-Xyl-(1 → 6)-d-Glc S. arboreum [221]
458 Tomatidine R = H Lycopersicon esculentum [222]
459 α-Tomatine R = Lycotetraose L. esculentum [216]
460 β-Tomatine R = d-Glc-(1 → 2)-d-Glc-(1 → 4)-d-Gal Solanum nigrum [223]
461 γ-Tomatine R = d-Glc-(1 → 4)-d-Gal S. tuberosum [223]
462 Δ-Tomatine R = d-Gal Lycopersicon esculentum [223]
463 γ-Solamarine R = l-Rha-(1 → 4)-d-Glc Solanum dulcamara [224]
464 γ1-Solamarine R = l-Rha-(1 → 2)-d-Glc S. dulcamara [225]
465 δ-Solamarine R = d-Glc-(1 → 3)-d-Gal S. dulcamara [225]
466 22, 25-Diepisycophantine R = [D-Xyl-(1 → 2)-l-Rha-(1 → 4)]-l-Rha-(1 → 2)-d-Glc S. sycophanta [226]
467 Solaculine A R = [D-Xyl-(1 → 2)-l-Rha-(1 → 4)]-l-Rha-(1 → 2)-d-Glc S. aculeastrum [227]
468 Tomatidenol R = H S. auiculare [228]
469 (22S, 25S)-spirosol-5-en-3β-yl O-β-d-glucopyranosyl-(1 → 4)-O-[α-l-rhamnopyranosyl-(1 → 2)]-β-d-glucopyranoside R = d-Glc-(1 → 4)-[L-Rha-(1 → 2)]-d-Glc Fritillaria meleagris [229]
470 β-Solamarine R = d-Glc-(1 → 4)-[L-Rha-(1 → 2)]-d-Glc S. nigrum [223]
471 α-Solamarine R = Solatriose Solanum nigrum [223]
472 Dehydrotomatine R = Lycotetraose Lycopersicon esculentum [223]
473 N-hydroxysolamargine R = Chacotriose S. robustum [230]
474 3-O-β-lycotetraoside of solasodine R1 = Lycotetraose; R2 = R3 = R4 = R5 = H S. japonense [231]
475 Spirosolane β-d-glucopyranoside deriv R1 = Chacotriose; R2 = R4 = H; R3 = β-OH; R5 = OH S. nigrum [232]
476 Solaverine I R1 = Chacotriose; R2 = R3 = R5 = H; R4 = OH S. toxicarium; S. verbascifolium [233]
477 Solaverine II R1 = d-Glc-(1 → 3)-[L-Rha-(1 → 2)]-d-Gal; R2 = R3 = R5 = H; R4 = OH S. toxicarium; S. verbascifolium [233]
478 Solaverine III R1 = Chacotriose; R2 = R3 = H; R4 = R5 = OH S. toxicarium; S. verbascifolium [233]
479 Incanumine R1 = [D-Xyl-(1 → 4)-l-Rha-(1 → 4)]-d-Xyl-(1 → 3)-d-Glc; R2 = R3 = R4 = R5 = H S. incanum [234]
480 (23S)-23-Hydroxyanguivine R1 = d-Xyl-(1 → 3)-[L-Rha-(1 → 2)]-d-Glc; R2 = R3 = R5 = H; R4 = OH S. uporo [233]
481 β1-Solamargine R1 = l-Rha-(1 → 2)-d-Glc; R2 = R3 = R4 = R5 = H S. robustum [235]
482 Anguivine R1 = [D-Xyl-(1 → 3)-l-Rha-(1 → 2)]-d-Glc; R2 = R3 = R4 = R5 = H S. anguivi [236]
483 Robustine R1 = l-Ara-(1 → 3)-[L-Rha-(1 2)]-[L-Rha-(1 → 4)]-d-Glc; R2 = R3 = R4 = R5 = H S. robustum [235]
484 Ravifoline R1 = l-Rha-(1 → 4)-[L-Rha-(1 → 2)]-d-Xyl; R2 = R3 = R4 = R5 = H S. platanifolium [237]
485 (3β, 22α, 25R)-Spirosol-5-en-3-yl 6-deoxy-α-l-mannopyranoside R1 = l-Rha; R2 = R3 = R4 = R5 = H S. unguiculatum [238]
486 Robeneoside A R1 = Chacotriose; R2 = R4 = R5 = H; R3 = α-OH S. lycocarpum [238]
487 3-O-α-l-rhamnopyranosyl-(1 → 2)-α-l-rham-nopyranosyl-(1 → 4)-β-d-galactopyranosyl solasodine R1 = l-Rha-(1 → 4)-[L-Rha-(1 → 2)]-d-Gal; R2 = R3 = R4 = R5 = H S. unguiculatum [238]
488 Sycophantine R1 = [D-Xyl-(1 → 2)-l-Rha-(1 → 4)]-l-Rha-(1 → 2)-d-Glc; R2 = R3 = R4 = R5 = H S. coccineum [239]
489 Solanelagnin R1 = l-Rha-(1 → 4)-[L-Rha-(1 → 3)]-d-Glc; R2 = R3 = R4 = R5 = H S. elaeagnifolium [240]
490 12-Hydroxysolasonine R1 = Solatriose; R2 = R4 = R5 = H; R3 = β-OH S. uporo [241]
491 Isoanguivine R1 = d-Xyl-(1 → 3)-[L-Rha-(1 → 2)]-d-Gal; R2 = R3 = R4 = R5 = H S. uporo [241]
492 Solashabanine R1 = [D-Glc-(1 → 6)-d-Glc-(1 → 3)]-l-Rha-(1 → 2)-d-Gal; R2 = R3 = R4 = R5 = H S. suaveolens [213]
493 (23S)-23-Hydroxyisoanguivine R1 = d-Xyl-(1 → 3)-[L-Rha-(1 → 2)]-d-Gal; R2 = R3 = R5 = H; R4 = OH S. uporo [241]
494 Solasuaveoline R1 = l-Rha-(1 → 2)-[D-Glc-(1 → 2)-d-Glc-(1 → 4)-d-Gal; R2 = R3 = R4 = R5 = H S. suaveolens [213]
495 (25R)-3β-[O-α-l-Rhamnopyranosyl-(1 → 2)-[O-β-d-glucopyranosyl-(1 → 4)-O-α-l-rhamnopyranosyl-(1 → 4)]-β-d-glucopyranosyl]-22α-spirosol-5-ene R1 = [D-Glc-(1 → 4)-l-Rha-(1 → 4)]vRha-(1 → 2)-d-Glc; R2 = R3 = R4 = R5 = H S. aculeastrum [242]
496 Arudoine R1 = d-Xyl-(1 → 3)-[L-Rha-(1 → 2)]-[L-Rha-(1 → 4)]-d-Glc; R2 = R3 = R4 = R5 = H S. arundo [243]
497 Robeneoside B R1 = Solatriose; R2 = R4 = R5 = H; R3 = α-OH S. lycocarpum [244]
498 27-Hydroxysolamargine R1 = Chacotriose; R2 = R3 = R4 = H; R5 = OH S. asperum [244]
499 12-Hydroxysolamargine R1 = Chacotriose; R2 = R4 = R5 = H; R3 = β-OH S. lycocarpum [245]
500 α-Solamargine R1 = Chacotriose; R2 = R3 = R4 = R5 = H S. macrocarpon; S. aethiopicum [246]
501 α-Solasonine R1 = Solatriose; R2 = R3 = R4 = R5 = H S. macrocarpon; S. aethiopicum [246]
502 (22R, 25R)-spirosol-5-en-3β-yl R1 = d-Glc-(1 → 4)-[L-Rha-(1 → 2)]-d-Glc; R2 = R3 = R4 = R5 = H Lilium longiflorum [247]
503 O-L-rhamnopyranosyl-(1 → 2)-[6-O-acetyl-β-d-glucopyranosyl-(1 → 4)]-β-d-glucopyranoside R1 = 6-Ac-d-Glc-(1 → 4)-[L-Rha-(1 → 2)]-d-Glc; R2 = R3 = R4 = R5 = H L longiflorum [247]
504 (22R, 25R)-16β-H-22α-N-spirosol-3β-ol-5-ene-3-O-α-L-rhamnopyranosyl-(1 → 2)-[α-L-rhamnopyranosyl-(1 → 4)]-β-d-glucopyranoside R1 = Chacotriose; R2 = R3 = R4 = R5 = H; C16 = R configuration Solanum surattense [207]
505 γ-Solamargine R1 = d-Glc; R2 = R3 = R4 = R5 = H S. nigrum [248]
506 β1-Solasonine R1 = l-Rha-(1 → 2)-d-Gal; R2 = R3 = R4 = R5 = H S. nigrum [248]
507 Solanigroside P R1 = l-Rha-(1 → 4)-d-Glc; R2 = R4 = R5 = H; R3 = α-OH S. nigrum [248]
508 Khasianine R1 = l-Rha-(1 → 4)-d-Glc; R2 = R3 = R4 = R5 = H S. nigrum [249]
509 β2-Solasonine R1 = d-Glc-(1 → 4)-d-Gal; R2 = R3 = R4 = R5 = H S. nigrum [250]
510 7α-Hydroxy-khasianine R1 = l-Rha-(1 → 4)-d-Glc; R2 = α-OH; R3 = R4 = R5 = H S. nigrum [250]
511 7α-Hydroxy-solamargine R1 = Chacotriose; R2 = α-OH; R3 = R4 = R5 = H S. nigrum [250]
512 7α-Hydroxy-solasonine R1 = Solatriose; R2 = α-OH; R3 = R4 = R5 = H S. nigrum [250]
513 Solasodine R1 = R2 = R3 = R4 = R5 = H Lycopersicon esculentum; Solanum nigrum; S.dulcamara [223]
514 γ-Solasonine R1 = d-Gal; R2 = R3 = R4 = R5 = H S. nigrum [223]
515 (25R)-22αN-spirosol-5(6)-en-3β-ol-7-oxo-3-O-α-Lrhamnopyranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 4)]-β-d-glucopyranoside R1 = Chacotriose; R2 = O; R3 = R4 = R5 = H S. nigrum [251]
516 Solasodiene S. torvum [252]
517 (22R, 25R)3β-amino-5α-spirosolane S. triste [208]
518 (22R, 25R)3β-amino-5-spirosolene S. triste [208]
519 (22S, 25S)-3β-aminospirosol-5-ene R = β-NH2; △5, 6 S. arboreum [209]
520 Soladunalinidine R = β-NH2 S. arboreum [209]
521 3-Epi-soladunalinidine R = α-NH2 S. arboreum [209]
522 Caavuranamide R = β-NHCHO S. caavurana [253]
523 5-Tomatidan-3-one R = O S. caavurana [253]
524 5β-solasodan-3-one S. aviccculare [254]
525 4-Tomatiden-3-one S. caavurana [253]
526 (25R)-22αN-spirosol-4(5)-en-3β-ol-6-oxo-3-O-α-Lrhamnopyranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 4)]-β-d-glucopyranoside R = Chacotriose S. nigrum [251]

Spirosolane alkaloids generally occur as glycosides. Compounds 441- 451 have no double bond between C-5 and C-6, and the nitrogen atom in the F ring is always in the α-orientation (22-α N). Ring F can contain other moieties, such as hydroxyl or acetyl groups. Most glycosidic units are attached to the aglycone at the hydroxyl group at C-3, but some of them may be attached at other locations, such as C-6, C-7, C-23, C-25, and C-27. For example, esculeoside A (448) and lycotetraose G (449) have one glucose linked to ring-F at C-25 and C-23, respectively [206]. Compounds 474-515 are the largest members in spirosolane alkaloids, with 22-β N and double bonds between C-5 and C-6. Almost all spirosolane alkaloids at C-16 are in the β-orientation, however, 504 is an exception since it possesses a 16 β-H in its E ring [207]. There are many substitutions and changes in these compounds, such as 475, 478 and 498 have a hydroxy group on C-27 in the F ring, and 486, 497, 499 and 507 have a hydroxy group on C-12 in the C ring. Five rare C-3 amino spirosolane alkaloids, 517-521 [208, 209] were isolated from aerial parts of the genus Solanum.

2.1.3.5 Solanidine type

In the solanidine type, the side-chain of a C27 steroid has been converted into an indolizidine ring (Fig. 11). Solanidine alkaloids (527-555) currently include 29 novel members from Veratrum, Fritillaria and Solanum (Table 10).

Fig. 11

Structures of solanidine type steroidal alkaloids 527-555

Table 10

Structures and sources of solanidine type steroidal alkaloids 527-555

No Compounds Substitution groups and others Sources References
527 α-Chaconine R1 = Chacotriose; R2 = R3 = R5 = H; R4 = R6 = CH3 Solanum chacoense [224]
528 α-Solanine R1 = Solatriose; R2 = R3 = R5 = H; R4 = R6 = CH3 S. tuberosum; S. nigrum [255]
529 Leptine I R1 = Chacotriose; R2 = R3 = H; R4 = R6 = CH3; R5 = OAc S. chacoense [224]
530 Leptinine I R1 = Chacotriose; R2 = R3 = H; R4 = R6 = CH3; R5 = OH S. orbignianum [258]
531 Leptine II R1 = Solatriose; R2 = R3 = H; R4 = R6 = CH3; R5 = OAc S. chacoense [224]
532 Leptinine II R1 = Solatriose; R2 = R3 = H; R4 = R6 = CH3; R5 = OH S. orbignianum [258]
533 Dehydrodemissine R1 = Lycotetraose; R2 = R3 = R5 = H; R4 = R6 = CH3 S. commersonii [259]
534 Dehydrocommersonine R1 = Commertetraose; R2 = R3 = R5 = H; R4 = R6 = CH3 S. chacoense [224]
535 Solanidine R1 = R2 = R3 = R5 = H; R4 = R6 = CH3 S. tuberosum [260]
536 Epirubijervin R1 = R2 = R5 = H; R3 = β-OH; R4 = R6 = CH3 Veratrum grandiflorum [180]
537 Camtschatcanidine R1 = R2 = R3 = R5 = H; R4 = CH3; R6 = CH2OH Fritillaria camtschatcensis [261]
538 Oligoglycoside R1 = [l-Rha-(1 → 2)][D-Glc-(1 → 4)]-d-Glc; R2 = R3 = R5 = H; R4 = R6 = CH3 F. thunbergii [262]
539 (22S, 25S)-solanid-5-en-3β-ol R1 = R2 = R3 = R5 = H; R4 = R6 = CH3 Fritillaria anhuiensis [256]
540 (3β, 7β)-7-Hydroxysolanid-5-en-3-yl 6-deoxy-α-l-mannopyranosyl-(1 → 2)-[6-deoxy-α-l-mannopyranosyl-(1 → 4)]-β-d-glucopyranoside R1 = 6-deoxy-l-Man-(1 → 2)-[6-deoxy-l-Man-(1 → 4)]-d-Glu; R2 = β-OH; R3 = R5 = H; R4 = R6 = CH3 Solanum tuberosum [257]
541 (3β)-7-Oxosolanid-5-en-3-yl 6-deoxy-α-l-mannopyranosyl-(1 → 2)-[6-deoxy-α-l-mannopyranosyl-(1 → 4)]-β-d-glucopyranoside R1 = 6-deoxy-l-Man-(1 → 2)-[6-deoxy-l-Man-(1 → 4)]-d-Glc; R2 = O; R3 = R5 = H; R4 = R6 = CH3 S. tuberosum [257]
542 (3β)-7-Oxosolanid-5-en-3-yl 6-Deoxy-α-l-mannopyranosyl-(1 → 2)-[β-d-glucopyranosyl-(1 → 3)]-β-d-galactopyranoside R1 = 6-deoxy-l-Man-(1 → 2)-[D-Glc-(1 → 3)]-d-Gal; R2 = O; R3 = R5 = H; R4 = R6 = CH3 S. tuberosum [257]
543 Isorubijervine R1 = R2 = R3 = R5 = H; R4 = CH2OH; R6 = CH3 Veratrum viride [263]
544 Rubijervine R1 = R2 = R5 = H; R3 = β-OH; R4 = R6 = CH3 V. taliense [263]
545 Demissine R1 = Lycotetraose; R2 = H Solanum chacoense; S. commersonii [264]
546 Commersonine R1 = Commertetraose; R2 = H S. chacoense; S. commersonii [264]
547 Demissidine R1 = R2 = H S. tuberosum [265]
548 Dihydro-β1-Chaconine R1 = l-Rha-(1 → 2)-d-Glc; R2 = H S. juzepczukii; S. curtilobum [266]
549 Dihydrosolanine R1 = Solatriose; R2 = H S. juzepczukii; S. curtilobum [266]
550 (22R, 25S)-solanid-5-enine-3β, 5α, 6β-triol R = H Fritillaria delavayi [133]
551 (3β, 5α, 6β)-5, 6-Dihydroxysolanidan-3-yl 6-Deoxy-α-l-mannopyranosyl-(1 → 2)-[6-deoxy-α-l-mannopyranosyl-(1 → 4)]-β-d-glucopyranoside R = 6-deoxy-l-Man-(1 → 2)-[6-deoxy-l-Man-(1 → 4)]-d-Glc Solanum tuberosum [257]
552 15, 16-Seco-22αH, 25βH-solanida-5, 14-dien-3β-ol-O-β-d-glucopyranosyl-(1 → 4)-β-d-xylopyranoside R = d-Glc-(1 → 4)]-d-Xyl Fritillaria maximowiczii [194]
553 (22S, 25S)-Solanid-5, 20(21)-dien-3β-ol F. anhuiensis [256]
554 (3β)-14-Hydroxysolanid-5-en-3-yl 4-O-(6-Deoxy-α-l-mannopyranosyl)-β-d-glucopyranoside R = 4-O-(6-deoxy-l-Man)-d-Glc Solanum tuberosum [257]
555 (E)-N-[80(4-hydroxyphenyl)ethyl]-22α, 23α-epoxy-solanida-1, 4, 9-trien-3-imine S. campaniform [267]

α-Solanine (528) was found mainly in the tuber of potato (Solanum tuberosum L.) and in the whole plant of the nightshade (Solanum nigrum Linn.) of the Solanaceae family [255]. The bulbs of F. delavayi yielded (22R, 25S)-solanid-5-enine-3β, 5α, 6β-triol (550) [133], the first example with a glycol moiety at the A- and B-rings in the group of solanidine alkaloids. An investigation of V. dahuricum furnished unusual glycoalkaloid 552 [194], which represents the first member of a new class with a 15, 16-secosolanida-5, 14-diene skeleton. The two novel compounds, 553 [256] and 554 [257], bearing a methylene substituent at C-20 and C-7, respectively, were structurally elucidated by extensive 2D NMR analysis.

2.1.3.6 Verazine type

Members of the verazine type, having a 22/23, 26-epiminocholestane skeleton, are characterized by the absence of ring E and the presence of a piperidine ring D and consist of 46 new members (556-601) (Fig. 12). They were obtained from Veratrum, Fritillaria, Allium victorialis and Zygadenus sibiricus in the Liliaceae family, and only one Solanum species, Solanum Hypomalacophyllum (Table 11).

