Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia

  • Jin-Tao Ma 1 ,  
  • Da-Wei Li 2 ,  
  • Ji-Kai Liu 1 ,  
  • Juan He 1
  •     

Abstract

Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.

Keywords

Actinidia chemical constituents    Isolation    Biological activities    

1 Introduction

With the development of natural product research, a huge number of chemical constituents have been identified from natural resources. There is no doubt that the research on the chemical composition of fruits, including trace elements, has greatly improved the application prospects of these fruits. With no exception, it is the same to kiwifruit, one of the most prestigious fruits with a long history of eating [1, 2]. Kiwi belongs to plants of the genus Actinidia comprising more than 70 species around the world [3]. Some of these plants are proven to have a wide range of medicinal activities. For example, A. valvata, whose root is known as ''Mao-Ren-Shen" in traditional Chinese medicine, exhibits antitumor and anti-inflammatory activities and has been used for the treatment of hepatoma, lung carcinoma and myeloma for a long time [4, 5]. The roots of A. chinensis Planch, called "Teng-Li-Gen" usually, were used as a traditional Chinese medicine for the treatment of various cancers, such as esophagus cancer, liver cancer, and gastric cancer [6]. In the past two decades, great research had been accomplished about exploring the chemical composition of Actinidia plants. These studies have greatly promoted the understanding of the chemical components and functions of the Actinidia plant. According to literature survey, 12 Actinidia species including A. valvata, A. chinensis, A. argute, A. polygama, A. kolomikta, A. eriantha, A. macrosperma, A. deliciosa, A. chrysantha, A. rufa, A. indochinensis, and A. valvata were reported for their natural products. This review systematically summarizes the chemical components and their biological activities from different parts of 12 Actinidia species from 1959 to 2020. According to structure types, a total of 325 molecules have been collected including terpeniods, phenols, and other small groups (Fig. 1). Names and isolation information were listed in the tables, while the biological activities of the extracts or compounds were discussed in the text.

Fig. 1

Constituents proportion of 12 Actinidia plants

2 Chemical Constituents

2.1 Terpenoids

In recent years, a large number of terpenoids were isolated from many Actinidia species. Among them, triterpenes account for the vast majority that are mainly composed by several normal frameworks including ursane-type, oleanane-type, and lupane-type. Of the total 325 