Fig. 12

Structures of verazine type steroidal alkaloids 556-601

Table 11

Structures and sources of verazine type steroidal alkaloids 556-601

No Compounds Substitution groups and others Sources References
556 Hapepunine R1 = R4 = R5 = R7 = H; R2 = R6 = CH3; R3 = β-OH Fritillaria camtschatcensis [272]
557 Anrakorinine R1 = R4 = R5 = R7 = H; R2 = CH2OH; R3 = β-OH; R6 = CH3 F. camtschatcensis [272]
558 Hapepunine 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside R1 = d-Glc(2 → 1)-l-Rha; R2 = R6 = CH3; R3 = β-OH; R4 = R5 = R7 = H F. thunbergii [262]
559 Pingbeidinoside R1 = H; R2 = R5 = R7 = CH3; R3 = α-OH; R4 = OH; R6 = O-d-Glc F. ussuriensis [273]
560 Pingbeinine R1 = R4 = H; R2 = R5 = CH3; R3 = β-OH; R6 = OH; R7 = CH3 F. ussuriensis [274]
561 Pingbeininoside R1 = d-Glc; R2 = R5 = CH3; R3 = β-OH; R4 = H; R6 = OH; R7 = CH3 F. ussuriensis [274]
562 Hapepunine 3-O-β-cellobioside R1 = d-Glc(4 → 1)-d-Glc; R2 = R6 = CH3; R3 = β-OH; R4 = R5 = R7 = H F. maximowiczii [193]
563 Muldamine R1 = R2 = R4 = H; R3 = α-OAc; R5 = R6 = α-H; R7 = β-H Veratrum californicum [275]
564 Stenophylline B R1 = R2 = R3 = H; R4 = OH; R5 = R6 = β-H; R7 = α-H V. stenophyllum [268]
565 Vertaline B R1 = R2 = H; R3 = β-OH; R4 = OH; R5 = R7 = β-H; R6 = α-H V. taliense [276]
566 Veramiline-3-O-β-d-glucopyranoside R1 = d-Glc; R2 = R3 = R4 = H; R5 = R6 = β-H; R7 = α-H V. taliense [277]
567 Stenophylline-β-3-O-β-d-glucopyranoside R1 = d-Glc; R2 = R3 = H; R4 = OH; R5 = R6 = β-H; R7 = α-H V. taliense [277]
568 Veramivirine R1 = R3 = R4 = H; R2 = β-OH; R5 = R7 = β-H; R6 = α-H V. viride [278]
569 Oblonginine R1 = R2 = R4 = H; R3 = β-OH; R5 = R7 = β-H; R6 = α-H V. oblongum [279]
570 Verazinine R1 = d-Glc; R2 = R3 = R4 = R5 = H; R6 = β-CH3 Zygadenus sibiricus [280]
571 Veranigrine R1 = R3 = R4 = R5 = H; R2 = β-OH; R6 = β-CH3 Veratrum nigrum [281]
572 Veramitaline R1 = R2 = R4 = R5 = H; R3 = α-OH; R6 = β-CH3 V. nigrum [281]
573 (20R, 25R)-12β-O-acetyl-20β-hydroxyisoverazine R1 = R2 = R5 = H; R3 = β-OAc; R4 = OH; R6 = α-CH3 V. grandiflorum [282]
574 (20R, 25R)-12β-O-acetyl-20β-hydroxyisoverazine-3-O-β-d-glucopyranoside R1 = d-Glc; R2 = R5 = H; R3 = β-OAc; R4 = OH; R6 = α-CH3 V. grandiflorum [282]
575 (20R, 25R)-isoveralodinine R1 = d-Glc; R2 = R4 = H; R3 = β-OAc; R5 = O; R6 = α-CH3 V. grandiflorum [282]
576 Rhamnoveracintine R = l-Rha V. album [269]
577 Puqietinone R1 = H; R2 = α-CH3; R3 = CH3; R4 = α-H Fritillaria puqiensis [188]
578 Yibeinoside C R1 = d-Glc(1 → 4)-d-Gal; R2 = β-CH3; R3 = H; R4 = β-H F. pallidiflora [283]
579 N-Demethylpuqietinone R1 = R3 = H; R2 = α-CH3; R4 = α-H F. puqiensis [188]
580 Puqietinonoside R1 = d-Glc; R2 = α-CH3; R3 = CH3; R4 = α-H F. puqiensis [188]
581 (25R)-22, 26-Epimino-3β-hydroxy-5α-cholest-22(N)-en-6-one 3-O-β-d-glucopyranoside R = d-Glc F. persica [284]
582 (25R)-23, 26-Epimino-3β-hydroxy-5α-cholest-23(N)-en-6, 22-dione R1 = H; R2 = α-CH3 F. persica [284]
583 (25R)-23, 26-Epimino-3b-hydroxy-5α-cholest-23(N)-en-6, 22-dione 3-O-β-d-glucopyranoside R1 = d-Glc; R2 = α-CH3 F. persica [284]
584 (20R, 25R)-23, 26-Epimino-3b-hydroxy-5α-cholest-23(N)-en-6, 22-dione R1 = H; R2 = β-CH3 F. persica [284]
585 (20R, 25R)-23, 26-Epimino-3b-hydroxy-5a-cholest-23(N)-en-6, 22-dione 3-O-β-d-glucopyranoside R1 = d-Glc; R2 = β-CH3 F. persica [284]
586 Ebeietinone F. ebeiensis [270]
587 Verdinine R1 = β-OAc; R2 = β-OH; R3 = β-H; R4 = α-H Veratrum lobelianum [271]
588 Fetisinine R1 = α-OH; R2 = H; R3 = α-H; R4 = β-H Fritillaria imperialis [179]
589 Diacetylveralkamine R1 = Ac; R2 = α-OAc; R3 = α-H; R4 = β-CH3 Veratrum lobelianum [285]
590 veralinine 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranoside R1 = l-Rha-(1 → 2)-d-Glc; R2 = H; R3 = β-H; R4 = α-CH3 V. grandiflorum [189]
591 Tetrahydroveralkamine V. lobelianum [285]
592 Deacetoxysolaphyllidine 3-O-β-d-glucopyranoside Solanum hypomalacophyllum [286]
593 4-Keto-5, 6-dihydro-(20S)-verazine S. hypomalacophyllum [286]
594 Allumine A R = H Allium victorialis [287]
595 Allumine B R = d-Glc A. victorialis [287]
596 Allumine C R = d-Glc-CH2OCO(CH2)10CH3 A. victorialis [288]
597 Isoecliptalbine Veratrum maackii [203]
598 Spiraloside A R = l-Rha-(1 → 4)-d-Glc Solanum spirale [289]
599 Spiraloside B R = d-Glc Solanum spirale [289]
600 Spiraloside C R = d-Glc Solanum spirale [289]
601 Tomatillidine 3-O-β-d-glucopyranoside Veratrum dahuricum R = X V. dahuricum [197]

The alkaloidal fraction of Veratrum stenophyllum gave a new 3β, 20β-dihydroxy-△5-22, 26-epiminocholestane alkaloid, Stenophylline B (564). Its structure was established on the basis of spectroscopic comparisons with known verazine-type alkaloids [268]. Rhamnoveracintine (576), having a five-membered heterocyclic ring and l-rhamnose as structural features, is the first example of a C26 steroidal alkaloid from the aerial parts of a Veratrum species [269]. Ebeietinone (586), the first example of a verazine type alkaloid with a 5β-hydroxyl group, was structurally assigned based on MS and NMR and confirmed by X-ray crystallography [270]. Verdinine (587) [271], fetisinine (588) [179] and isoecliptalbine (597) [203], exhibiting a pyridine ring as a structural feature, were pyridyl-pregnane-type steroidal alkaloids, and their structural assignment was performed by extensive spectroscopic techniques and some chemical transformations.

2.1.3.7 Others

Two distinctive alkaloids, veragranine A (602) and veragranine B (603), featuring a 6/6/6/5/6/6 polycyclic structure (Fig. 13), in which a previously unidentified linkage of C-12/23 generates a rigid skeleton, resulting in a new subtype of cholestane steroidal alkaloid, were isolated from Veratrum grandiflorum [290].

Fig. 13

Structures of others cholestane steroidal alkaloids 602-603

2.1.4 Miscellaneous monomeric steroidal alkaloids

2.1.4.1 Samandarines

Approximately 11 samandarines (604-614) are a unique class of steroidal alkaloids isolated and characterized from terrestrial salamanders of the genus Salamandra (Table 12). They differ from other types since they are built by a seven-membered A-ring with nitrogen at position 3. Therefore, they belong to the uncommon group of 3-aza-A-homo-5α, 10α-androstans, an androstane with an N-enlarged A-ring (Fig. 14) [291].

Table 12

Structures and sources of samandarines 604-614

No Compounds Substitution groups and others Sources References
604 Samandarine R = β-OH Salamandra maculosa [293]
605 Samandarone R = O S. maculosa [294]
606 O-acetylsamandarine R = β-OAc S. maculosa [295]
607 O-(S)-3-hydroxybutanoylsamandarine R = β-OCOCH2CH(α-OH)CH3 S. salamandra [296]
608 Samandaridine S. maculosa [294]
609 Cycloneosamandione S. maculosa [292]
610 Cycloneosamandaridin S. maculosa [297]
611 Samandenone S. maculosa [298]
612 Samandinine S. maculosa [299]
613 Samanine R = β-OH S. maculosa [300]
614 Samanone R = O S. salamandra [296]

Fig. 14

Structures of samandarines 604-614

Samandarines can be further grouped according to their constitution. The first group consists of molecules with an oxazolidine system present, including 604-607, 608 and 610-612. Members of the second group, e.g. cycloneosamandion (609), lack an intact oxazolidine system, whereas they share a carbinolamine function [292]. A third group consists of samandarines in which both the oxazolidine system and the carbinolamine group are missing, and only samanine (613) and samanone (614) were described from this group.

2.1.4.2 Batrachotoxins

Only 7 batrachotoxins (615-621) were isolated in minute quantities from the skins of poison arrow frogs (Phyllobates aurotaenia) as well as from the skins and feathers of New Guinea birds (genus Pitohui and Iflita) (Table 13). They exhibit novel structural features, including a steroid-based pentacyclic core skeleton, an intramolecular 3-hemiketal, and a seven-membered oxazapane ring (Fig. 15) [301].

Table 13

Structures and sources of batrachotoxins 615-621

No Compounds Substitution groups and others Sources References
615 Batrachotoxinin A R = H Phyllobates aurotaenia [302]
616 Pseudobatrachotoxin R = X1 P. aurotaenia [302]
617 Batrachotoxin R = X2 P. aurotaenia [302]
618 Homobatrachotoxin R = X3 P. aurotaenia; Pitohui dichrous [302, 303]
619 Batrachotoxinin A-20R-cis-crotonate R = COCHCHCH3 Ifrita kowaldi [304]
620 Batrachotoxinin A-20R-3′-hydroxypentanoate R = COCH2CH(OH)CH2CH3 I. kowaldi [304]
621 Batrachotoxinin A-20R-acetate R = Ac I. kowaldi [304]

Fig. 15

Structures of batrachotoxins 615-621

The structure of pseudobatrachotoxin (616) is the 20α-p-bromobenzoate of batrachotoxinin A (615) [302]. Batrachotoxin (617) is the 20α ester of 615 with 2, 4-dimethylpyrrole-3-carboxylic acid [302], while homobatrachotoxin (618) is the 20α ester of 615 with 2-ethyl-4-methylpyrrole-3-carboxylic acid [303]. These structures were confirmed by partial synthesis of batrachotoxin selective acylation.

2.1.4.3 Plakinamines

Considerable research effort has been focused on the discovery of new bioactive natural products from marine animals. A number of new steroidal alkaloids have been isolated in the process, mostly from marine invertebrates. A marine sponge of the genus Plakina and Corticium sp. yielded nineteen new steroidal alkaloids (622-640), namely, plakinamine (Table 14). Plakinamines have modified ergostane-type steroidal cores, as they possess nitrogen substitution at C-3 in the A ring and linear or cyclized nitrogenous side chains (Fig. 16) [305].

Table 14

Structures and sources of plakinamines 622-640

No Compounds Substitution groups and others Sources References
622 Plakinamine A R1 = R2 = R3 = H Plakina sp. [308]
623 Plakinamine F R1 = R2 = CH3; R3 = O Corticium sp. [309]
624 Plakinamine B R1 = α-NHCH3; R2 = H; R3 = CH3 Plakina sp. [308]
625 Plakinamine H R1 = β-N(CH3)2; R2 = O; R3 = H Corticium sp. [306]
626 4α-Hydroxydemethylplakinamine B R1 = α-NH2; R2 = β-OH; R3 = CH3 Corticium sp. [306]
627 Plakinamines C Corticium sp. [310]
628 Plakinamines D Corticium sp. [310]
629 Plakinamine E Corticium sp. [309]
630 Plakinamine G Corticium sp. [306]
631 Tetrahydroplakinamine A R1 = α-NH2; R2 = H Corticium sp. [306]
632 Dihydroplakinamine K R1 = β-NH2; R2 = β-OAc Corticium niger [307]
633 Plakinamine I C. niger [307]
634 Plakinamine J C. niger [307]
635 Plakinamine K R1 = CH3; R2 = β-OAc C. niger [307]
636 Plakinamine N R1 = R2 = H C. niger [311]
637 Plakinamine O R1 = H; R2 = β-OAc C.niger [311]
638 Plakinamine L R = H Corticium sp. [305]
639 Plakinamine M R = β-OH Corticium sp. [312]
640 Plakinamine P Plakina sp. [313]

Fig. 16

Structures of plakinamines 622-640

Plakinamine G (630) bearing a rare side chain with an α, β-unsaturated γ-lactam ring was structurally assigned by 2D NMR spectroscopy and accurate mass measurements (HR-EIMS) [306]. Most plakinamines contain a substituted pyrrolidine ring in the steroidal side chain, only in plakinamine I (633) the pyrrolidine nitrogen forms an additional fused piperidine ring system [307]. The first natural representative of steroidal alkaloids with a double bond at C-2 and an amine substituent at C-4 was plakinamine J (634) [307]. Three new steroidal alkaloids, plakinamine L, M and P (638-640), have unprecedented acyclic side chains, while other compounds contain cyclized nitrogenous side chains.

2.1.4.4 Cortistatins

Kobayashi et al. isolated a new family of abeo-9(10-19)-androstane-type steroidal alkaloids with oxabicyclo[3.2.1]octane called cortistatins, from the Indonesian marine sponge Corticium simplex (Fig. 17, Table 15) [314]. Up to now, this family has 11 members (641-651), with the B and C rings connected through an interesting and characteristic oxo-bridge.

Fig. 17

Structures of cortistatins 641-651

Table 15

Structures and sources of cortistatins 641-651

No Compounds Substitution groups and others Sources References
641 Cortistatin A R1 = H; R2 = H; H Corticium simplex [315]
642 Cortistatin B R1 = H; R2 = α-H; β-OH C. simplex [315]
643 Cortistatin C R1 = H; R2 = O C. simplex [315]
644 Cortistatin D R1 = OH; R2 = O C. simplex [315]
645 Cortistatin E R1 = H; R2 = X1 C. simplex [316]
646 Cortistatin G R1 = H; R2 = X2 C. simplex [316]
647 Cortistatin H R1 = H; R2 = X3 C. simplex [316]
648 Cortistatin K R1 = H; R2 = X4 C. simplex [317]
649 Cortistatin L R1 = β-OH; R2 = X4 C. simplex [317]
650 Cortistatin F R = X1 C. simplex [316]
651 Cortistatin J R = X4 C. simplex [317]

Cortistatins A-D (641-644) and J-L (651, 648-649) have a 5-membered E-ring decorated with a unique isoquinoline moiety at C-17.

2.2 Dimeric steroidal alkaloids

2.2.1 Cephalostatins

The 20 cephalostatins (652-671) have been isolated only in one marine organism: Cephalodiscus gilchristi, a tiny marine worm predominantly found in shallow and temperate waters (Table 16). The structure of cephalostatins, characterized by an adissymmetric bis-steroidal pyrazine framework, consisting of 13 rings is quite unusual (Fig. 18) [20].

Table 16

Structures and sources of cephalostatins 652-671

No Compounds Substitution groups and others Sources References
652 Cephalostatin 1 R1 = R2 = R3 = R4 = H Cephalodiscus gilchristi [322]
653 Cephalostatin 2 R1 = R2 = R3 = H; R4 = OH C. gilchristi [323]
654 Cephalostatin 3 R1 = CH3; R2 = R3 = H; R4 = OH C. gilchristi [323]
655 Cephalostatin 10 R1 = R2 = H; R3 = OCH3; R4 = OH C. gilchristi [318]
656 Cephalostatin 11 R1 = R3 = H; R2 = OCH3; R4 = OH C. gilchristi [318]
657 Cephalostatin 18 R1 = R2 = R4 = H; R3 = OCH3 C. gilchristi [324]
658 Cephalostatin 19 R1 = R3 = R4 = H; R2 = OCH3 C. gilchristi [324]
659 Cephalostatin 4 C. gilchristi [323]
660 Cephalostatin 5 R = CH3 C. gilchristi [320]
661 Cephalostatin 6 R = H C. gilchristi [320]
662 Cephalostatin 7 C. gilchristi [325]
663 Cephalostatin 8 C. gilchristi [325]
664 Cephalostatin 9 R = H C. gilchristi [325]
665 Cephalostatin 20 R = OH C. gilchristi [326]
666 Cephalostatin 12 R = H C. gilchristi [319]
667 Cephalostatin 13 R = OH C. gilchristi [319]
668 Cephalostatin 14 R = H C. gilchristi [327]
669 Cephalostatin 15 R = CH3 C. gilchristi [327]
670 Cephalostatin 16 C. gilchristi [321]
671 Cephalostatin 17 C. gilchristi [321]

Fig. 18

Structures of cephalostatins 652-671

The atypical C-22′ spiroketals involving C-18′ in most cephalostatins 1-4 (652-654, 659), 9-11 (664, 655-656), 14-19 (668-671, 657-658) and C-12′ in cephalostatins 5 (660) and cephalostatins 6 (661) are also noteworthy. Cephalostatins 10 (655), 11 (656) [318], and 13 (667) [319] with an oxygen substituent (OMe or OH) at the 1α- or 1′α-positions, close to the central pyrazine ring, are rare in this type alkaloids. Both cephalostatins 5 (660) and 6 (661) contain an aromatic C′ ring that is rather unusual in naturally occurring steroids [320]. The only symmetric cephalostatin 12 (666) containing two identical steroid units is unique [319]. Cephalostatin 16 (670), the only compound contains the [4.5] spiroketal system with the unusual 22S configuration (not yet confirmed by synthesis) in the right side steroid unit, whereas other cephalostatins have a common [4.4] spiroketal system in the right steroidal unit [321].

2.2.2 Ritterazines

The ritterazine class of steroidal alkaloids comprises 26 compounds (672-697), all of which were found in the lipophilic extract of the tunicate Ritterella tokioka collected off the Izu Peninsula by Fusetani and colleagues (Table 17). They are spiroketal-containing steroidal heterodimers (Fig. 19). Ritterazines and cephalostatins share common structural features, in which two highly oxygenated hexacyclic steroidal units are fused via a pyrazine ring at C-2 and C-3 and both side chains of the steroidal units form either [4.4] or [4.5] spiroketals [20].

Table 17

Structures and sources of ritterazines 672-697

No Compounds Substitution groups and others Sources References
672 Ritterazine A R1 = R2 = OH Ritterella tokioka [332]
673 Ritterazine T R1 = R2 = H R. tokioka [333]
674 Ritterazine B R. tokioka [328, 329]
675 Ritterazine C R. tokioka [328]
676 Ritterazine D R = H R. tokioka [330]
677 Ritterazine E R = CH3 R. tokioka [330]
678 Ritterazine F R = β-OH R. tokioka [330]
679 Ritterazine H R = O R. tokioka [330]
680 Ritterazine G R1 = R2 = β-OH; R3 = α-OH; △14, 15 R. tokioka [330]
681 Ritterazine I R1 = β-OH; R2 = O; R3 = α-OH R. tokioka [330]
682 Ritterazine Y R1 = R3 = H; R2 = β-OH R. tokioka [333]
683 Ritterazine J R1 = R3 = OH; R2 = β-OH R. tokioka [330]
684 Ritterazine K R1 = H; R2 = β-OH; R3 = OH R. tokioka [330]
685 Ritterazine L R1 = R3 = H; R2 = β-OH R. tokioka [330]
686 Ritterazine M R1 = R3 = H; R2 = α-OH R. tokioka [330, 331]
687 Ritterazine N R. tokioka [333]
688 Ritterazine O R. tokioka [333]
689 Ritterazine P R. tokioka [333]
690 Ritterazine Q R. tokioka [333]
691 Ritterazine R R. tokioka [333]
692 Ritterazine S R. tokioka [333]
693 Ritterazine U R. tokioka [333]
694 Ritterazine V R. tokioka [333]
695 Ritterazine W R. tokioka [333]
696 Ritterazine X R. tokioka [333]
697 Ritterazine Z R. tokioka [333]

Fig. 19

Structures of ritterazines 672-697

The hydroxyl groups of cephalostatins at C-12, C-17, C-23, and C-26 are more oxygenated in the right side hemispheres than in ritterazines, which is hydroxylated only at C-12, while the left side hemisphere ritterazines are more oxygenated, with C-7′, C-12′, C-17′ and C-25′ being hydroxylated. All cephalostatins contain β-hydroxyl oxygen substituents at the C-12 position, while some ritterazines bear carbonyl groups at this position. In the original paper, the configuration of ritterazine B (674) at the spiro carbon atom was mistaken for the same as in cephalostatin 1 in 1995 [328]. However, this has been recently revised by Phillips and Shair, who synthesized the right half of ritterazine B in 2007 [329]. Ritterazines J-M (683-686), exhibited the presence of the [4.5] spiroketal system on both sides of the alkaloid molecule, but only one of them, ritterazine K (684), was symmetrical [330]. In the original paper ritterazine M (686) was erroneously assigned as the S configuration at C-22, along with an incorrect configuration at C-12 [330]. A chemical synthesis of this compound by Fuchs et al. allowed correcting the structure [331]. Ritterazines A (672), T (673), D (676), E (677), N (687), O (688), U-X (693-696), and Z (697) have a unique five-membered C ring on their right side, which is a rearranged steroid nucleus, the same as Veratrum alkaloids. Structural abbreviations used in this review are illustrated in Fig. 20.

Fig. 20

Structural abbreviations used in this review

3 Biological activities

3.1 Anticancer effects

Most steroidal alkaloids showed anticancer activity as cytotoxicity with the IC50 values listed in Table 18. Among the seven human cancer cell lines SMMC-772, A-549, SK-BR-3, PANC-1, K562, SGC7901 and HL-60, the most sensitive cell line according to sarcovagine D (116) was SK-BR-3, which had an IC50 value of 2.25 μM. [79]. Holamine (145) and funtumine (154) exhibited anticancer activity against human colon adenocarcinoma (HT-29) with IC50 values of 31.06 and 22.36 μM, respectively. The study demonstrated that 145 and 154 induced cytotoxicity through the induction of apoptosis in HeLa, MCF-7, and HT-29 cancer cells [83]. Then, they induced apoptosis through the elevation of reactive oxygen species (ROS), mitochondrial function modulation, the perturbation of F-actin polymerization, and caspase-3 induction, which were all more prominent in HeLa cells [334].

Table 18

Cytotoxic activity of steroidal alkaloids against tumor cell lines

Compounds Cells Activity References
Mokluangin A (10) Small cell lung cancer (NCI-H187) IC50 = 30.6 μM [41]
Irehline (36) NCI-H187 IC50 = 27.7 μM [41]
3-Epi-gitingensine (38) Oral epidermoid carcinoma (KB) IC50 = 21.2 μM [42]
Paravallarine (39) KB IC50 = 12.8 μM [42]
Pachysamine E (57) Mouse lymphoid neoplasm (P388) IC50 = 0.46 μg/mL [54]
Parental and the Adriamycin (doxorubicin)-resistant subline of mouse leukemia (P388/ADM) IC50 = 0.45 μg/mL [54]
Hookerianine A (61) Colon cancer (SW480) IC50 = 10.97 ± 1.36 μM [56]
Human prostate cancer (PC3) IC50 = 32.97 ± 3.78 μM [56]
Breast adenocarcinoma (MCF-7) IC50 = 37.70 ± 0.99 μM [56]
Human myelogenous leukemia (K562) IC50 = 11.86 ± 0.82 μM [56]
Vaganine A (82) Breast cancer (MB-MDA-231) IC50 = 0.18 μM [82]
Epipachysamine D (87) Human myeloid leukemia (HL-60) IC50 = 2.96 μM; IC50 = 2.87 μM [75, 79]
Breast adenocarcinoma (MCF-7) IC50 = 28.92 ± 1.22 μM [56]
Epipachysamine E (91) Human melanoma (B16) IC50 = 2.5 μg/mL [54]
Shionogi carcinoma (SC115) IC50 = 3.4 μg/mL [54]
Mouse lymphoid neoplasm (P388) IC50 = 0.56 μg/mL [54]
Parental and the adriamycin (doxorubicin)-resistant subline of mouse leukemia (P388/ADM) IC50 = 0.66 μg/mL [54]
Sarcovagine D (116) Hepatocellular carcinoma (SMMC-7721) IC50 = 16.69 μM [75]
Lung cancer (A-549) IC50 = 11.17 μM [75]
Breast cancer (SK-BR-3) IC50 = 4.17 μM; IC50 = 2.25 μM [75, 79]
Pancreatic cancer (PANC-1) IC50 = 10.76 μM; IC50 = 2.70 μM [75, 79]
Human myeloid leukemia (K562) IC50 = 3.53 μM [79]
Gastric carcinoma (SGC7901) IC50 = 4.87 μM [79]
Sarsaligenine A (128) Human myeloid leukemia (HL-60) IC50 = 2.87 μM [79]
Human myeloid leukemia (K562) IC50 = 8.48 μM [79]
Gastric carcinoma (SGC7901) IC50 = 29.94 μM [79]
Breast cancer (SK-BR-3) IC50 = 10.14 μM [79]
Pancreatic cancer (PANC-1) IC50 = 12.34 μM [79]
Sarsaligenine B (129) Human myeloid leukemia (HL-60) IC50 = 3.61 μM [79]
Human myeloid leukemia (K562) IC50 = 17.10 μM [79]
Gastric carcinoma (SGC7901) IC50 = 21.53 μM [79]
Breast cancer (SK-BR-3) IC50 = 17.89 μM [79]
Pancreatic cancer (PANC-1) IC50 = 32.84 μM [79]
Holamine (145) Human myeloid leukemia (HL-60) IC50 = 24.22 μM [75]
Human colon adenocarcinoma (HT-29) IC50 = 31.06 μM [83]
Human cervical cancer (HeLa) IC50 = 51.42 μM [83]
Human breast adenocarcinoma (MCF-7) IC50 = 42.82 μM [83]
Non-cancerous human fibroblast (KMST-6) IC50 = 102.95 μM [83]
Pachysanonin (149) Lewis lung carcinoma (LLC) IC50 = 2.0 ± 0.3 μg/mL [83]
Funtumine (154) Human colon adenocarcinoma (HT-29) IC50 = 22.36 μM [83]
Human cervical cancer (HeLa) IC50 = 46.17 μM [83]
Human breast adenocarcinoma (MCF-7) IC50 = 52.69 μM [83]
Non-cancerous human fibroblast (KMST-6) IC50 = 85.45 μM [83]
Pachystermine A (157) Human melanoma (B16) IC50 = 6.3 μg/mL [54]
Breast cancer (MB-MDA-231) IC50 = 0.32 μM [82]
Terminamine A (159) MB-MDA-231 IC50 = 0.18 μM [82]
Terminamine B (160) MB-MDA-231 IC50 = 0.20 μM [82]
Terminamine C (161) MB-MDA-231 IC50 = 0.08 μM [82]
Terminamine D (163) MB-MDA-231 IC50 = 0.20 μM [82]
Terminamine E (164) MB-MDA-231 IC50 = 0.07 μM [82]
Hookerianine B (171) Colon cancer (SW480) IC50 = 5.97 ± 0.13 μM [56]
Human hepatocarcinoma (SMMC-7721) IC50 = 16.19 ± 0.56 μM [56]
Human prostate cancer (PC3) IC50 = 11.57 ± 0.86 μM [56]
Breast adenocarcinoma (MCF-7) IC50 = 19.44 ± 1.70 μM [56]
Human myelogenous leukemia (K562) IC50 = 7.95 ± 0.02 μM [56]
Veratramine (392) Lung cancer (A549) IC50 = 8.9 μmol/L [185]
Pancreatic cancer (PANC-1) IC50 = 14.5 μmol/L [185]
Hh-dependent (SW1990) IC50 = 26.1 μmol/L [185]
Hh-dependent (NCI-H249) IC50 = 8.5 μmol/L [185]
Human glioma (SF188) IC50 = 97.8 μmol/L [198]
Germine (358) Hh-dependent (SW1990) IC50 = 47.2 μmol/L [185]
Hh-dependent (NCI-H249) IC50 = 24.1 μmol/L [185]
Cyclopamine (432) Lung cancer (A549) IC50 = 14.4 μmol/L [185]
pancreatic cancer (PANC-1) IC50 = 29.3 μmol/L [185]
Hh-dependent (SW1990) IC50 = 48.6 μmol/L [185]
Hh-dependent (NCI-H249) IC50 = 4.4 μmol/L [185]
Human pancreatic adenocarcinoma (HPAF-2) IC50 = 8.79 ± 0.94 μM [335]
Human pancreatic adenocarcinoma cell line Panc 10.05 IC50 = 11.33 ± 0.41 μM [335]
Human pancreatic adenocarcinoma cell line Panc 8.13 IC50 = 14.49 ± 0.85 μM [335]
Human pancreatic adenocarcinoma cell line Panc 2.03 IC50 = 16.57 ± 0.27 μM [335]
Human pancreatic adenocarcinoma cell line AsPC-1 IC50 = 16.74 ± 1.30 μM [335]
Human pancreatic adenocarcinoma cell line CFPAC-1 IC50 = 19.59 ± 0.32 μM [335]
Human pancreatic adenocarcinoma cell line BxPC-3 IC50 = 36.17 ± 0.31 μM [335]
Human pancreatic adenocarcinoma cell line S2013 IC50 = 45.09 ± 1.27 μM [335]
α-Tomatine (459) Breast cancer (MDA-MB-231) IC50 = 26.4 ± 3.6 μg/mL [348]
Gastric adenocarcinoma (KATO-III) IC50 = 16.4 ± 10.0 μg/mL [348]
Prostate cancer (PC3) IC50 = 3.0 ± 0.3 μg/mL [348]
α-Solamargine (500) Human adenocarcinoma (H441) IC50 = 3.0 μM [345]
Squamous cell lung carcinoma (H520) IC50 = 6.7 μM [345]
Large cell lung cancer (H661) IC50 = 7.2 μM [345]
Small cell lung cancer (H69) IC50 = 5.8 μM [345]
Cervical carcinoma (HeLa) IC50 = 6.0 μM [346]
Lung cancer (A549) IC50 = 8.0 μM [346]
Breast adenocarcinoma (MCF-7) IC50 = 2.1 μM [346]
Human myelogenous leukemia (K562) IC50 = 5.2 μM [346]
Colon cancer cell line (HCT116) IC50 = 3.8 μM [346]
Human primary glioblastoma (U87) IC50 = 3.2 μM [346]
Liver cancer (HepG2) IC50 = 2.5 μM [346]
α-Solanine (528) HepG2 IC50 = 14.47 μg/mL [255]
Plakinamine H (625) Rat glioma (C6) IC50 = 9.0 μg/mL [306]
Plakinamine G (630) C6 IC50 = 6.8 μg/Ml [306]
Tetrahydroplakinamine A (631) C6 IC50 = 1.4 μg/mL [306]
Dihydroplakinamine K (632) Human colon tumor (HCT-116) IC50 = 1.4 μM [307]
Plakinamine I (633) HCT-116 IC50 = 5.2 μM [307]
Plakinamine J (634) HCT-116 IC50 = 10.6 μM [307]
Plakinamine K (635) HCT-116 IC50 = 6.1 μM [307]
Cephalostatin 1 (652) Pancreas adenocarcinoma (BXPC-3) GI50 = 0.044 nM [326]
Breast adenocarcinoma (MCF-7) GI50 = 0.099 nM [326]
Glioblastoma (SF-268) GI50 = 1.60 nM [326]
Human lung large cell carcinoma (NCI-H460) GI50 = 0.044 nM [326]
Colon carcinoma (KM20L2) GI50 = 0.066 nM [326]
Human prostate adenocarcinoma (DU-145) GI50 = 0.11 nM [326]
Cephalostatin 2 (653) Pancreas adenocarcinoma (BXPC-3) GI50 = 0.022 nM [326]
Breast adenocarcinoma (MCF-7) GI50 = 0.022 nM [326]
Glioblastoma cells (SF-268) GI50 = 0.12 nM [326]
Human lung large cell carcinoma (NCI-H460) GI50 = 0.0056 nM [326]
Colon carcinoma (KM20L2) GI50 = 0.0060 nM [326]
Human prostate adenocarcinoma (DU-145) GI50 = 0.11 nM [326]
Cephalostatin 9 (664) Pancreas adenocarcinoma (BXPC-3) GI50 = 14 nM [326]
Breast adenocarcinoma (MCF-7) GI50 = 110 nM [326]
Glioblastoma (SF-268) GI50 = 150 nM [326]
Human lung large cell carcinoma (NCI-H460) GI50 = 39 nM [326]
Colon carcinoma (KM20L2) GI50 = 58 nM [326]
Cephalostatin 20 (665) Pancreas adenocarcinoma (BXPC-3) GI50 = 16 nM [326]
Breast adenocarcinoma (MCF-7) GI50 = 22 nM [326]
Glioblastoma (SF-268) GI50 = 36 nM [326]
Human lung large cell carcinoma (NCI-H460) GI50 = 6.00 nM [326]
Colon carcinoma (KM20L2) GI50 = 7.20 nM [326]
Human prostate adenocarcinoma (DU-145) GI50 = 210 nM [326]
Ritterazine A (672) Murine leukemia (P388) IC50 = 0.0035 μg/mL [333]
Ritterazine T (673) P388 IC50 = 0.46 μg/mL [333]
Ritterazine B (674) P388 IC50 = 0.00015 μg/mL [333]
Ritterazine C (675) P388 IC50 = 0.092 μg/mL [333]
Ritterazine D (676) P388 IC50 = 0.016 μg/mL [333]
Ritterazine E (677) P388 IC50 = 0.0035 μg/mL [333]
Ritterazine F (678) P388 IC50 = 0.00073 μg/mL [333]
Ritterazine H (679) P388 IC50 = 0.016 μg/mL [333]
Ritterazine G (680) P388 IC50 = 0.00073 μg/mL [333]
Ritterazine I (681) P388 IC50 = 0.014 μg/mL [333]
Ritterazine Y (682) P388 IC50 = 0.0035 μg/mL [333]
Ritterazine J (683) P388 IC50 = 0.013 μg/mL [333]
Ritterazine K (684) P388 IC50 = 0.0095 μg/mL [333]
Ritterazine L (685) P388 IC50 = 0.010 μg/mL [333]
Ritterazine M (686) P388 IC50 = 0.015 μg/mL [333]
Ritterazine N (687) P388 IC50 = 0.46 μg/mL [333]
Ritterazine O (688) P388 IC50 = 2.1 μg/mL [333]
Ritterazine P (689) P388 IC50 = 0.71 μg/mL [333]
Ritterazine Q (690) P388 IC50 = 0.57 μg/mL [333]
Ritterazine R (691) P388 IC50 = 2.1 μg/mL [333]
Ritterazine S (692) P388 IC50 = 0.46 μg/mL [333]
Ritterazine U (693) P388 IC50 = 2.1 μg/mL [333]
Ritterazine V (694) P388 IC50 = 2.1 μg/mL [333]
Ritterazine W (695) P388 IC50 = 3.2 μg/mL [333]
Ritterazine X (696) P388 IC50 = 3.0 μg/mL [333]
Ritterazine Z (697) P388 IC50 = 2.0 μg/mL [333]

Cyclopamine (432), a Hedgehog (Hh) signaling pathway antagonist, was first identified as a potent teratogen in animals. Among the nine human pancreatic cell lines examined, the IC50 values of cyclopamine ranged from 8.79 to more than 30 µM [335]. In addition, 432 also showed prominent anticancer effects, including small-cell lung cancer (SCLC) [336], oral squamous cell carcinoma (OSCC) [337], breast cancer [338], pancreatic cancer [339], hepatocellular carcinoma (HCC) [340] and human erythroleukemia cells [341]. Furthermore, 432 induced apoptosis in HCC cells through inhibition of the Sonic Hh signaling pathway by downregulating Bcl-2 [340]. In addition, 432 could induce apoptosis and upregulate cyclooxygenase-2 (COX-2) expression which plays a crucial role in the proliferation and differentiation of leukemia cells [341].

Tomatidine (458) and solasodine (513), important alkaloids found in a large number of Solanum species, exerted cytotoxic activity against HBL-100 cells [342]. They had a weak inhibitory effect on MCF-7, HT-29 and HeLa cells by blocking the cell cycle in the G0/G1 phase [343]. α-Solamargine (500) and α-solasonine (501), the two glycosides of 513, differed only in their carbohydrate moieties, which are used in the treatment of keratoses, basal cell carcinomas, and squamous cell carcinomas [344]. Moreover, 500 was significantly cytotoxic to the human tumor cell lines H441, H520, H661, H69, HeLa, A549, MCF-7, K562, HCT116, U87 and HepG2 with IC50 values from 2.1 to 8.0 μM [345, 346]. The cellular and molecular mechanism of 500 anti-human breast cancer cells HBL-100, ZR-75-1 and SK-BR-3 were investigated, and it was concluded that this compound could activate apoptotic proteins and inhibite anti-apoptotic, so it has great potential as an anti-human breast cancer candidate drug [347]. The target of α-solanine (528) inducing apoptosis in HepG2 cells seemed to be mediated by the inhibition of the expression of Bcl-2 protein [255].

Cephalostatin 1-20 (652-671) were significantly cytotoxic to the human tumor cell lines BXPC-3, MCF-7, SF-268, NCI-H460, KM20L2 and DU-145. Of these compounds, cephalostatin 2 (653) was the most active compound, with GI50 (growth inhibition of 50%) values in the range of 0.0056-0.11 nM. Importantly, compared with the cephalostatins 9 (664) and 20 (665), the inhibitory effects of 653 and cephalostatin 1 (652) were significantly increased by 100-1000 times. From this evidence, it was clear that the spirostanol structure must be intact and was the critical center for antineoplastic activities. The opening of the left-side spiro-ring significantly reduced the inhibition of these carcinoma cells. A significant contribution of the presence of a hydroxy group at C-8′ to antineoplastic potency was evident by comparing the activity of cephalostatins 2 (653) and 1 (652), which was further supported by the cancer growth inhibitory activity of cephalostatins 20 (665) and 9 (664). Compounds 653 and 665, in which the hydroxy substitution at C-8′, had considerably increased activity compared with compounds 652 and 664, respectively [326].

Ritterazines A-Z (672-697) were all significantly cytotoxic to the human tumor cell lines of P388 murine leukemia cells. Of these compounds, ritterazine B (674) was the most active with an IC50 value of 0.00015 μg/mL. The presence of both the terminal 5/6 spiroketal and the hydroxyl groups was found to be especially important for pronounced inhibition of P388 cells. Ritterazines B (674) and F (678), which have terminal 5/6 spiroketal, showed high cytotoxicity against P388 cells, whereas ritterazine C, possessing 5/5 spiroketal structure, showed a lower significant level of cytotoxicity [333].

3.2 Anticholinergic effects

Some pregnane and cyclopregnane type alkaloids are distributed in many genera of Apocynaceae and display significant anticholinergic activity. Cholinesterase (ChE), divided into two enzymes acetylcholinesterase (AChE) and butyrylcholinestarase (BChE), have been identified as potential targets in the treatment of AD, myasthenia gravis and glaucoma. The IC50 values of AChE and BchE inhibited by most steroidal alkaloids are listed in Table 19.

Table 19

Cholinesterase-inhibiting activities of steroidal alkaloids

Compounds IC50/μM References
AChE BChE
Salonine B (47) n.a 4.5 [50]
2-Hydroxysalignamine (49) 82.5 20.9 [51]
N-[Formyl(methyl)amino]salonine B (50) 48.6 10.5 [51]
Sarsalignone (64) 7 2.2 [68]
Sarsaligenone (65) 5.8 4.3 [70]
Alkaloid C (71) 48.6 10.5 [50]
Salignarine F (72) 30.2 1.9 [51]
Saracosine (73) 20 3.8 [51]
Sarcodinine (74) 40 12.5 [51]
Sarcovagine C (80) 8 0.3 [74]
Vaganine A (82) 8.6 2.3 [70]
Sarcorine (83) 70 10.3 [70]
Saligcinnamide (85) 20 4.8 [70]
Na-Methyl epipachysamine D (86) 10.1 3.2 [71]
Epipachysamine D (87) 28.9 2.8 [51]
Salignenamide A (88) 50.6 4.6 [70]
Iso-N-Formylchonemorphine (90) 6.3 4.07 [51]
Saligenamide C (93) 61.3 38.3 [70]
Saligenamide F (94) 6.3 4.1 [70]
2β-Hydroxyepipachysamine D (95) 78.2 28.9 [70]
Axillarine C (96) 227.9 18 [70]
Axillarine F (97) 182.4 18.2 [70]
Salonine A (98) 33.4 32.7 [50]
Dictyophlebine (99) 6.2 3.6 [51]
Hookerianamine A (100) 18.9 0.9 [71]
Isosarcodine (101) 10.3 1.9 [72]
Hookerianamide B (102) 26.4 0.7 [71]
Hookerianamide C (103) 23.2 0.6 [71]
Hookerianamide E (105) 15.9 6 [73]
Hookerianamide G (106) 11.4 1.5 [73]
Hookerianamide I (107) 34.1 0.3 [74]
Sarcovagine D (116) 2.2 2.3 [71]
Sarcovagenine C (117) 1.5 0.7 [71]
Axillaridine A (118) 5.21 2.5 [70]
2, 3-Dehydrosarsalignone (119) 7 32.3 [61]
Phulchowkiamide A (121) 0.5 0.4 [71]
Hookerianamide F (122) 1.6 7.2 [73]
Hookerianamide H (123) 2.9 1.9 [74]
(-)-Vaganine D (133) 46.9 10 [80]
5, 6-Dihydrosarconidine (135) 20.3 1.9 [51]
16-Dehydrosarcorine (136) 12.5 3.9 [61]
Hookerianamide A (137) 82.7 200 [71]
Saligenamide D (140) 185.2 23.7 [70]
2-Hydroxysalignarine E (141) 16 6.9 [51]
Salonine C (142) 7.8 32.3 [51]
Buxasamarine (196) 25.4 0.7 [100]
Cycloprotobuxine C (201) 38.8 2.7 [100]
Cyclovirobuxeine A (202) 105.7 2 [100]
(+)-Benzoylbuxidienine (238) 35 No [111]
Hyrcatrienine (257) No 1.7 [93]
Hyrcanone (273) 145 20 [93]
(+)-O6-Buxafurandiene (283) 17 No [111]
(+)-7-Deoxy-O6-buxafurandiene (284) 13 No [111]
Impericine (312) 67.97 ± 2.46 1.607 [139]
Forticine (313) > 500 100.5 ± 0.445 [139]
Delavine (325) 105.5 ± 1.45 1.706 ± 0.11 [139]
Persicanidine A (345) 352.2 ± 4.03 4.245 ± 0.079 [139]

Phulchowkiamide A (121), containing a carbonyl group at C-4 along with the tigloylamino moiety at position C-3, was found to be the most potent inhibitor of AChE and BChE among these alkaloids with IC50 values of 0.5 and 0.4 μM, respectively [71]. Similarly, compounds such as sarsalignone (64) [68], sarsaligenone (65) [70], sarcovagine D (116), sarcovagenine C (117) [71], and hookerianamide F (122) [73], which have in common with 121, displayed higher inhibitory activity than other compounds. In general, the α, β-unsaturated carbonyl group and tigloylamino moiety might be considered to be important factors to increase the activity.

From the list, we found that some alkaloids, including axillarine C (96), hookerianamide B (102), hookerianamide C (103), saligenamide D (140), cyclovirobuxeine A (202), hyrcanone (273), impericine (312), delavine (325), and persicanidine A (345), appeared to be more selective inhibitors of BChE. The presence of a C-2β hydroxy group, as in 2-hydroxysalignamine (49), saligenamide C (93), axillarine C (96), axillarine F (97), salonine A (98), and hookerianamide A (137) caused a negative effect on the inhibitory activity towards both AChE and BChE. In general, pregnane alkaloids were more selective than cyclopregnane alkaloids towards AChE and BChE. This might be due to the effect of the C-4 methyl groups and the cyclopropane ring in cyclopregnane alkaloids that decreased the activity.

3.3 Antimicrobial effects

Steroidal alkaloids are considered a part of plant chemical defenses against various pathogens, namely, fungi, bacteria, and viruses. Epipachysamine-E-5-ene-4-one (66) and iso-N-formylchonemorphine (90) showed strong antibacterial activity against a wide range of pathogenic bacteria (Bacillus cereus, Klebsiella pneumoniae, Staphylococcus aureus and Pseudom aeruginosa) with minimum inhibitory concentrations (MICs) of 0.0312-0.2500 (mg/mL), compared with the widely used antibiotics amoxicillin and ampicillin (0.0625-0.2500 mg/mL) [59]. The five pregnane alkaloids sarcovagine C (80), hookerianamide I (107), chonemorphine (108), N-methypachysamine A (109) and hookerianamide H (123), were all active in antibacterial properties against Bacillus subtilis with MIC values of lower than 20 μg/mL, and most of them displayed moderate to good antibacterial activities against Micrococcus luteus, Streptococcus faecalis, and Pseudomonas pallida [349]. As saligcinnamide (85), Na-methyl epipachysamine D (86) and epipachysamine D (87) had the same skeleton, and possessed potent antibacterial activity against seven human pathogenic bacteria with inhibition zones ranging from 6 to 12 mm [67].

(+)-16α, 31-Diacetylbuxadine (278) exhibited significant antibacterial activity with zones of inhibition (ZI) of 14-19 mm against K. pneumoniae and Salmonella typhi and moderate to weak activity (ZI = 4-12 mm) against other seven human pathogenic bacterias [92]. Neoverataline A (379), neoverataline B (380), stenophylline B (564), veramiline-3-O-β-d-glucopyranoside (566) and jervine (427) were tested for antifungal properties against the phytopathogens Phytophthora capisis and Rhizoctonia cerealis, among which 380, 564 and 566 displayed strong activity against P. capisis with MICs at 120, 80 and 80 μg/mL, respectively. The MIC of triadimefon, a positive control, against P. capisis was 80 μg/mL [125].

Tomatidine (458) potentiated the action of several aminoglycoside antibiotics (gentamicin, kanamycin, tobramycin, amikacin and streptomycin) against S. aureus, and the synergy between 458 and aminoglycosides could help reduce the incidence of resistance. Furthermore, 458 affected the haemolytic ability of S. aureus and repressed several agr-regulated virulence factors [350]. α-Chaconine (527), α-solanine (528), α-solamargine (500), α-solasonine (501), and α-tomatine (459) showed antimalarial activity, among which the most active compound 527 had no additive effect with 528. When orally administered at 7.5 mg/kg/day for 4 days, 527 suppressed the parasitemia level by 71.38% [351]. Among the four mycobacterial species, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium simiae, plakinamine P (640) exhibited the strongest antibacterial effect against M. tuberculosis, giving a MIC of 1.8 μg/mL [313].

3.4 Anti-inflammatory and analgesic effects

Solasodine (513) significantly reduced the inflammatory reaction to carrageenan-induced rat paw oedema from 19.5 to 56.4% [352]. In addition, the antinociceptive activity of 513 was evaluated by a hot plate, formalin, and writhing tests. 513 caused a significant decrease in nociception at a dose of 8 mg/kg in acetic acid-induced mice abdominal constrictions, with a maximum inhibition of 61%, compared to indomethacin (74%). It could also significantly reduce the painful sensation caused by formalin and produce a significant increase in the pain threshold in the hot plate test. Overall, the results suggested that 513 may possess analgesic activity through both central and peripheral mechanisms [353].

The data provided by Chiu et al. suggested that tomatidine (458) inhibited NF-κB nuclear translocation and c-Jun N-terminal kinase activation, thereby decreasing the expression of COX-2 and inducible cytotoxic nitric oxide (NO) synthase, which might be beneficial for anti-inflammatory therapy. They also found 458 had a better anti-inflammatory effect than solasodine (513) in Lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages [354].

α-Chaconine (527) and solanidine (535) were responsible for the anti-inflammatory effect, which was dependent on reducing the production of interleukin-2 and interleukin-8 induced by canidin A in Jurkat cells, and the induced NO production by LPS stimulated macrophages [355].

3.5 Anti-myocardial ischemia effects

Buxus microphylla is often used to treat cardiovascular and cerebrovascular diseases as a folk medicine in China. Cyclovirobuxine D (203) was the most potent component contributing to the anti-myocardial ischemia effects of the "huangyangning" tablet. This Chinese drug is used to treat cardiovascular and cerebrovascular diseases and has been developed successfully for more than 10 years in China. In the myocardial ischemia model induced by isoprenaline or pituitrin, 1.1 and 2.2 mg/kg cyclovirobuxine D could improve model rat plasma superoxide dismutase (SOD) activation, and reduce the plasma MDA, LDH, and phosphocreatine kinase (CPK) contents of model rats [356]. The main mechanism of 203 in treating acute myocardial ischemia may be attributed to inhibiting blood stasis and thrombosis, enhancing NO release, and opening KATP channels [357]. In addition, data from a study of rats with congestive heart failure showed significant benefits after oral administration of 203, indicating that it may be a promising and useful drug in the treatment of cardiac dysfunction [358].

3.6 Anti-giogenesis effects

Cortistatins, novel steroidal alkaloids extracted from Corticium sponge, showed highly selective anti-proliferative activity against human umbilical vein endothelial cells (HUVECs), which inhibited the formation of original capillaries, a process known as angiogenesis [314]. Among the eleven cortistatins A-J (641-651), cortistatins A (641) and J (651) showed the most strongest anti-proliferative action against HUVECs with IC50 values of 1.8 and 8 nM, which were 3000 and 300-1100 times more selective than normal human dermalfibroblast (NHDF) and tumor cell murine neuroblastoma cells (Neuro2A), respectively. [315].

3.7 Others

Among the four conanine-type alkaloids, conessine (1), conimin (9), mokluangin A (10), and irehline (36), 36 showed the most effective antimalarial activity (IC50 = 1.2 μM) against Plasmodium falciparum, comparable to that of the positive control dihydroartemisinine with an IC50 of 3.7 nM [41].

The anti-tussive activity of three steroidal alkaloids was also investigated. yibeinone C (347), imperialine (335), yibeinone B (402), and showed an apparent concentration-dependent relaxation of isolated tracheal preparation, amongst 347 and 335 showed significant effects with pA2 values of 6.19 and 8.41, and EC50 values of 0.65 μmol/L and 4.40 nmol/L, respectively [156].

The five steroidal alkaloids puqienine A (400), puqienine B (401), puqietinone (577), N-demethylpuqietinone (579), and puqietinonoside (580) could significantly prolong the latent period and reduce the number of coughs in ammonia-induced mouse cough models at doses of 5 and 10 mg/kg, confirming their antitussive activity compared to the positive control codeine. The presence of these compounds may be responsible for the traditional use of Fritillaria puqiensis in cough remedies [188].

Plakinamines J (634), N (636), and O (637), containing a substituted pyrrolidine ring, showed potent antiproliferative activity against seven human colon carcinoma cell lines with mean GI50 values of 11.5, 2.4 and 1.4 μM, respectively, whereas plakinamine I (633) with the pyrrolidine nitrogen formed an additional fused piperidine ring system that exhibited relatively weak activity [311].

4 Toxicity

Jervine (427) and cyclopamine (432), veratrum alkaloids isolated from Veratrum californicum, had prominent teratogenic activity to produce synophthalmia and related cephalic malformations in sheep, cattle, goats and rabbits [359, 360]. In addition, the presence of C-5, C-6 olefinic linkages in the framework of jervanes was found to be a critical structural factor to enhance teratogenicity induction [361].

In both pregnant and nonpregnant mice, tomatidine (458), solasodine (513), and solanidine (535) induced an increase in liver weight after being fed a diet containing 2.4 mmol/kg of these aglycones for 14 days [362].

In terms of the LC50 and EC50 after 96 h of exposure, α-chaconine (527) was teratogenic and more embryotoxic than α-solanine (528) in frogs. The carbohydrate side chain attached to the 3-OH group of solanidine (535), the only difference between these two compounds, appeared to be an important factor in governing teratogenicity [363].

A pathophysiological study showed that isorubijervine (543) and rubijervine (544) were highly toxic compounds with LD50 values of 1.14 and 1.77 mg/kg in mice, respectively. They also exerted the strongest ability to inhibit the sodium channel NaV1.5, which plays an essential role in cardiac physiological function [263].

5 Summary

Natural steroidal alkaloids with diverse bioactivities and high toxicity keep them one of the highlighted types of natural products. In this review, the structural diversity and biological activities of 697 natural steroidal alkaloids have been summarized and it is likely that many more steroidal alkaloids with novel structures will be discovered, especially rings E and F. Additionally, the high medicinal potential of cyclovirobuxine D, cyclopamine, α-solamargine, α-solasonine, cephalostatin 1 and many other members of this intriguing family of natural products is far from being exploited. Therefore, future research in this field will further contribute to understanding their full potential in drug development.

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (32170405) and Yunnan Science and Technology Project (202105AE160006, 2019FY003004) for partial financial support.

Author contributions

M-LX searched the literature, collected the data, and drafted the manuscript; B-YH, Z-HQ, T-ZX and Z-JW provided corrective works of phytochemistry and biological activities; X-NW, D-YM and QZ revised the chemical structures. X-DL conceived the projects, revised manuscript and provided financial support. All authors read and approved the final manuscript.

Declarations

Competing interests

The authors declare that there are no conflicts of interest associated with this work.

References

  1. 1.
    Schultz HB, Meola TR, Thomas N, Prestidge CA, Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate[J]. Int J Pharm 577, 119069 (2020) CrossRef PubMed Google Scholar
  2. 2.
    Bailly C, Zhang J, A new horizon for the steroidal alkaloid cyclovirobuxine D (huangyangning) and analogues: anticancer activities and mechanism of action[J]. J Tradit Chin Med Sci 7, 337-44 (2020) PubMed Google Scholar
  3. 3.
    Evans R, Cham BE, Daunter B, Curaderm[J]. Med J Aust 150, 350 (1989) CrossRef PubMed Google Scholar
  4. 4.
    Keeler RF, Binns W, Teratogenic compounds of Veratrum californicum(Durand). I. Preparation and characterization of fractions and alkaloids for biologic testing[J]. Can J Biochem 44, 819-28 (1966) PubMed Google Scholar
  5. 5.
    Cooper MK, Porter JA, Young KE, Beachy PA, Teratagon-mediated inhibition of target tissue response to Shh signaling[J]. Science 280, 1603-1603 (1998) CrossRef PubMed Google Scholar
  6. 6.
    Booker BE, Steg AD, Kovac S, Landen CN, Amm HM, The use of hedgehog antagonists in cancer therapy: a comparison of clinical outcomes and gene expression analyses[J]. Cancer Biol Ther 21, 1-11 (2020) CrossRef PubMed Google Scholar
  7. 7.
    Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication[J]. Sci Rep 6, 25806 (2016) CrossRef PubMed Google Scholar
  8. 8.
    Tokuyama T, Daly J, Witkop B, Karle IL, Karle J, The structure of batrachotoxinin A, a novel steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia[J]. J Am Chem Soc 90, 1917-8 (1968) CrossRef PubMed Google Scholar
  9. 9.
    Khodorov BI, Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes[J]. Prog Biophys Mol Biol 45, 57-148 (1985) CrossRef PubMed Google Scholar
  10. 10.
    Wang SY, Wang GK, Single rat muscle Na+channel mutation confers batrachotoxin autoresistance found in poison-dart frog Phyllobates terribilis[J]. Proc Natl Acad 114, 10491-6 (2017) CrossRef PubMed Google Scholar
  11. 11.
    Prelog V, Jeger O, The alkaloids: chemistry and physiology. (New York: Elsevier, 1953), pp. 247-312. PubMed Google Scholar
  12. 12.
    Kupchan SM, By AW, The alkaloids: chemistry and physiology. (New York: Elsevier, 1968), pp. 193-285. PubMed Google Scholar
  13. 13.
    Heretsch P, Giannis A, The alkaloids: chemistry and biology. (New York: Elsevier, 215), pp. 201-32. PubMed Google Scholar
  14. 14.
    Greenhill JV, Grayshan P, The alkaloids: chemistry and pharmacology. (New York: Elsevier, 1992), pp. 177-237. PubMed Google Scholar
  15. 15.
    Li H, Jun, Jiang Y, Li P, Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family[J]. Nat Prod Rep 23, 735-52 (2006) CrossRef PubMed Google Scholar
  16. 16.
    Černý V, Šorm F, The alkaloids: chemistry and physiology. (New York: Elsevier, 1967), pp. 305-426. PubMed Google Scholar
  17. 17.
    Yan YX, Sun Y, Li ZR, Zhou L, Qiu MH, Chemistry and biological activities of buxus alkaloids[J]. Curr Bioact Compd 7, 47-64 (2011) CrossRef PubMed Google Scholar
  18. 18.
    Ata A, Andersh BJ, The alkaloids: chemistry and biology. (New York: Elsevier, 2008), pp. 191-213. PubMed Google Scholar
  19. 19.
    Atta-ur-Rahman, Choudhary MI, The alkaloids: chemistry and biology. (New York: Elsevier, 1999), pp. 233-60. PubMed Google Scholar
  20. 20.
    Iglesias-Arteaga MA, Morzycki JW, The alkaloids: chemistry and biology. (New York: Elsevier, 2013), pp. 153-279. PubMed Google Scholar
  21. 21.
    Devkota K, Lenta B, Fokou P, Sewald N, Terpenoid alkaloids of the Buxaceae family with potential biological importance[J]. Nat Prod Rep 25, 612-30 (2008) CrossRef PubMed Google Scholar
  22. 22.
    Jiang Q, Chen M, Cheng K, Yu P, Shi Z, Therapeutic potential of steroidal alkaloids in cancer and other diseases[J]. Med Res Rev 36, 119-43 (2016) CrossRef PubMed Google Scholar
  23. 23.
    Dey P, Kundu A, Chakraborty HJ, Kar B, Choi WS, Lee BM, Bhakta T, Atanasov AG, Kim HS, Therapeutic value of steroidal alkaloids in cancer: current trends and future perspectives[J]. Int J Cancer 145, 1731-44 (2018) PubMed Google Scholar
  24. 24.
    Atta-ur-Rahman, Choudhary MI, The alkaloids: chemistry and biology. (New York: Elsevier, 1998), pp. 61-108. PubMed Google Scholar
  25. 25.
    Kanga DD, Ayyar PR, Simonsen JL, CCLXXXI.-Conessine[J]. J Chem Soc 129, 2123-7 (1926) CrossRef PubMed Google Scholar
  26. 26.
    Cheenpracha S, Jitonnom J, Komek M, Ritthiwigrom T, Laphookhieo S, Acetylcholinesterase inhibitory activity and molecular docking study of steroidal alkaloids from Holarrhena pubescens barks[J]. Steroids 108, 92-8 (2016) CrossRef PubMed Google Scholar
  27. 27.
    Tschesche R, Ockenfels H, 7α-hydroxy-conessin und Holonamin, zwei neue Basen aus Kurchi-Rinde[J]. Ber Dtsch Chem Ges 97, 2316-25 (1964) PubMed Google Scholar
  28. 28.
    Bhutani KK, Vaid RM, Ali M, Kapoor R, Soodan SR, Kumar D, Steroidal alkaloids from Holarrhena antidysenterica[J]. Phytochemistry 29, 969-72 (1990) CrossRef PubMed Google Scholar
  29. 29.
    Kumar A, Ali M, A new steroidal alkaloid from the seeds of Holarrhena antidysenterica[J]. Fitoterapia 71, 101-4 (2000) CrossRef PubMed Google Scholar
  30. 30.
    Zirihi GN, Grellier P, Guédé-Guina F, Bodo B, Mambu L, Isolation, characterization and antiplasmodial activity of steroidal alkaloids from Funtumia elastica(Preuss) Stapf[J]. Bioorg Med Chem Lett 15, 2637-40 (2005) CrossRef PubMed Google Scholar
  31. 31.
    Yang ZD, Duan DZ, Xue WW, Yao XJ, Li S, Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure-activity relationships[J]. Life Sci 90, 929-33 (2012) CrossRef PubMed Google Scholar
  32. 32.
    Zhou LN, Ge XL, Dong TT, Gao HY, Sun BH, Antibacterial steroidal alkaloids from Holarrhena antidysenteriaca[J]. Chin J Nat Med 15, 540-5 (2017) PubMed Google Scholar
  33. 33.
    Wagner H, Seegert K, Sonnenbichler H, Ilyas M, Odenthal KP, Steroid alkaloids of Funtumia africana[J]. Planta Med 53, 444-9 (1987) CrossRef PubMed Google Scholar
  34. 34.
    Gjerstad G, Modak A, Kurchi Bark (Cortex Holarrhenae antidysentericae) a drug of great therapeutic potential[J]. Q J Crude Drug Res 8, 1141-51 (1968) CrossRef PubMed Google Scholar
  35. 35.
    Khuong-Huu F, Magdeleine MJ, Santamaria J, Goutarel R, Alcalodes steroidiques du Malouetia Brachyloba et du M. Heudelotii[J]. Phytochemistry 12, 1813-6 (1973) CrossRef PubMed Google Scholar
  36. 36.
    Kawamoto S, Koyano T, Kowithayakorn T, Fujimoto H, Okuyama E, Hayashi M, Komiyama K, Ishibashi M, Wrightiamines A and B, two new cytotoxic pregnane alkaloids from Wrightia javanica[J]. Chem Pharm Bull 51, 737-9 (2003) CrossRef PubMed Google Scholar
  37. 37.
    Bhutani KK, Ali M, Sharma SR, Vaid RM, Gupta DK, Three new alkaloids from bark of Holarrhena antidysentrica[J]. Phytochemistry 27, 925-8 (1988) CrossRef PubMed Google Scholar
  38. 38.
    Siddiqui BS, Usmani SB, Begum S, Siddiqui S, Steroidal alkaloids and an androstane derivative from the bark of Holarrhena pubescens[J]. Phytochemistry 33, 925-8 (1993) CrossRef PubMed Google Scholar
  39. 39.
    Siddiqui BS, Begum S, Usmani SB, Siddiqui S, Alkaloidal constituents of the bark of Holarrhena antidysenterica[J]. Heterocycles 36, 717-717 (1993) CrossRef PubMed Google Scholar
  40. 40.
    Siddiqui B, Usmani S, Begum S, Begum S, Aftab K, Gilani A-u-H, Hypotensive constituents from the bark of Holarrhena pubescens(Holarrhena antidysenterica)[J]. Heterocycles 41, 267-76 (1995) CrossRef PubMed Google Scholar
  41. 41.
    Cheenpracha S, Boapun P, Limtharakul T, Laphookhieo S, Pyne SG, Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots[J]. Nat Prod Res 33, 782-8 (2019) CrossRef PubMed Google Scholar
  42. 42.
    Phi TD, Pham VC, Mai HT, Litaudon M, Guéritte F, Nguyen VH, Chau VM, Cytotoxic steroidal alkaloids from Kibatalia laurifolia[J]. J Nat Prod 74, 1236-40 (2011) CrossRef PubMed Google Scholar
  43. 43.
    Kutschabsky L, Pfeiffer D, Kretschmer RG, Adam G, The crystal and molecular structure of the steroidal alkaloid 20-epi-kibataline[J]. Cryst Res Technol 20, 365-9 (1985) CrossRef PubMed Google Scholar
  44. 44.
    Atta-ur-Rahman, Choudhary MI, Khan MR, Anjum S, Iqbal MZ, New steroidal alkaloids from Sarcococca saligna[J]. J Nat Prod 63, 1364-8 (2000) CrossRef PubMed Google Scholar
  45. 45.
    Qiu MH, Nakamura N, Min BS, Hattori M, Two new pregnanone derivatives with strong cytotoxic activity from Pachysandra axillaris[J]. Chem Biodivers 2, 866-71 (2005) CrossRef PubMed Google Scholar
  46. 46.
    Chang LC, Bhat K, Pisha E, Kennelly EJ, Fong H, Pezzuto JM, Kinghorn AD, Activity-guided isolation of steroidal alkaloid antiestrogen-binding site inhibitors from Pachysandra procumbens[J]. J Nat Prod 61, 1257-62 (1998) CrossRef PubMed Google Scholar
  47. 47.
    Kalauni SK, Choudhary MI, Khalid A, Manandhar MD, Shaheen F, Atta-ur-Rahman, Gewali MB, New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin[J]. Chem Pharm Bull 50, 1423-6 (2002) CrossRef PubMed Google Scholar
  48. 48.
    Naeem I, Khan N, Choudhary MI, Atta-ur-Rahman, Alkaloids of Sarcococca saligna[J]. Phytochemistry 43, 903-6 (1996) CrossRef PubMed Google Scholar
  49. 49.
    Atta-ur-Rahman, Khan MR, Choudhary MI, Iqbal MZ, Steroidal alkaloids from Sarcococca saligna[J]. Phytochemistry 45, 861-4 (1997) CrossRef PubMed Google Scholar
  50. 50.
    Atta-ur-Rahman, Feroz F, Zaheer-ul-Haq, Nawaz SA, Khan MR, Choudhary MI, New steroidal alkaloids from Sarcococca saligna[J]. Nat Prod Res 17, 235-41 (2003) CrossRef PubMed Google Scholar
  51. 51.
    Atta-ur-Rahman, Zaheer-ul-Haq, Feroz F, Khalid A, Nawaz SA, Khan MR, Choudhary MI, New cholinesterase-inhibiting steroidal alkaloids from Sarcococca saligna[J]. Helv Chim Acta 87, 439-48 (2004) CrossRef PubMed Google Scholar
  52. 52.
    Adhikaria A, Vohra MI, Jabeen A, Dastagir N, Choudhary MI, Antiinflammatory steroidal alkaloids from Sarcococca wallichii of Nepalese origin[J]. Nat Prod Commun 10, 1533-6 (2015) PubMed Google Scholar
  53. 53.
    Qui MH, Nie RL, Nakamura N, Kikuchi T, Paxillarines A and B, new steroidal alkaloids from Pachysandra axillaris, and conformation of their ring A moieties[J]. Chem Pharm Bull 44, 2015-9 (1996) CrossRef PubMed Google Scholar
  54. 54.
    Funayama S, Noshita T, Shinoda K, Haga N, Nozoe S, Hayashi M, Komiyama K, Cytotoxic alkaloids of Pachysandra terminalis[J]. Biol Pharm Bull 23, 262-4 (2000) CrossRef PubMed Google Scholar
  55. 55.
    Leng CC, Bhat K, Fong H, Pezzuto JM, Kinghorn AD, Novel bioactive steroidal alkaloids from Pachysandra procumbens[J]. Tetrahedron 56, 3133-8 (2000) CrossRef PubMed Google Scholar
  56. 56.
    Huo SJ, Wu JC, He XC, Pan LT, Du J, Two new cytotoxic steroidal alkaloids from Sarcococca hookeriana[J]. Molecules 24, 11 (2018) CrossRef PubMed Google Scholar
  57. 57.
    He K, Wang JX, Zou J, Wu JC, Huo SJ, Du J, Three new cytotoxic steroidal alkaloids from Sarcococca hookeriana[J]. Molecules 23, 1181-8 (2018) CrossRef PubMed Google Scholar
  58. 58.
    Shazia A, Afgan F, Two new pregnane-type steroidal alkaloids from Sarcococca saligna[J]. Phytochemistry 46, 771-5 (1997) CrossRef PubMed Google Scholar
  59. 59.
    Jayasinghe U, Nadeem M, Atta-ur-Rahman, Choudhary MI, Ratnayake HD, Amtul Z, New antibacterial steroidal alkaloids from Sarcococca brevifolia[J]. Nat Prod Lett 12, 103-9 (1998) CrossRef PubMed Google Scholar
  60. 60.
    Jayasinghe U, Kumarihamya BM, Nadeemb M, Choudhary MI, Weerasooriya A, iso-N-formyl-5-en-chonemorphine, a steroidal alkaloid from Sarcococca zeylanica[J]. Nat Prod Lett 15, 151-5 (2001) CrossRef PubMed Google Scholar
  61. 61.
    Atta-ur-Rahman, Feroz F, Naeem I, Zaheer-ul-Haq, Nawaz SA, Khan N, Khan MR, Choudhary MI, New pregnane-type steroidal alkaloids from Sarcococca saligna and their cholinesterase inhibitory activity[J]. Steroids 69, 735-41 (2004) CrossRef PubMed Google Scholar
  62. 62.
    Kumar N, Singh B, Bhandari P, Gupta AP, Kaul VK, Steroidal alkaloids from Holarrhena antidysenterica(L.) WALL[J]. Chem Pharm Bull 55, 912-4 (2007) CrossRef PubMed Google Scholar
  63. 63.
    Zhang YY, Li YZ, Huang SQ, Cui YW, Zhang HW, Huang WL, Deng C, Wang W, Song XM, Two new pregnane alkaloids from Pachysandra terminalis Sieb. et Zucc[J]. Nat Prod Res 35, 3888-94 (2020) PubMed Google Scholar
  64. 64.
    Yu S, Zou Z, Zen J, Yu D, Cong P, Four new steroidal alkaloids from the roots of Sarcococca vagans[J]. Chin Chem Lett 8, 511-4 (1997) PubMed Google Scholar
  65. 65.
    Devkota KP, Choudhary MI, Ranjit R, Sewald SN, Structure activity relationship studies on antileishmanial steroidal alkaloids from Sarcococca hookeriana[J]. Nat Prod Res 21, 292-7 (2007) CrossRef PubMed Google Scholar
  66. 66.
    Atta-ur-Rahman, Choudhary MI, Khan MR, Iqbal MZ, Three new steroidal amines from Sarcococca saligna[J]. Nat Prod Lett 11, 81-91 (1998) CrossRef PubMed Google Scholar
  67. 67.
    Atta-ur-Rahman, Anjum S, Farooq A, Khan MR, Parveen Z, Choudhary MI, Antibacterial steroidal alkaloids from Sarcococca saligna[J]. J Nat Prod 61, 202-6 (1998) CrossRef PubMed Google Scholar
  68. 68.
    Atta-ur-Rahman, Anjum S, Farooq A, Khan MR, Choudhary MI, Phytochemical studies on steroidal alkaloids of Sarcococca saligna[J]. Nat Prod Lett 11, 297-304 (1998) CrossRef PubMed Google Scholar
  69. 69.
    Jayasinghe ULB, Nadeem M, Atta-Ur-Rahman, Choudhary MI, 11-Hydroxyepipachysamine-E, a new steroidal alkaloid from Sarcococca brevifolia[J]. Nat Prod Lett 14, 293-8 (2000) CrossRef PubMed Google Scholar
  70. 70.
    Atta-ur-Rahman, Zaheer-ul-Haq, Khalid A, Anjum S, Khan MR, Choudhary MI, Pregnane-type steroidal alkaloids of Sarcococca saligna: a new class of cholinesterase inhibitors[J]. Helv Chim Acta 85, 678-88 (2002) CrossRef PubMed Google Scholar
  71. 71.
    Choudhary MI, Devkota KP, Nawaz SA, Shaheen F, Atta-ur-Rahman, Cholinesterase-inhibiting new steroidal alkaloids from Sarcococca hookeriana of Nepalese origin[J]. Helv Chim Acta 87, 1099-108 (2004) CrossRef PubMed Google Scholar
  72. 72.
    Khalid A, Zaheer ul H, Ghayur MN, Feroz F, Atta ur R, Gilani AH, Choudhary MI, Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids[J]. J Steroid Biochem Mol Biol 92, 477-84 (2004) CrossRef PubMed Google Scholar
  73. 73.
    Choudhary MI, Devkota KP, Nawaz SA, Ranjit R, Atta ur R, Cholinesterase inhibitory pregnane-type steroidal alkaloids from Sarcococca hookeriana[J]. Steroids 70, 295-303 (2005) CrossRef PubMed Google Scholar
  74. 74.
    Devkota KP, Lenta BN, Choudhary MI, Naz Q, Fekam FB, Rosenthal PJ, Sewald N, Cholinesterase inhibiting and antiplasmodial steroidal alkaloids from Sarcococca hookeriana[J]. Chem Pharm Bull 55, 1397-401 (2007) CrossRef PubMed Google Scholar
  75. 75.
    Sun Y, Yan YX, Chen JC, Lu L, Zhang XM, Yan L, Qiu MH, Pregnane alkaloids from Pachysandra axillaris[J]. Steroids 75, 818-24 (2010) CrossRef PubMed Google Scholar
  76. 76.
    Zhang PZ, Wang F, Yang LJ, Zhang GL, Pregnane alkaloids from Sarcococca hookeriana var. digyna[J]. Fitoterapia 89, 143-8 (2013) CrossRef PubMed Google Scholar
  77. 77.
    Iqbal N, Adhikari A, Kanwal N, Abdalla OM, Mesaik MA, Musharraf SG, New immunomodulatory steroidal alkaloids from Sarcococa saligna[J]. Phytochem Lett 14, 203-8 (2015) CrossRef PubMed Google Scholar
  78. 78.
    Zou ZM, Li LJ, Yang M, Yu SS, Cong PZ, Yu DQ, Steroidal alkaloids from roots of Sarcococca vagans[J]. Phytochemistry 46, 1091-3 (1997) CrossRef PubMed Google Scholar
  79. 79.
    Yan YX, Sun Y, Chen JC, Wang YY, Li Y, Qiu MH, Cytotoxic steroids from Sarcococca saligna[J]. Planta Med 77, 1725-9 (2011) CrossRef PubMed Google Scholar
  80. 80.
    Kalauni SK, Choudhary MI, Shaheen F, Manandhar MD, Steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin[J]. J Nat Prod 64, 842-4 (2001) CrossRef PubMed Google Scholar
  81. 81.
    Kam TS, Sim KM, Koyano T, Toyoshima M, Hayashi M, Komiyama K, Cytotoxic and leishmanicidal aminoglycosteroids and aminosteroids from Holarrhena curtisii[J]. J Nat Prod 61, 1332-6 (1998) CrossRef PubMed Google Scholar
  82. 82.
    Zhai HY, Zhao C, Zhang N, Jin MN, Tang SA, Qin N, Kong DX, Duan HQ, Alkaloids from Pachysandra terminalis inhibit breast cancer invasion and have potential for development as antimetastasis therapeutic agents[J]. J Nat Prod 75, 1305-11 (2012) CrossRef PubMed Google Scholar
  83. 83.
    Badmus JA, Ekpo OE, Hussein AA, Meyer M, Hiss DC, Cytotoxic and cell cycle arrest properties of two steroidal alkaloids isolated from Holarrhena floribunda(G. Don) T. Durand&Schinz leaves[J]. BMC Complement Altern Med 19, 112-20 (2019) CrossRef PubMed Google Scholar
  84. 84.
    Wu JC, Huo SJ, Du J, 4-dehydroxyepisarcovagine A, a new steroidal alkaloid from Sarcococca pruniformis Lindl[J]. Nat Prod Res 33, 169-73 (2019) CrossRef PubMed Google Scholar
  85. 85.
    Brown KS, Kupchan SM, The structure of cyclobuxine[J]. J Am Chem Soc 84, 4590-1 (1962) CrossRef PubMed Google Scholar
  86. 86.
    Atta-ur-Rahman, Noor-e-ain F, Choudhary MI, Parveen Z, Turkoz S, Sener B, New steroidal alkaloids from Buxus longifolia[J]. J Nat Prod 60, 976-81 (1997) CrossRef PubMed Google Scholar
  87. 87.
    Qiu MH, Yang WS, Nie RL, Steroidal alkaloids from Buxus bodinieri[J]. Yunnan Zhiwu Yanjiu 23, 357-62 (2001) PubMed Google Scholar
  88. 88.
    Yan YX, Chen JC, Sun Y, Wang YY, Su J, Li Y, Qiu MH, Triterpenoid alkaloids from Buxus microphylla[J]. Chem Biodivers 7, 1822-7 (2010) CrossRef PubMed Google Scholar
  89. 89.
    Atta-ur-Rahman, Naz S, Ata A, Choudhary MI, New triterpenoidal alkaloids from the leaves of Buxus papillosa[J]. Heterocycles 48, 519-28 (1998) CrossRef PubMed Google Scholar
  90. 90.
    Voticky Z, Bauerová O, Paulík V, Dolesj L, Buxozine-C, a novel type of Buxus alkaloid[J]. Phytochemistry 16, 1860-1 (1977) CrossRef PubMed Google Scholar
  91. 91.
    Atta-ur-Rahman, Alam M, Nasir H, Dagne E, Yenesew A, Three steroidal alkaloids from Buxus hildebrandtii[J]. Phytochemistry 29, 1293-6 (1990) CrossRef PubMed Google Scholar
  92. 92.
    Ata A, Naz S, Choudhary MI, Atta-ur-Rahman, Sener B, Turkoz S, New triterpenoidal alkaloids from Buxus sempervirens, Z Naturforsch[J]. C J Biosci 57, 21-8 (2002) PubMed Google Scholar
  93. 93.
    Choudhary MI, Shahnaz S, Parveen S, Khalid A, Mesaik MA, Ayatollahi SAM, Atta-ur-Rahman, New cholinesterase-inhibiting triterpenoid alkaloids from Buxus hyrcana[J]. Chem Biodivers 3, 1039-52 (2006) CrossRef PubMed Google Scholar
  94. 94.
    Ata A, Iverson CD, Kalhari KS, Akhter S, Betteridge J, Meshkatalsadat MH, Orhan I, Sener B, Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities[J]. Phytochemistry 71, 1780-6 (2010) CrossRef PubMed Google Scholar
  95. 95.
    Atta-ur-Rahman, Choudhary MI, Naz S, Ata A, Sener B, Turkoz S, New steroidal alkaloids from the roots of Buxus sempervirens[J]. J Nat Prod 60, 770-4 (1997) CrossRef PubMed Google Scholar
  96. 96.
    Atta-ur-Rahman, Naz S, Ata A, Choudhary MI, Sener B, Turkoz S, Novel triterpenoidal alkaloids from the roots of Buxus sempervirens[J]. Nat Prod Lett 12, 299-306 (1998) CrossRef PubMed Google Scholar
  97. 97.
    Atta-ur-Rahman, Naz S, Noor-e-ain F, Ali RA, Choudhary MI, Sener B, Turkoz S, Alkaloids from Buxus species[J]. Phytochemistry 31, 2933-5 (1992) CrossRef PubMed Google Scholar
  98. 98.
    Khodzhaev BU, Khodzhaeva MR, Ubaev K, Isodihydrocyclomicrophylline A from Buxus sempervirens[J]. Chem Nat Compd 29, 812-3 (1993) CrossRef PubMed Google Scholar
  99. 99.
    Jiang D, Chiu M, Nie R, Three steroidal alkaloids from Buxus microphylla[J]. J Asian Nat Prod Res 1, 239-44 (1999) CrossRef PubMed Google Scholar
  100. 100.
    Atta-ur-Rahman S, Parveen S, Khalid A, Farooq A, Choudhary MI, Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa[J]. Phytochemistry 58, 963-8 (2001) CrossRef PubMed Google Scholar
  101. 101.
    Burnell RH, Soucy M, Alkaloids of Buxus wallichiana[J]. Phytochemistry 11, 1853-4 (1972) CrossRef PubMed Google Scholar
  102. 102.
    Guo H, Cai XH, Triterpenoid alkaloids from Buxus rugulosa[J]. Chem Nat Compd 44, 206-7 (2008) CrossRef PubMed Google Scholar
  103. 103.
    Yan YX, Hu XD, Chen JC, Sun Y, Qiu MH, Cytotoxic triterpenoid alkaloids from Buxus microphylla[J]. J Nat Prod 72, 308-11 (2009) CrossRef PubMed Google Scholar
  104. 104.
    Matochko WL, James A, Lam CW, Kozera DJ, Ata A, Gengan RM, Triterpenoidal alkaloids from Buxus natalensis and their acetylcholinesterase inhibitory activity[J]. J Nat Prod 73, 1858-62 (2010) CrossRef PubMed Google Scholar
  105. 105.
    Bai ST, Zhu GL, Peng XR, Dong JR, Yu MY, Chen JC, Wan LS, Qiu MH, Cytotoxicity of triterpenoid alkaloids from Buxus microphylla against human tumor cell lines[J]. Molecules 21, 1125-30 (2016) CrossRef PubMed Google Scholar
  106. 106.
    Atta-ur-Rahman S, Ata A, Naz S, Choudhary MI, Sener B, Turkoz S, New steroidal alkaloids from the roots of Buxus sempervirens[J]. J Nat Prod 62, 665-9 (1999) CrossRef PubMed Google Scholar
  107. 107.
    Atta-ur-Rahman, Noor-E-Ain F, Ali RA, Choudhary MI, Pervin A, Turkoz S, Sener B, Two steroidal alkaloids from Buxus longifolia[J]. Phytochemistry 32, 1059-63 (1993) CrossRef PubMed Google Scholar
  108. 108.
    Xiang ZN, Su JC, Liu YH, Deng B, Zhao N, Pan J, Hu ZF, Chen FH, Cheng BY, Chen JC, Structurally diverse alkaloids from Buxus sempervirens with cardioprotective activity[J]. Bioorg Chem 109, 104753 (2021) CrossRef PubMed Google Scholar
  109. 109.
    Atta-Ur-Rahman, Chou MI, Hary D, Naz S, Ata A, Perveen S, Parvez M, New triterpenoidal alkaloids from the leaves of Buxus papillosa[J]. Nat Prod Lett 11, 111-8 (1998) CrossRef PubMed Google Scholar
  110. 110.
    Babar ZU, Ata A, Meshkatalsadat MH, New bioactive steroidal alkaloids from Buxus hyrcana[J]. Steroids 71, 1045-51 (2006) CrossRef PubMed Google Scholar
  111. 111.
    Lorua F, Duvala D, Aumelasb A, Akeb D, Guedja R, Four steroidal alkaloids from the leaves of Buxus sempervirens[J]. Phytochemistry 54, 951-7 (2000) CrossRef PubMed Google Scholar
  112. 112.
    Atta-ur-Rahman, Parveen S, Khalid A, Farooq A, Ayattollahi SAM, Choudhary MI, Acetylcholinesterase inhibiting triterpenoidal alkaloids from Buxus hyrcana[J]. Heterocycles 49, 481-8 (1998) CrossRef PubMed Google Scholar
  113. 113.
    Atta-ur-Rahman, Asif E, Ali SS, Nasir H, Jamal SA, Ata A, Farooq A, Choudhary MI, Sener B, Turkoz S, New steroidal alkaloids from the roots of Buxus papillosa[J]. J Nat Prod 55, 1063-6 (1992) CrossRef PubMed Google Scholar
  114. 114.
    Lam CW, Wakeman A, James A, Ata A, Gengan RM, Ross SA, Bioactive steroidal alkaloids from Buxus macowanii Oliv[J]. Steroids 95, 73-9 (2015) CrossRef PubMed Google Scholar
  115. 115.
    Atta-ur-Rahman, Choudhary MI, Ata A, Dagne E, New tetrahydrofuranoid steroidal alkaloids from the leaves of Buxus hildebrandtii[J]. Heterocycles 34, 157-71 (1992) CrossRef PubMed Google Scholar
  116. 116.
    Choudhary MI, Shahnaz S, Parveen S, Khalid A, Ayatollahi SAM, Atta-ur-Rahman, Parvez M, New triterpenoid alkaloid cholinesterase inhibitors from Buxus hyrcana[J]. J Nat Prod 66, 739-42 (2003) CrossRef PubMed Google Scholar
  117. 117.
    Meshkatalsadat MH, Mollataghi A, Ata A, New triterpenoidal alkaloids from Buxus hyrcana[J]. Z Naturforsch B 61, 201-6 (2006) CrossRef PubMed Google Scholar
  118. 118.
    Takasugi M, Castro-Araya VH, Masamune T, Furusaki A, Matsumoto T, Veratrenone, a new alkaloid from Veratrum species[J]. Chem Lett 3, 1477-80 (1974) CrossRef PubMed Google Scholar
  119. 119.
    Kaneko K, Naruse N, Haruki K, Mitsuhashi H, Isobaimonidine, a new Fritillaria alkaloid from the aerial part of Fritillaria verticillata[J]. Chem Pharm Bull 28, 1345-6 (1980) CrossRef PubMed Google Scholar
  120. 120.
    Kitamura Y, Nishizawa M, Kaneko K, Shiro M, Hsu HY, Pingbeinone, a novel steroidal alkaloid having C-18 nor cevane skeleton from Fritillaria ussuriensis Maxim[J]. Tetrahedron Lett 30, 4981-2 (1989) CrossRef PubMed Google Scholar
  121. 121.
    Kitamura Y, Nishizawa M, Kaneko K, Shiro M, New steroidal alkaloids from Fritillaria ussuriensis maxim. pingbeinone and heilonine[J]. Tetrahedron 45, 7281-6 (1989) CrossRef PubMed Google Scholar
  122. 122.
    Feng R, Lin WH, Cai MS, Studies on the chemical constituents of fritillaria taipaiensis L[J]. Chin Chem Lett 5, 383-383 (1994) PubMed Google Scholar
  123. 123.
    Liu M, Xu WL, Xu CX, Chen DL, Wang JZ, Two new steroidal alkaloids from bulbs of Fritillaria pallidiflora[J]. Zhongcaoyao 47, 876-80 (2016) PubMed Google Scholar
  124. 124.
    Hu Z, Zong JF, Yili A, Yu MH, Aisa HA, Hou AJ, Isosteroidal alkaloids from the bulbs of Fritillaria tortifolia[J]. Fitoterapia 131, 112-8 (2018) CrossRef PubMed Google Scholar
  125. 125.
    Zhou CX, Liu JY, Ye WC, Liu CH, Tan RX, Neoverataline A and B, two antifungal alkaloids with a novel carbon skeleton from Veratrum taliense[J]. Tetrahedron 59, 5743-7 (2003) CrossRef PubMed Google Scholar
  126. 126.
    Li YL, Zhang Y, Zhao PZ, Hu ZX, Hao XJ, Two new steroidal alkaloids from the rhizomes of Veratrum nigrum L. and their anti-TYLCV activity[J]. Fitoterapia 147, 104731 (2020) CrossRef PubMed Google Scholar
  127. 127.
    Kaneko K, Kawamura N, Kuribayashi T, Tanaka M, Mitsuhashi H, Structures of two cevanine alkaloids, shinonomenine and veraflorizine, and a cevanidane alkaloid, procevine, isolated from illuminated veratrum[J]. Tetrahedron Lett 19, 4801-4 (1978) CrossRef PubMed Google Scholar
  128. 128.
    Kaneko K, Naruse N, Tanaka M, Yoshida N, Mitsuhashi H, Fritillarizine, a new Fritillaria alkaloid isolated from the aerial part of mature Fritillaria verticillata[J]. Chem Pharm Bull 28, 3711-3 (1980) CrossRef PubMed Google Scholar
  129. 129.
    Kang CH, Han JH, Oh J, Kulkarni R, Zhou W, Ferreira D, Jang TS, Myung CS, Na MK, Steroidal alkaloids from Veratrum nigrum enhance glucose uptake in skeletal muscle cells[J]. J Nat Prod 78, 803-10 (2015) CrossRef PubMed Google Scholar
  130. 130.
    Kaneko K, Tanaka M, Haruki K, Naruse N, Mitsuhashi H, 13C-NMR studies on the cevanine alkaloids: the application of 13C-NMR spectrum for structure elucidation of new alkaloids, baimonidine and isoverticine[J]. Tetrahedron Lett 20, 3737-40 (1979) CrossRef PubMed Google Scholar
  131. 131.
    Xu DM, Zhang B, Xiao YW, Studies on chemical constituents of pingpeimu (Fritilaria ussuriensis Maxim). II. Isolation and identification of pingpeimine glucoside[J]. Acta Pharm Sin 18, 868-70 (1983) PubMed Google Scholar
  132. 132.
    Wu JZ, Pan XP, Lou MA, Wang XS, Ling DK, Studies on the chemical constituents of Fritillaria in Hubei. X. Isolation and identification of alkaloids from Fritillaria ebeiensis var. purpurea G.D.Yu et P.Li[J]. Acta Pharm Sin 24, 600-5 (1989) PubMed Google Scholar
  133. 133.
    Kaneko K, Katsuhara T, Kitamura Y, Nishizawa M, Chen YP, Hsu HY, New steroidal alkaloids from the Chinese herb drug, "Bei-mu."[J]. Chem Pharm Bull 36, 4700-5 (1988) CrossRef PubMed Google Scholar
  134. 134.
    Zhang JX, Ma GE, Lao AN, Xu RS, Studies on chemical constituents of Fritillaria thunbergii Miq[J]. Acta Pharm Sin 26, 231-3 (1991) PubMed Google Scholar
  135. 135.
    Lin G, Ho YP, Li P, Li XG, Puqiedinone, a novel 5α-cevanine alkaloid from the bulbs of Fritillaria puqiensis, an antitussive traditional Chinese medicine[J]. J Nat Prod 58, 1662-7 (1995) CrossRef PubMed Google Scholar
  136. 136.
    Zhang JX, Lao AN, Huang HZ, Ma GE, Xu RS, Studies on the chemical constituents of Fritillaria thunbergii Miq. III. Isolation and identification of zhebeinone[J]. Acta Pharm Sin 27, 472-5 (1992) PubMed Google Scholar
  137. 137.
    Zhang JX, Zhang AN, Xu RS, Steroidal alkaloids from Fritillaria thunbergii var chekiangensis[J]. Phytochemistry 33, 946-7 (1993) CrossRef PubMed Google Scholar
  138. 138.
    Lee P, Kitamura Y, Kaneko K, Shiro M, Xu GJ, Chen YP, Hsu HY, The structural elucidation of Fritillaria alkaloids from Fritillaria ebeiensis var. Purpurea. I: the structures of ebeienine, ebeiedine and ebeiedinone[J]. Chem Pharm Bull 36, 4316-29 (1988) CrossRef PubMed Google Scholar
  139. 139.
    Atta-ur-Rahman, Akhtar MN, Choudhary MI, Tsuda Y, Sener B, Khalid A, Parvez M, New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities[J]. Chem Pharm Bull 50, 1013-6 (2002) CrossRef PubMed Google Scholar
  140. 140.
    Pi HF, Ruan HL, Zhang YH, Wu JZ, Steroidal alkaloids from bulbs of Fritillaria lichuanensis[J]. J Asian Nat Prod Res 8, 253-7 (2004) PubMed Google Scholar
  141. 141.
    Yan J, Ping L, Li HJ, Hua Y, New steroidal alkaloids from the bulbs of Fritillaria puqiensis[J]. Steroids 71, 843-8 (2006) CrossRef PubMed Google Scholar
  142. 142.
    Wang L, Jiang Y, Yaseen A, Li F, Chen B, Shen XF, Zheng C, Zhang GL, Wang MK, Steroidal alkaloids from the bulbs of Fritillaria pallidiflora Schrenk and their anti-inflammatory activity[J]. Bioorg Chem 112, 104845 (2021) CrossRef PubMed Google Scholar
  143. 143.
    Kawasaki T, Kitajima J, Noda N, Ida Y, Miyahara K, Steroid alkaloids of fresh bulbs of Fritillaria thunbergii mig. And of crude drug "Bai-mo" prepared therefrom[J]. Heterocycles 15, 791-6 (1981) CrossRef PubMed Google Scholar
  144. 144.
    Chen Q, Zhu LH, Xu YF, Fan JZ, A new steroidal alkaloid from the bulbus of Fritillaria wabuensia[J]. Acta Pharm Sin 39, 348-50 (2004) PubMed Google Scholar
  145. 145.
    Xu DM, Zhang B, Li HR, Xu ML, Isolation and identification of alkaloids from Fritillalia ussuriensis maxim[J]. Acta Pharm Sin 17, 355-9 (1982) PubMed Google Scholar
  146. 146.
    Xu DM, Wang SQ, Huang EX, Xu ML, Zhang YX, Wen XG, Isolation and identification of pingpeimine B[J]. Acta Pharm Sin 23, 902-5 (1988) PubMed Google Scholar
  147. 147.
    Xu DM, He CH, Wang SQ, Huang EX, Wen XG, Structure of pingbeimine C[J]. Acta Pharm Sin 25, 127-30 (1990) PubMed Google Scholar
  148. 148.
    Kaneko K, Katsuhara T, Mitsuhashi H, Chen YP, Hsu HY, Shiro M, Isolation and structure elucidation of new alkaloids from Fritillaria delavayi Franch, Shiro M[J]. Chem Pharm Bull 33, 2614-7 (1985) CrossRef PubMed Google Scholar
  149. 149.
    Wu JZ, Pu QL, Studies on the chemical constituents of hubeibeimu (Fritillaria hupehensis Hsia). III. Isolation and identification of hupehenioside[J]. Acta Pharm Sin 20, 372-6 (1985) PubMed Google Scholar
  150. 150.
    Wu JZ, Pu QL, Phytochemical studies on Fritillaria hupehensis IV. Isolation and identification of hupeheniirne, hupehenizine, and their mutual transformation with hupehenine[J]. Zhongcaoyao 6, 5-14 (1986) PubMed Google Scholar
  151. 151.
    Xu YJ, Xu DM, Cui DB, Huang EX, Jin XQ, Liu SY, Yan MM, Isolation and identification of yibeinoside B[J]. Acta Pharm Sin 28, 192-6 (1993) PubMed Google Scholar
  152. 152.
    Wu JZ, Tang M, Wang R, Studies on chemical constituents of Fritillaria in Hubei. XIII. Isolation and structure elucidation of hupehemonoside[J]. Acta Pharm Sin 26, 829-35 (1991) PubMed Google Scholar
  153. 153.
    Ori K, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T, Cerveratrum alkaloids from bulbs of Fritillaria persica[J]. Phytochemistry 31, 3605-7 (1992) CrossRef PubMed Google Scholar
  154. 154.
    Zhang JX, Lao AN, Xu RS, Studies on chemical constituents of Fritillaria yuminensis[J]. Acta Bot Sin 35, 963-7 (1993) PubMed Google Scholar
  155. 155.
    Zhang Y, Ruan H, Fang P, Cai J, Wu J, A new steroidal alkaloid from bulbs of Fritillaria hupehensis[J]. Chem Res Chin Univ 20, 804-6 (2004) PubMed Google Scholar
  156. 156.
    Li Y, Yili A, Li J, Muhamat A, Aisa HA, New isosteroidal alkaloids with tracheal relaxant effect from the bulbs of Fritillaria pallidiflora Schrenk[J]. Bioorg Med Chem Lett 26, 1983-7 (2016) CrossRef PubMed Google Scholar
  157. 157.
    Kaneko K, Katsuhara T, Mitsuhashi H, Chen YP, Hsu HY, Shiro M, Chuanbeinone, a novel d/e cis-(22r, 25s)-5α-cevanine alkaloid from chinese herbal drug, chuan-bei-mu[J]. Tetrahedron Lett 27, 2387-90 (1986) CrossRef PubMed Google Scholar
  158. 158.
    Min ZD, Qian JF, Iinuma M, Tanaka T, Mizuno M, Two steroidal alkaloids from Fritillaria harelinii[J]. Phytochemistry 25, 2008-9 (1986) CrossRef PubMed Google Scholar
  159. 159.
    Kitamura Y, Kaneko K, Shiro M, Chen YP, Xu GJ, Tortifoline, a novel (20S, 22R)-5α-cevanine alkaloid from Fritillaria tortifolia[J]. Chem Pharm Bull 37, 1514-6 (1989) CrossRef PubMed Google Scholar
  160. 160.
    Wang HM, Ogorochi T, Arai K, Miyajima A, Structure of mouse interleukin 3(IL-3) binding protein (AIC2A): amino acid residues critical for IL-3 binding[J]. J Biol Chem 267, 979-83 (1992) CrossRef PubMed Google Scholar
  161. 161.
    Yu S, Xiao P, Xun N, Studies on a new alkaloid, sonbeinine, from Fritillaria unibracteata[J]. Acta Bot Sin 34, 945-9 (1992) PubMed Google Scholar
  162. 162.
    Tsuda Y, Atta ur R, Akhtar MN, Sener B, Parvez M, Sashida Y, Mimaki Y, Mizuno M, The structure of a new crystalline cevane alkaloid: its identity with persicanidine B and harepermine[J]. Nat Prod Res 18, 205-9 (2004) CrossRef PubMed Google Scholar
  163. 163.
    Li QH, Wu ZH, Isolation and identification of alkaloids from Fritillaria anhuiensis S. C. Chen et S. F. Yin[J]. Acta Pharm Sin 21, 767-71 (1986) PubMed Google Scholar
  164. 164.
    Ori K, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T, Masuko A, Persicanidine A, a novel cerveratrum alkaloid from the bulbs of Fritillaria persica[J]. Chem Lett 21, 163-6 (1992) PubMed Google Scholar
  165. 165.
    Li Y, Yili A, Muhamat A, Aisa H, A new alkaloid with tracheal relaxant effect from the bulbs of Fritillaria pallidiflora[J]. Chem Nat Compd 53, 926-8 (2017) CrossRef PubMed Google Scholar
  166. 166.
    Samikov K, Shakirov R, Yunusov SY, Alkaloids of Veratrum lobelianum the structure of germinaline[J]. Chem Nat Compd 11, 566-7 (1975) CrossRef PubMed Google Scholar
  167. 167.
    Liang GY, Sun NJ, Chemical studies on active principles of Veratrum stenophyllum. II. Studies on the structure of a new blood pressure lowering agents-stenophylline A[J]. Acta Pharm Sin 19, 190-4 (1984) PubMed Google Scholar
  168. 168.
    Zhao WJ, Tezuka Y, Kikuchi T, Chen J, Guo YT, Studies on the constituents of Veratrum plants. i.: constituents of Veratrum maackii REG.; isolation and structure determinatin of a new alkaloid, maackinine[J]. Chem Pharm Bull 37, 2920-8 (1989) CrossRef PubMed Google Scholar
  169. 169.
    Zhao W, Tezuka Y, Kikuchi T, Chen J, Guo Y, Studies on the constitutents of Veratrum plants. II. Constituents of Veratrum nigrum L. var. ussuriense.(1). structure and 1H-and 13C-nuclear magnetic resonance spectra of a new alkaloid, verussurinine, and related alkaloids[J]. Chem Pharm Bull 39, 549-54 (2008) PubMed Google Scholar
  170. 170.
    Atta-ur-Rahman, Ali RA, Choudhary MI, Sener B, Turkoz S, New steroidal alkaloids from rhizomes of Veratrum album[J]. J Nat Prod 55, 565-70 (1992) CrossRef PubMed Google Scholar
  171. 171.
    Sayed KE, Mcchesney JD, Halim AF, Zaghloul AM, Lee IS, A study of alkaloids in Veratrum viride aiton[J]. Int J Pharm 34, 161-73 (1996) PubMed Google Scholar
  172. 172.
    Atta-ur-Rahman, Ali RA, Ashraf M, Choudhary MI, Sener B, Turkoz S, Steroidal alkaloids from Veratrum album[J]. Phytochemistry 43, 907-11 (1996) CrossRef PubMed Google Scholar
  173. 173.
    Zhou CX, Tanaka HK, Christopher HK, Higa T, Tan RX, Steroidal alkaloids and stilbenoids from Veratrum taliense[J]. Planta Med 65, 480-2 (1999) CrossRef PubMed Google Scholar
  174. 174.
    Tang J, Li HL, Shen YH, Jin HZ, Yan SK, Liu RH, Zhang WD, Four new germine esters from Veratrum dahuricum, Helv[J]. Chim Acta 90, 769-75 (2007) CrossRef PubMed Google Scholar
  175. 175.
    Wang B, Zhang WD, Shen YH, Tang J, Zhang C, Liu RH, Lin M, Li HL, Two new steroidal alkaloids from Veratrum nigrum L[J]. Helv Chim Acta 91, 244-8 (2008) CrossRef PubMed Google Scholar
  176. 176.
    Tanaka N, Suto S, Kobayashi J, Veramadines A and B, new steroidal alkaloids from Veratrum maackii var. japonicum[J]. Chem Pharm Bull 59, 909-12 (2011) CrossRef PubMed Google Scholar
  177. 177.
    Kitamura Y, Nishizawa M, Kaneko K, Ikura M, Hikichi K, Shiro M, Chen YP, Hsu HY, New steroidal alkaloids having a novel seven ring skeleton from Fritillaria ussuriensis maxim[J]. Tetrahedron 45, 5755-66 (1989) CrossRef PubMed Google Scholar
  178. 178.
    Suh WS, Lee SY, Park JE, Kim DH, Kim SY, Lee KR, Two new steroidal alkaloids from the bulbs of Fritillaria thunbergii[J]. Heterocycles 96, 925-34 (2018) PubMed Google Scholar
  179. 179.
    Akhtar MN, Atta ur R, Choudhary MI, Sener B, Erdogan I, Tsuda Y, New class of steroidal alkaloids from Fritillaria imperialis[J]. Phytochemistry 63, 115-22 (2003) CrossRef PubMed Google Scholar
  180. 180.
    Kaneko K, Kawamura N, Mitsuhashi H, Ohsaki K, Two new veratrum alkaloids, hosukinidine and epirubijervine from illuminated veratrum plant[J]. Chem Pharm Bull 27, 2534-6 (2008) PubMed Google Scholar
  181. 181.
    Kim JY, Son E, Kim DS, One new veratramine-type alkaloid from Veratrum maackiivar. japonicum and antioxidative activities of isolated compounds[J]. Nat Prod Commun 15, 1-5 (2020) PubMed Google Scholar
  182. 182.
    Yang C, Liu R, Zhou J, Zhanhe C, Ni F, Yang Y, Sterqidal alkaloids of Veratrum mentzeanum[J]. Acta Bot Yunnanica 9, 359-64 (1987) PubMed Google Scholar
  183. 183.
    Li QH, Wu ZH, Zhang LL, Pan JD, Structural determination of ningpeisinoside isolated from Fritillaria ningguoensis S.C. Chen et S.F. Yin[J]. Acta Pharm Sin 26, 794-7 (1991) PubMed Google Scholar
  184. 184.
    Tezuka Y, Kikuchi T, Zhao W, Chen J, Guo Y, Two new steroidal alkaloids, 20-isoveratramine and verapatuline, from the roots and rhizomes of Veratrum patulum[J]. J Nat Prod 61, 1078-81 (1998) CrossRef PubMed Google Scholar
  185. 185.
    Tang J, Li HL, Shen YH, Jin HZ, Yan SK, Liu RH, Zhang WD, Antitumor activity of extracts and compounds from the rhizomes of Veratrum dahuricum[J]. Phytother Res 22, 1093-6 (2008) CrossRef PubMed Google Scholar
  186. 186.
    Li Q, Zhao YL, Long CB, Zhu PF, Liu YP, Luo XD, Seven new veratramine-type alkaloids with potent analgesic effect from Veratrum taliense[J]. J Ethnopharmacol 244, 112137 (2019) CrossRef PubMed Google Scholar
  187. 187.
    Irsch EM, Pachaly P, Breitmaie E, Sin KS, Alkaloide aus Veratrum patulum. I: Isolierung und Strukturaufklärung neuer Steroidalkaloidglycoside[J]. Liebigs Ann Chem 1993, 281-5 (1993) CrossRef PubMed Google Scholar
  188. 188.
    Jiang Y, Li HJ, Li P, Cai ZH, Ye WC, Steroidal alkaloids from the bulbs of Fritillaria puqiensis[J]. J Nat Prod 68, 264-7 (2005) CrossRef PubMed Google Scholar
  189. 189.
    Gao LJ, Zhang MZ, Li XY, Huang WK, Xu SF, Ye YP, Steroidal alkaloids isolated from Veratrum grandiflorum Loes. as novel smoothened inhibitors with anti-proliferation effects on DAOY medulloblastoma cells[J]. Biorg Med Chem 39, 116166 (2021) CrossRef PubMed Google Scholar
  190. 190.
    He CL, Liu XH, Liu YR, Wang JZ, Chen DL. A new alkaloid with cytotoxic activity from Fritillaria thunbergii Miq. Nat Prod Res. 2021. . He CL, Liu XH, Liu YR, Wang JZ, Chen DL. A new alkaloid with cytotoxic activity from Fritillaria thunbergii Miq. Nat Prod Res. 2021. https://doi.org/10.1080/14786419.2021.1933970. PubMed Google Scholar
  191. 191.
    Nakhatov I, Shakirov R, Taskhanova EM, Yunusov SY, Alkaloids of Veratrum dahuricum[J]. Khim Prir Soedin 38, 131-2 (1980) PubMed Google Scholar
  192. 192.
    Tashkodzhaev B, Nakhatov I, Shakirov R, Yagudaev MR, Crystal and molecular structures of the alkaloid verdine[J]. Chem Nat Compd 20, 711-5 (1984) CrossRef PubMed Google Scholar
  193. 193.
    Mimaki Y, Sashida Y, Studies on the chemical constituents of the bulbs of Fritillaria camtschatcensis[J]. Chem Pharm Bull 38, 1090-2 (1990) CrossRef PubMed Google Scholar
  194. 194.
    Qian ZZ, Nohara T, Steroidal alkaloids of Fritillaria maximowiczii[J]. Phytochemistry 40, 979-81 (1995) CrossRef PubMed Google Scholar
  195. 195.
    Yun S, Chen JX, Lin Z, Jia S, Yan L, Qiu MH, Three new pregnane alkaloids from Veratrum taliense[J]. Helv Chim Acta 95, 1114-20 (2012) CrossRef PubMed Google Scholar
  196. 196.
    Atta-ur-Rahman, Ali RA, Gilani A, Chou MI, Hary D, Aftab K, Sener B, Turkoz S, Isolation of antihypertensive alkaloids from the rhizomes of Veratrum album[J]. Planta Med 59, 569-71 (1993) CrossRef PubMed Google Scholar
  197. 197.
    Cong Y, Li J, Zhang QC, Zhang JG, Li SS, Steroidal alkaloids from Veratrum dahuricum (Turcz.) Loes. F. with genotoxicity on brain cell DNA in mice[J]. Helv Chim Acta 98, 85-91 (2015) CrossRef PubMed Google Scholar
  198. 198.
    Cong Y, Jia W, Chen J, Song S, Wang JH, Yang YH, Steroidal alkaloids from the roots and rhizomes of Vertrum nigrum L[J]. Helv Chim Acta 90, 1038-42 (2007) CrossRef PubMed Google Scholar
  199. 199.
    Li Q, Yang KX, Zhao YL, Qin XJ, Yang XW, Liu L, Liu YP, Luo XD, Potent anti-inflammatory and analgesic steroidal alkaloids from Veratrum taliense[J]. J Ethnopharmacol 179, 274-9 (2016) CrossRef PubMed Google Scholar
  200. 200.
    Xu YJ, Xu DM, Huang EX, Wu XY, Liu SY, Isolation and identification of yibeissine[J]. Acta Pharm Sin 27, 121-4 (1992) PubMed Google Scholar
  201. 201.
    Zhang JX, Lao AN, Xu RS, Studieson new alkaloids of Fritillaria tortifolla X. Z. Duan[J]. Youji Huaxue 14, 289-92 (1994) PubMed Google Scholar
  202. 202.
    Atta-ur-Rahman, Ali RA, Parveen T, Choudhary MI, Turkoz S, Alkaloids from Veratrum album[J]. Phytochemistry 30, 368-70 (1991) CrossRef PubMed Google Scholar
  203. 203.
    Cong Y, Zhu HL, Zhang QC, Li L, Li HY, Wang XY, Guo JG, Steroidal alkaloids from Veratrum maackii Regel with genotoxicity on brain-cell DNA in mice[J]. Helv Chim Acta 98, 539-45 (2015) CrossRef PubMed Google Scholar
  204. 204.
    Zhou XF, Gao ZG, Han XR, Zhao WJ, Wang SS, Two new steroidal alkaloids from Veratrum nigrum var. ussuriense[J]. Chin Chem Lett 21, 1209-12 (2010) CrossRef PubMed Google Scholar
  205. 205.
    Zhao DK, Zhao Y, Chen SY, Kennelly EJ, Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis[J]. Nat Prod Rep 38, 1423-44 (2021) CrossRef PubMed Google Scholar
  206. 206.
    Ono M, Takara Y, Egami M, Uranaka K, Yoshimitsu H, Matsushita S, Fujiwara Y, Ikeda T, Nohara T, Steroidal alkaloid glycosides, esculeosides C and D, from the ripe fruit of cherry tomato[J]. Chem Pharm Bull 54, 237-9 (2006) CrossRef PubMed Google Scholar
  207. 207.
    Lu Y, Luo J, Kong L, Steroidal alkaloid saponins and steroidal saponins from Solanum surattense[J]. Phytochemistry 72, 668-73 (2011) CrossRef PubMed Google Scholar
  208. 208.
    Maxwell A, Seepersaud M, Pingal R, Mootoo DR, Reynolds WF, 3β-Aminospirosolane steroidal alkaloids from Solanum triste[J]. J Nat Prod 58, 625-8 (1995) CrossRef PubMed Google Scholar
  209. 209.
    Maxwell A, Pingal R, Reynolds WF, McLean S, 3-Aminospirosolane alkaloids from Solanum arboreum[J]. Phytochemistry 43, 913-5 (1996) CrossRef PubMed Google Scholar
  210. 210.
    Schreiber K, Die alkaloide von solanum dulcamara L[J]. Planta Med 6, 94-7 (1958) CrossRef PubMed Google Scholar
  211. 211.
    Wolters B, Relationship between the structure and the antibiotic action of some steroid alkaloids[J]. Arch Pharm 297, 748-54 (1964) CrossRef PubMed Google Scholar
  212. 212.
    Lee YY, Hashimoto F, Yahara S, Nohara T, Yoshida N, Studies on the solanaceous plants. 29. Steroidal glycosides from Solanum dulcamara[J]. Chem Pharm Bull 42, 707-9 (1994) CrossRef PubMed Google Scholar
  213. 213.
    Ripperger H, Porzel A, Steroidal alkaloid glycosides from Solanum suaveolens[J]. Phytochemistry 46, 1279-82 (1997) CrossRef PubMed Google Scholar
  214. 214.
    Lee YY, Hsu FL, Nohara T, Studies on the solanaceous plants. Part Xl. Two new soladulcidine glycosides from Solanum lyratum[J]. Chem Pharm Bull 45, 1381-2 (1997) CrossRef PubMed Google Scholar
  215. 215.
    Li W, Huang X, Qi C, Liu S, Kodama O, Utaka K, The molluscicidal component isolation and structure determination of Solanum xanthocarpum[J]. Agrochemicals 46, 591-3 (2007) PubMed Google Scholar
  216. 216.
    Iijima Y, Watanabe B, Sasaki R, Takenaka M, Ono H, Sakurai N, Umemoto N, Suzuki H, Shibata D, Aoki K, Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit[J]. Phytochemistry 95, 145-57 (2013) CrossRef PubMed Google Scholar
  217. 217.
    Kuhn R, Löw I, Zur Konstitution des Leptinidins[J]. Chem Ber 94, 1096-103 (1961) CrossRef PubMed Google Scholar
  218. 218.
    Boll PM, Alkaloidal glycosides from Solanum dulcamara[J]. Ada Chem Scand 16, 1819-30 (1962) CrossRef PubMed Google Scholar
  219. 219.
    Schreiber K, Solanum-alkaloide, XXXVII. Über die alkaloidglykoside von Solanum polyadenium Greenm[J]. Eur J Org Chem 674, 168-75 (1964) PubMed Google Scholar
  220. 220.
    Osman SF, Johns TA, Price KR, Sisunine, a glycoalkaloid found in hybrids between Solanum acaule and Solanum x ajanhuiri[J]. Phytochemistry 25, 967-8 (1986) CrossRef PubMed Google Scholar
  221. 221.
    Maxwell A, Pingal R, Reynolds WF, McLean S, Two steroidal glycoalkaloids from Solanum arboreum[J]. Phytochemistry 42, 543-5 (1996) CrossRef PubMed Google Scholar
  222. 222.
    Friedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, Kozukue N, Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells[J]. J Agric Food Chem 57, 5727-33 (2009) CrossRef PubMed Google Scholar
  223. 223.
    Bednarz H, Roloff N, Niehaus K, Mass spectrometry imaging of the spatial and temporal localization of alkaloids in Nightshades[J]. J Agric Food Chem 67, 13470-7 (2019) CrossRef PubMed Google Scholar
  224. 224.
    Mweetwa AM, Hunter D, Poe R, Harich KC, Ginzberg I, Veilleux RE, Tokuhisa JG, Steroidal glycoalkaloids in Solanum chacoense[J]. Phytochemistry 75, 32-40 (2012) CrossRef PubMed Google Scholar
  225. 225.
    Rönsch H, Schreiber K, Solanum-alkaloide-LXXII.: Über γ1-und δ-solamarin, zwei neue tomatidenol-glykoside aus Solanum dulcamara L[J]. Phytochemistry 5, 1227-33 (1966) CrossRef PubMed Google Scholar
  226. 226.
    Usubillaga A, Aziz I, Tettamanzi MC, Waibel R, Achenbach H, Steroidal alkaloids from Solanum sycophanta[J]. Phytochemistry 44, 537-43 (1997) CrossRef PubMed Google Scholar
  227. 227.
    Wanyonyi AW, Chhabra SC, Mkoji G, Eilert U, Njue WM, Bioactive steroidal alkaloid glycosides from Solanum aculeastrum[J]. Phytochemistry 59, 79-84 (2002) CrossRef PubMed Google Scholar
  228. 228.
    Kaneko K, Niitsu K, Yoshida N, Mitsuhashi H, Structure of solanaviol, a new steroidal alkaloid from Solanum aviculare[J]. Phytochemistry 19, 299-302 (1980) CrossRef PubMed Google Scholar
  229. 229.
    Matsuo Y, Shinoda D, Nakamaru A, Mimaki Y, Steroidal glycosides from the bulbs of Fritillaria meleagris and their cytotoxic activities[J]. Steroids 78, 670-82 (2013) CrossRef PubMed Google Scholar
  230. 230.
    Ripperger H, Steroid alkaloid glycosides from Solanum robustum[J]. Phytochemistry 39, 1475-7 (1995) CrossRef PubMed Google Scholar
  231. 231.
    Murakami K, Nohara T, Nomimatsu T, Studies on the constituents of solanum plants. iv. On the constituents of Solanum japonense Nakai[J]. Yakugaku Zasshi 104, 195-8 (1984) CrossRef PubMed Google Scholar
  232. 232.
    Yoshida K, Yahara S, Saijo R, Murakami K, Tomimatsu T, Nohara T, Changes caused by included enzymes in the constituents of Solanum nigrum berries[J]. Chem Pharm Bull 35, 1645-8 (1987) CrossRef PubMed Google Scholar
  233. 233.
    Yamashita T, Fujimura N, Yahara S, Nohara T, Kawanobu S, Fujieda K, Structures of three new steroidal alkaloid glycosides, solaverines I, II and III from Solanum toxicarium and S. verbascifolium[J]. Chem Pharm Bull 38, 827-9 (1990) CrossRef PubMed Google Scholar
  234. 234.
    Lin CN, Lu CM, Cheng MK, Gan KH, Won SJ, The cytotoxic principles of Solanum incanum[J]. J Nat Prod 53, 513-6 (1990) CrossRef PubMed Google Scholar
  235. 235.
    Ripperger H, Porzel A, Solanum alkaloids, 128. Steroid alkaloid glycosides from Solanum robustum[J]. Eur J Org Chem 1994, 517-20 (1994) PubMed Google Scholar
  236. 236.
    Ripperger H, Himmelreich U, Anguivine and isoanguivine, steroid alkaloid glycosides from Solanum anguivi[J]. Phytochemistry 37, 1725-7 (1994) CrossRef PubMed Google Scholar
  237. 237.
    Puri R, Wong TC, Puri RK, 1H-and 13C-NMR assignments and structural determination of a novel glycoalkaloid from Solanum platanifolium[J]. J Nat Prod 57, 587-96 (1994) CrossRef PubMed Google Scholar
  238. 238.
    Sarg TM, Glombitza KW, Hafez SS, Farrag NM, Abbas FA, Solasodine glycosides of Solanum unguiculatum (A.) Rich[J]. Pharm World Sci 17, 1991-4 (1995) PubMed Google Scholar
  239. 239.
    Lorey S, Porzel A, Ripperger H, Steroid alkaloid glycosides from Solanum coccineum[J]. Phytochemistry 41, 1633-5 (1996) CrossRef PubMed Google Scholar
  240. 240.
    Hanna AG, ElgamaL MHA, Yassin FY, Solanelagnin, a novel glycoalkaloid from Solanum elaeagnifolium[J]. Fitoterapia 67, 223-6 (1996) PubMed Google Scholar
  241. 241.
    Ripperger H, Steroidal alkaloid glycosides from Solanum uporo[J]. Phytochemistry 44, 731-4 (1997) CrossRef PubMed Google Scholar
  242. 242.
    Wanyonyi AW, Tarus PK, Chhabra SC, A novel glycosidic steroidal alkaloid from Solanum aculeastrum[J]. Bull Chem Soc Ethiop 17, 61-6 (2003) PubMed Google Scholar
  243. 243.
    Fukuhara K, Shimizu K, Kubo I, Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo Mattei[J]. Phytochemistry 65, 1283-6 (2004) CrossRef PubMed Google Scholar
  244. 244.
    Silva T, Camara CA, Freire KR, Silva TGd, Agra MdF, Bhattacharyya J, Steroidal glycoalkaloids and molluscicidal activity of Solanum asperum Rich. fruits[J]. J Braz Chem Soc 19, 1048-52 (2008) CrossRef PubMed Google Scholar
  245. 245.
    Nakamura S, Hongo M, Sugimoto S, Matsuda H, Yoshikawa M, Steroidal saponins and pseudoalkaloid oligoglycoside from Brazilian natural medicine, "fruta do lobo" (fruit of Solanum lycocarpum)[J]. Phytochemistry 69, 1565-72 (2008) CrossRef Solanum lycocarpum)">PubMed Solanum lycocarpum)&author=Nakamura S&publication_year=2008&journal=Phytochemistry&volume=69&pages=1565-72">Google Scholar
  246. 246.
    Sanchez-Mata MC, Yokoyama WE, Hong YJ, Prohens J, α-Solasonine and α-solamargine contents of gboma (Solanum macrocarpon L.) and scarlet (Solanum aethiopicum L.) eggplants[J]. J Agric Food Chem 58, 5502-8 (2010) CrossRef PubMed Google Scholar
  247. 247.
    Munafo JP Jr, Ramanathan A, Jimenez LS, Gianfagna TJ, Isolation and structural determination of steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.)[J]. J Agric Food Chem 58, 8806-13 (2010) CrossRef PubMed Google Scholar
  248. 248.
    Ding X, Zhu F, Yang Y, Li M, Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.)[J]. Food Chem 141, 1181-6 (2013) CrossRef PubMed Google Scholar
  249. 249.
    Tai BH, Van Doan V, Yen PH, Nhiem NX, Cuc NT, Trang DT, Hang DTT, Dung DT, Yen DTH, Quang TH, Two new steroidal alkaloid saponins from the whole plants of Solanum nigrum[J]. Nat Prod Commun 13, 1457-60 (2018) PubMed Google Scholar
  250. 250.
    Gu XY, Shen XF, Wang L, Wu ZW, Li F, Chen B, Zhang GL, Wang MK, Bioactive steroidal alkaloids from the fruits of Solanum nigrum[J]. Phytochemistry 147, 125-31 (2018) CrossRef PubMed Google Scholar
  251. 251.
    Xiang L, Wang Y, Yi X, He X, Steroidal alkaloid glycosides and phenolics from the immature fruits of Solanum nigrum[J]. Fitoterapia 137, 104268 (2019) CrossRef PubMed Google Scholar
  252. 252.
    Cuervo AC, Blunden G, Patel AV, Chlorogenone and neochlorogenone from the unripe fruits of Solanum torvum[J]. Phytochemistry 30, 1339-41 (1991) CrossRef PubMed Google Scholar
  253. 253.
    Vaz NP, Costa EV, Santos EL, Mikich SB, Marques FA, Braga RM, Delarmelina C, Duarte MCT, Ruiz ALTG, Souza VHS, de Carvalho JE, Maia BHLNS, Caavuranamide, a novel steroidal alkaloid from the ripe fruits of Solanum caavurana Vell. (Solanaceae)[J]. J Braz Chem Soc 23, 361-6 (2012) CrossRef PubMed Google Scholar
  254. 254.
    Rowan DD, Macdonald PE, Skipp RA, Antifungal stress metabolites from Solanum aviculare[J]. Phytochemistry 22, 2102-4 (1983) CrossRef PubMed Google Scholar
  255. 255.
    Ji Y, Gao S, Ji C, Zou X, Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein[J]. J Ethnopharmacol 115, 194-202 (2008) CrossRef PubMed Google Scholar
  256. 256.
    Shou QY, Tan Q, Shen ZW, Two 22S-solanidine-type steroidal alkaloids from Fritillaria anhuiensis[J]. Fitoterapia 81, 81-4 (2010) CrossRef PubMed Google Scholar
  257. 257.
    Zhang ZQ, Luo JG, Wang JS, Kong LY, Five new steroidal alkaloid glycosides from Solanum tuberosum[J]. Helv Chim Acta 96, 931-40 (2013) CrossRef PubMed Google Scholar
  258. 258.
    Coelho RM, De Souza MC, Sarragiotto MH, Steroidal alkaloid glycosides from Solanum orbignianum[J]. Phytochemistry 49, 893-7 (1998) CrossRef PubMed Google Scholar
  259. 259.
    Caruso I, Lepore L, De Tommasi N, Dal Piaz F, Frusciante L, Aversano R, Garramone R, Carputo D, Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun[J]. Chem Biodivers 8, 2226-37 (2011) CrossRef PubMed Google Scholar
  260. 260.
    Attoumbré J, Giordanengo P, Baltora-Rosset S, Solanidine isolation from Solanum tuberosum by centrifugal partition chromatography[J]. J Sep Sci 36, 2379-85 (2013) CrossRef PubMed Google Scholar
  261. 261.
    Kaneko K, Tanaka M, Nakaoka U, Tanaka Y, Yoshida N, Mitsuhashi H, Camtschatcanidine, an alkaloid from Fritillaria camtschatcensis[J]. Phytochemistry 20, 327-9 (1981) CrossRef PubMed Google Scholar
  262. 262.
    Kitajima J, Komori T, Kawasaki T, Schulten H, Basic steroid saponins from aerial parts of Fritillaria thunbergii[J]. Phytochemistry 21, 187-92 (1982) CrossRef PubMed Google Scholar
  263. 263.
    Wang G, Rong MQ, Li Q, Liu YP, Long CB, Meng P, Yao HM, Lai R, Luo XD. Alkaloids from Veratrum taliense exert cardiovascular toxic effects via cardiac sodium channel subtype 1.5. Toxins. 2016;8: 12. PubMed Google Scholar
  264. 264.
    Osman SF, Herb SF, Fitzpatrick TJ, Sinden SL, Commersonine, a new glycoalkaloid from two Solanum species[J]. Phytochemistry 15, 1065-7 (1976) CrossRef PubMed Google Scholar
  265. 265.
    Tai HH, Worrall K, Pelletier Y, De Koeyer D, Calhoun LA, Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance[J]. J Agric Food Chem 62, 9043-55 (2014) CrossRef PubMed Google Scholar
  266. 266.
    Kozukue N, Yoon KS, Byun GI, Misoo S, Levin CE, Friedman M, Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species[J]. J Agric Food Chem 56, 11920-8 (2008) CrossRef PubMed Google Scholar
  267. 267.
    Torres MCM, Jorge RJB, Ximenes RM, Alves NTQ, Santos JVdA, Marinho AD, Monteiro HS, Toyama MH, Braz-Filho R, Silveira ER, Solanidane and iminosolanidane alkaloids from Solanum campaniforme[J]. Phytochemistry 96, 457-64 (2013) CrossRef PubMed Google Scholar
  268. 268.
    Liang GY, Sun NJ, Chemical studies on active principles of Veratrum stenophyllum. I. Structure of stenophylline B and identification of other components[J]. Acta Pharm Sin 19, 131-6 (1984) PubMed Google Scholar
  269. 269.
    Grančai D, Suchá V, Tomko J, Dolejš L, Veratrum alkaloids. 33. Rhamnoveracintine-a new glycoalkaloid from Veratrum-album ssp. Lobelianum (BERNH) Suessenguth[J]. Chem Pap 40, 835-8 (1986) PubMed Google Scholar
  270. 270.
    Ping L, Kitamura Y, Kaneko K, Shiro M, Xu GJ, Chen YP, Hsu HY, A steroidal alkaloid from Fritillaria ebeiensis[J]. Phytochemistry 31, 2190-1 (1992) CrossRef PubMed Google Scholar
  271. 271.
    Shakirov R, Kulkova VV, Nakhatov I, Alkaloids of Veratrum lobelianum verdinine and 3, 15-DI-O-(2-methylbutyroyl)germine[J]. Chem Nat Compd 31, 79-82 (1995) CrossRef PubMed Google Scholar
  272. 272.
    Kaneko K, Nakaoka U, Tanaka M, Yoshida N, Mitsuhashi H, Two steroidal alkaloids, hapepunine and anrakorinine, from the mature Fritillaria camtschatcensis[J]. Phytochemistry 20, 157-60 (1981) CrossRef PubMed Google Scholar
  273. 273.
    Xu D, Wang S, Huang E, Xu M, Wen X, Structure of pingbeidinoside, an alkaloid isolated from the stems and leaves of Fritillaria ussuriensis Maxim[J]. Acta Pharm Sin 24, 668-72 (1989) PubMed Google Scholar
  274. 274.
    Xu DM, Xu ML, Wang SQ, Hung EX, Wen XG, Arihara S, Shoji N, Two new steroidal alkaloids from Fritillaria ussuriensis[J]. J Nat Prod 53, 549-52 (1990) CrossRef PubMed Google Scholar
  275. 275.
    Gaffield W, Wong RY, Lundin RE, Keeler RF, Structure of the steroidal alkaloid muldamine and its deacetyl derivative[J]. Phytochemistry 21, 2397-400 (1982) CrossRef PubMed Google Scholar
  276. 276.
    Min ZD, Tan RX, Zheng QT, He CH, The structure and absolute configuration of vertaline B isolated from Veratrum taliense Lose. f[J]. Acta Pharm Sin 23, 584-7 (1988) PubMed Google Scholar
  277. 277.
    Mizuno M, Xiang RT, Pei Z, Da ZM, Iinuma M, Tanaka T, Two steroidal alkaloid glycosides from Veratrum taliense[J]. Phytochemistry 29, 359-61 (1990) CrossRef PubMed Google Scholar
  278. 278.
    El Sayed KA, McChesney JD, Halim AF, Zaghloul AM, Voehler M, Two steroidal alkaloids from Veratrum viride[J]. Phytochemistry 38, 1547-50 (1995) CrossRef PubMed Google Scholar
  279. 279.
    Kadota S, Chen SZ, Li JX, Xu GJ, Namba T, A steroidal alkaloid from Veratrum oblongum[J]. Phytochemistry 38, 777-81 (1995) CrossRef PubMed Google Scholar
  280. 280.
    Taskhanova E, Shakirov R, Yunusov SY, Alkaloids of Zygadenus sibiricus. The structure of verazinine[J]. Chem Nat Compd 21, 343-4 (1985) CrossRef PubMed Google Scholar
  281. 281.
    Christov V, Mikhova B, Selenge D, (-)-Veranigrine, a new steroidal alkaloid from Veratrum nigrum L[J]. Fitoterapia 80, 25-7 (2009) CrossRef PubMed Google Scholar
  282. 282.
    Gao L, Chen F, Li X, Xu S, Huang W, Ye Y, Three new alkaloids from Veratrum grandiflorum Loes with inhibition activities on Hedgehog pathway[J]. Bioorg Med Chem Lett 26, 4735-8 (2016) CrossRef PubMed Google Scholar
  283. 283.
    Xu YJ, Xu DM, Cui DB, Gao JS, Isolation and identification of yibeinoside C from Fritillaria pallidiflora[J]. Acta Pharm Sin 29, 200-3 (1994) PubMed Google Scholar
  284. 284.
    Ori K, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T, Steroidal alkaloids from the bulbs of Fritillaria persica[J]. Phytochemistry 31, 4337-41 (1992) CrossRef PubMed Google Scholar
  285. 285.
    Foeldesiova V, Grancai D, Suchy V, Ubik K, Minor alkaloids of Veratrum Lobelianum Bernh. (Liliaceae)[J]. Farm Obz 64, 193-193 (1995) PubMed Google Scholar
  286. 286.
    Colmenares AP, Alarcón L, Rojas LB, Mitaine-Offer A-C, Pouységu L, Quideau S, Paululat T, Usubillaga A, Lacaille-Dubois M-A, New steroidal alkaloids from Solanum hypomalacophyllum[J]. Nat Prod Commun 5, 1743-6 (2010) PubMed Google Scholar
  287. 287.
    Khan S, Fatima I, Hussain Kazmi M, Malik A, New secondary metabolites from Allium victorialis[J]. Helv Chim Acta 96, 1176-81 (2013) CrossRef PubMed Google Scholar
  288. 288.
    Khan S, Fatima I, Kazmi MH, Malik A, A new steroidal alkaloid from Allium victorialis[J]. Chem Nat Compd 51, 1134-7 (2015) CrossRef PubMed Google Scholar
  289. 289.
    Li D, Zhao YL, Qin XJ, Liu L, Yang XW, Chen YY, Wang B, Wei X, Liu YP, Luo XD, Spiralosides A-C, three new C27-steroidal glycoalkaloids from the fruits of Solanum spirale[J]. Nat Prod Bioprospect 6, 225-31 (2016) CrossRef PubMed Google Scholar
  290. 290.
    Xie TZ, Luo L, Zhao YL, Li H, Xiang ML, Qin XJ, He YJ, Zhu YY, Dai Z, Wang ZJ, Steroidal alkaloids with a potent analgesic effect based on N-type calcium channel inhibition[J]. Org Lett 24, 467-71 (2022) CrossRef PubMed Google Scholar
  291. 291.
    Lüddecke T, Schulz S, Steinfartz S, Vences M, A salamander's toxic arsenal: review of skin poison diversity and function in true salamanders, genus Salamandra[J]. Sci Nat 105, 1-16 (2018) CrossRef PubMed Google Scholar
  292. 292.
    Schöpf C, Möller OW, Über Samandarin und verwandte alkaloide. VI. Cycloneosamandion, ein neues nebenalkaloid aus dem feuersalamander (Salamandra maculosa Laur) Liebigs[J]. Ann Chem 633, 127-56 (1960) CrossRef PubMed Google Scholar
  293. 293.
    Schöpf C, Braun W, Über Samandarin, das Hauptalkaloid im Gift des Feuer-und Alpensalamanders[J]. Liebigs Ann Chem 514, 69-136 (1934) CrossRef PubMed Google Scholar
  294. 294.
    Schöpf C, Koch K, Über Samandaron und Samandaridin, Nebenalkaloide im Gift des Feuer-und Alpensalamanders[J]. Liebigs Ann Chem 552, 37-61 (1942) CrossRef PubMed Google Scholar
  295. 295.
    Habermehl G, O-Acetyl-samandarin im Gift von Salamandra Maculosa[J]. Liebigs Ann Chem 679, 164-7 (1964) CrossRef PubMed Google Scholar
  296. 296.
    Knepper J, Lüddecke T, Preißler K, Vences M, Schulz S, Isolation and identification of alkaloids from poisons of fire salamanders (Salamandra salamandra)[J]. J Nat Prod 82, 1319-24 (2019) CrossRef PubMed Google Scholar
  297. 297.
    Habermehl G, Haaf G, Cycloneosamandaridin, ein neues Nebenalkaloid aus Salamandra maculosa[J]. Chem Ber 98, 3001-5 (1965) CrossRef PubMed Google Scholar
  298. 298.
    Habermehl G, Die Konstitution des Samandenons[J]. Chem Ber 99, 1439-42 (1966) CrossRef PubMed Google Scholar
  299. 299.
    Habermehl G, Vogel G, Samandinine, a minor alkaloid from Salamandra maculosa Laur[J]. Toxicon 7, 163-4 (1969) CrossRef PubMed Google Scholar
  300. 300.
    Habermehl G, Haaf A, Über Samandarin und verwandte Alkaloide, XIX1) Konstitution und Synthese des Samanins[J]. Liebigs Ann Chem 722, 155-61 (1969) CrossRef PubMed Google Scholar
  301. 301.
    Kurosu M, Kishi Y, Studies on the total synthesis of batrachotoxin[J]. J Syn Org Chem Jpn 62, 1205-17 (2004) CrossRef PubMed Google Scholar
  302. 302.
    Albuquerque E, Daly J, Witkop B, Batrachotoxin: chemistry and pharmacology[J]. Science 172, 995-1002 (1971) CrossRef PubMed Google Scholar
  303. 303.
    Dumbacher JP, Beehler BM, Spande TF, Garraffo HM, Daly JW, Homobatrachotoxin in the genus Pitohui: chemical defense in birds?[J]. Science 258, 799-801 (1992) CrossRef PubMed Google Scholar
  304. 304.
    Dumbacher JP, Spande T, Daly J, Batrachotoxin alkaloids from passerine birds: a second toxic bird genus (Ifrita kowaldi) from New Guinea[J]. Proc Natl Acad Sci 97, 12970-5 (2000) CrossRef PubMed Google Scholar
  305. 305.
    Aknin M, Rudi A, Kashman Y, Vacelet J, Gaydou EM, Plakinamine L: a new steroidal alkaloid from the marine sponge Corticium sp[J]. Nat Prod Commun 5, 33-4 (2010) PubMed Google Scholar
  306. 306.
    Borbone N, De Marino S, Iorizzi M, Zollo F, Debitus C, Esposito G, Iuvone T, Minor steroidal alkaloids from the marine sponge Corticium sp[J]. J Nat Prod 65, 1206-9 (2002) CrossRef PubMed Google Scholar
  307. 307.
    Ridley CP, Faulkner DJ, New cytotoxic steroidal alkaloids from the Philippine Sponge Corticium niger[J]. J Nat Prod 66, 1536-9 (2003) CrossRef PubMed Google Scholar
  308. 308.
    Rosser RM, Faulkner DJ, Two steroidal alkaloids from a marine sponge, Plakina sp[J]. J Org Chem 49, 5157-60 (1984) CrossRef PubMed Google Scholar
  309. 309.
    Lee H-S, Seo Y, Rho J-R, Shin J, Paul VJ, New steroidal alkaloids from an undescribed sponge of the genus Corticium[J]. J Nat Prod 64, 1474-6 (2001) CrossRef PubMed Google Scholar
  310. 310.
    Marino S, Iorizzi M, Zollo F, Roussakis C, Debitus C, Plakinamines C and D and three other new steroidal alkaloids from the sponge Corticium sp[J]. Eur J Org Chem 3, 697-701 (1999) PubMed Google Scholar
  311. 311.
    Sunassee SN, Ransom T, Henrich CJ, Beutler JA, Covell DG, McMahon JB, Gustafson KR, Steroidal alkaloids from the marine sponge Corticium niger that inhibit growth of human colon carcinoma cells[J]. J Nat Prod 77, 2475-80 (2014) CrossRef PubMed Google Scholar
  312. 312.
    Lu Z, Koch M, Harper MK, Matainaho TK, Barrows LR, Van Wagoner RM, Ireland CM, Plakinamine M, a steroidal alkaloid from the marine sponge Corticium sp[J]. J Nat Prod 76, 2150-2 (2013) CrossRef PubMed Google Scholar
  313. 313.
    Rodrigues Felix C, Roberts JC, Winder PL, Gupta R, Diaz MC, Pomponi SA, Wright AE, Rohde KH, Plakinamine P, a steroidal alkaloid with bactericidal activity against Mycobacterium tuberculosis[J]. Mar Drugs 17, 707-16 (2019) CrossRef PubMed Google Scholar
  314. 314.
    Indu S, Kaliappan KP, Synthetic approaches towards cortistatins: evolution and progress through its ages[J]. Org Biomol Chem 18, 3965-95 (2020) CrossRef PubMed Google Scholar
  315. 315.
    Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M, Cortistatins A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge Corticium simplex[J]. J Am Chem Soc 128, 3148-9 (2006) CrossRef PubMed Google Scholar
  316. 316.
    Watanabe Y, Aoki S, Tanabe D, Setiawan A, Kobayashi M, Cortistatins E, F, G, and H, four novel steroidal alkaloids from marine sponge Corticium simplex[J]. Tetrahedron 63, 4074-9 (2007) CrossRef PubMed Google Scholar
  317. 317.
    Aoki S, Watanabe Y, Tanabe D, Setiawan A, Arai M, Kobayashi M, Cortistatins J, K, L, novel abeo-9(10-19)-androstane-type steroidal alkaloids with isoquinoline unit, from marine sponge Corticium simplex[J]. Tetrahedron Lett 48, 4485-8 (2007) CrossRef PubMed Google Scholar
  318. 318.
    Pettit GR, Xu J-P, Williams MD, Christie ND, Doubek DL, Schmidt JM, Boyd MR, Isolation and structure of cephalostatins 10 and 11[J]. J Nat Prod 57, 52-63 (1994) CrossRef PubMed Google Scholar
  319. 319.
    Pettit GR, Ichihara Y, Xu J, Boyd MR, Williams MD, Isolation and structure of the symmetrical disteroidal alkaloids cephalostatin 12 and cephalostatin 13[J]. Bioorg Med Chem Lett 4, 1507-12 (1994) CrossRef PubMed Google Scholar
  320. 320.
    Pettit GR, Kamano Y, Dufresne C, Inoue M, Christie N, Schmidt JM, Doubek DL, Isolation and structure of the unusual Indian Ocean Cephalodiscus gilchristi components, cephalostatins 5 and 6[J]. Can J Chem 67, 1509-13 (1989) CrossRef PubMed Google Scholar
  321. 321.
    Pettit GR, Xu J-P, Schmidt JM, Boyd MR, Isolation and structure of the exceptional Pterobranchia human cancer inhibitors cephalostatins 16 and 171[J]. Bioorg Med Chem Lett 5, 2027-32 (1995) CrossRef PubMed Google Scholar
  322. 322.
    Pettit GR, Inoue M, Kamano Y, Herald DL, Arm C, Dufresne C, Christie ND, Schmidt JM, Doubek DL, Krupa TS, Antineoplastic agents. 147. Isolation and structure of the powerful cell growth inhibitor cephalostatin 1[J]. J Am Chem Soc 110, 2006-7 (1988) CrossRef PubMed Google Scholar
  323. 323.
    Pettit GR, Inoue M, Kamano Y, Dufresne C, Christie N, Niven ML, Herald DL, Isolation and structure of the hemichordate cell growth inhibitors cephalostatins 2, 3, and 4[J]. J Chem Soc Chem Commun 13, 865-7 (1988) PubMed Google Scholar
  324. 324.
    Pettit GR, Tan R, Xu JP, Ichihara Y, Williams MD, Boyd MR, Antineoplastic agents. 398. Isolation and structure elucidation of cephalostatins 18 and 19[J]. J Nat Prod 61, 955-8 (1998) CrossRef PubMed Google Scholar
  325. 325.
    Pettit GR, Kamano Y, Inoue M, Dufresne C, Boyd MR, Herald CL, Schmidt JM, Doubek DL, Christie ND, Antineoplastic agents. 214. Isolation and structure of cephalostatins 7-9[J]. J Org Chem 57, 429-31 (1992) CrossRef PubMed Google Scholar
  326. 326.
    Pettit GR, Xu JP, Chapuis JC, Melody N, The cephalostatins. 24. Isolation, structure, and cancer cell growth inhibition of cephalostatin 20[J]. J Nat Prod 78, 1446-50 (2015) CrossRef PubMed Google Scholar
  327. 327.
    Pettit GR, Xu JP, Ichihara Y, Williams MD, Boyd MR, Antineoplastic agents 285. Isolation and structures of cephalostatins 14 and 15[J]. Can J Chem 72, 2260-7 (1994) CrossRef PubMed Google Scholar
  328. 328.
    Fukuzawa S, Matsunaga S, Fusetani N, Isolation and structure elucidation of ritterazines B and C, highly cytotoxic dimeric steroidal alkaloids, from the tunicate Ritterella tokioka[J]. J Org Chem 60, 608-14 (1995) CrossRef PubMed Google Scholar
  329. 329.
    Phillips ST, Shair MD, Syntheses of the eastern halves of ritterazines B, F, G, and H, leading to reassignment of the 5, 5-spiroketal stereochemistry of ritterazines B and F[J]. J Am Chem Soc 129, 6589-98 (2007) CrossRef PubMed Google Scholar
  330. 330.
    Fukuzawa S, Matsunaga S, Fusetani N, Ten more ritterazines, cytotoxic steroidal alkaloids from the tunicate Ritterella tokioka[J]. Tetrahedron 51, 6707-16 (1995) CrossRef PubMed Google Scholar
  331. 331.
    Lee S, LaCour TG, Lantrip D, Fuchs PL, Redox refunctionalization of steroid spiroketals. Structure correction of ritterazine M[J]. Org Lett 4, 313-6 (2002) CrossRef PubMed Google Scholar
  332. 332.
    Fukuzawa S, Matsunaga S, Fusetani N, Ritterazine A, a highly cytotoxic dimeric steroidal alkaloid, from the tunicate Ritterella tokioka[J]. J Org Chem 59, 6164-6 (1994) CrossRef PubMed Google Scholar
  333. 333.
    Fukuzawa S, Matsunaga S, Fusetani N, Isolation of 13 new ritterazines from the tunicate Ritterella tokioka and chemical transformation of Ritterazine B1[J]. J Org Chem 62, 4484-91 (1997) CrossRef PubMed Google Scholar
  334. 334.
    Badmus JA, Ekpo OE, Sharma JR, Sibuyi NRS, Meyer M, Hussein AA, Hiss DC, An insight into the mechanism of holamine-and funtumine-induced cell death in cancer cells[J]. Molecules 25, 5716 (2020) CrossRef PubMed Google Scholar
  335. 335.
    Steg A, Amm HM, Novak Z, Frost AR, Johnson MR, Gli3 mediates cell survival and sensitivity to cyclopamine in pancreatic cancer[J]. Cancer Biol Ther 10, 893-902 (2010) CrossRef PubMed Google Scholar
  336. 336.
    Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB, Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J]. Nature 422, 313-7 (2003) CrossRef PubMed Google Scholar
  337. 337.
    Nishimaki H, Kasai K, Kozaki K-I, Takeo T, Ikeda H, Saga S, Nitta M, Itoh G, A role of activated Sonic hedgehog signaling for the cellular proliferation of oral squamous cell carcinoma cell line[J]. Biochem Biophys Res Commun 314, 313-20 (2004) CrossRef PubMed Google Scholar
  338. 338.
    Zhang X, Harrington N, Moraes RC, Wu MF, Hilsenbeck SG, Lewis MT, Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo)[J]. Breast Cancer Res Treat 115, 505-21 (2008) PubMed Google Scholar
  339. 339.
    Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res 67, 2187-96 (2007) CrossRef PubMed Google Scholar
  340. 340.
    Chen XL, Cheng QY, She MR, Wang Q, Huang XH, Cao LQ, Fu XH, Chen JS, Expression of sonic hedgehog signaling components in hepatocellular carcinoma and cyclopamine-induced apoptosis through Bcl-2 downregulation in vitro[J]. Arch Med Res 41, 315-23 (2010) CrossRef PubMed Google Scholar
  341. 341.
    Ghezali L, Leger DY, Limami Y, Cook-Moreau J, Beneytout JL, Liagre B, Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect[J]. Exp Cell Res 319, 1043-53 (2013) CrossRef PubMed Google Scholar
  342. 342.
    Chiang CT, Way TD, Tsai SJ, Lin JK, Diosgenin, a naturally occurring steroid, suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt, mTOR and JNK phosphorylation[J]. FEBS Lett 581, 5735-42 (2007) CrossRef PubMed Google Scholar
  343. 343.
    Koduru S, Grierson D, Van de Venter M, Afolayan A, Anticancer activity of steroid alkaloids isolated from Solanum aculeastrum[J]. Pharm Biol 45, 613-8 (2007) CrossRef PubMed Google Scholar
  344. 344.
    van der Most RG, Himbeck R, Aarons S, Carter SJ, Larma I, Robinson C, Currie A, Lake RA, Antitumor efficacy of the novel chemotherapeutic agent coramsine is potentiated by cotreatment with CpG-containing oligodeoxynucleotides[J]. J Immunother 29, 134-42 (2006) CrossRef PubMed Google Scholar
  345. 345.
    Liu LF, Liang CH, Shiu LY, Lin WL, Lin CC, Kuo KW, Action of solamargine on human lung cancer cells-enhancement of the susceptibility of cancer cells to TNFs[J]. FEBS Lett 577, 67-74 (2004) CrossRef PubMed Google Scholar
  346. 346.
    Wei G, Wang J, Du Y, Total synthesis of solamargine[J]. Bioorg Med Chem Lett 21, 2930-3 (2011) CrossRef PubMed Google Scholar
  347. 347.
    Shiu L, Chang L, Liang C, Huang Y, Sheu H, Kuo K, Solamargine induces apoptosis and sensitizes breast cancer cells to cisplatin[J]. Food Chem Toxicol 45, 2155-64 (2007) CrossRef PubMed Google Scholar
  348. 348.
    Choi SH, Ahn J-B, Kozukue N, Kim H-J, Nishitani Y, Zhang L, Mizuno M, Levin CE, Friedman M, Structure-activity relationships of α-, β1-, γ-, and δ-tomatine and tomatidine against human breast (MDA-MB-231), gastric (KATO-III), and prostate (PC3) cancer cells[J]. J Agric Food Chem 60, 3891-9 (2012) CrossRef PubMed Google Scholar
  349. 349.
    Devkota KP, Lenta BN, Wansi JD, Choudhary MI, Kisangau DP, Naz Q, Sewald N, Bioactive 5α-pregnane-type steroidal alkaloids from Sarcococca hookeriana[J]. J Nat Prod 71, 1481-4 (2008) CrossRef PubMed Google Scholar
  350. 350.
    Mitchell G, Lafrance M, Boulanger S, Séguin DL, Guay I, Gattuso M, Marsault É, Bouarab K, Malouin F, Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression[J]. J Antimicrob Chemother 67, 559-68 (2012) CrossRef PubMed Google Scholar
  351. 351.
    Chen Y, Li S, Sun F, Han H, Zhang X, Fan Y, Tai G, Zhou Y, In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants[J]. Pharm Biol 48, 1018-24 (2010) CrossRef PubMed Google Scholar
  352. 352.
    Emmanuel S, Ignacimuthu S, Perumalsamy R, Amalraj T, Antiinflammatory activity of Solanum trilobatum[J]. Fitoterapia 77, 611-2 (2006) PubMed Google Scholar
  353. 353.
    Pandurangan A, Khosa RL, Hemalatha S, Antinociceptive activity of steroid alkaloids isolated from Solanum trilobatum Linn[J]. J Asian Nat Prod Res 12, 691-5 (2010) CrossRef PubMed Google Scholar
  354. 354.
    Chiu FL, Lin JK, Tomatidine inhibits iNOS and COX-2 through suppression of NF-κB and JNK pathways in LPS-stimulated mouse macrophages[J]. FEBS Lett 582, 2407-12 (2008) CrossRef PubMed Google Scholar
  355. 355.
    Kenny OM, McCarthy CM, Brunton NP, Hossain MB, Rai DK, Collins SG, Jones PW, Maguire AR, O'Brien NM, Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages[J]. Life Sci 92, 775-82 (2013) CrossRef PubMed Google Scholar
  356. 356.
    Zhou JY. Research on cyclovirobuxinum D's mechanism of anti-myocardial ischemia, Ph. D thesis. Guangzou University of Traditional Chinese Medicine. 2005. PubMed Google Scholar
  357. 357.
    Hu D, Liu X, Wang Y, Chen S, Cyclovirobuxine D ameliorates acute myocardial ischemia by KATP channel opening, nitric oxide release and anti-thrombosis[J]. Eur J Pharmacol 569, 103-9 (2007) CrossRef PubMed Google Scholar
  358. 358.
    Yu B, Fang TH, Lü GH, Xu HQ, Lu JF, Beneficial effect of Cyclovirobuxine D on heart failure rats following myocardial infarction[J]. Fitoterapia 82, 868-77 (2011) CrossRef PubMed Google Scholar
  359. 359.
    Keeler RF, Teratogenic compounds of Veratrum californicum (Durand). X. Cyclopia in rabbits produced by cyclopamine[J]. Teratology 3, 175-80 (1970) CrossRef PubMed Google Scholar
  360. 360.
    Welch K, Panter K, Lee S, Gardner D, Stegelmeier B, Cook D, Cyclopamine-induced synophthalmia in sheep: defining a critical window and toxicokinetic evaluation[J]. J Appl Toxicol 29, 414-21 (2009) CrossRef PubMed Google Scholar
  361. 361.
    Gaffield W, Studies in natural products chemistry. (New York: Elsevier, 2000), pp. 563-89. PubMed Google Scholar
  362. 362.
    Friedman M, Henika P, Mackey B, Effect of feeding solanidine, solasodine and tomatidine to non-pregnant and pregnant mice[J]. Food Chem Toxicol 41, 61-71 (2003) CrossRef PubMed Google Scholar
  363. 363.
    Friedman M, Rayburn J, Bantle J, Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay-Xenopus (FETAX)[J]. Food Chem Toxicol 29, 537-47 (1991) CrossRef PubMed Google Scholar

Copyright information

© The Author(s) 2022

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  • Mei-Ling Xiang
    • 1
  • Bin-Yuan Hu
    • 1
  • Zi-Heng Qi
    • 1
  • Xiao-Na Wang
    • 1
  • Tian-Zhen Xie
    • 1
  • Zhao-Jie Wang
    • 1
  • Dan-Yu Ma
    • 1
  • Qi Zeng
    • 1
  • Xiao-Dong Luo
    • 1,2
  •     
  1. 1. Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
  2. 2. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China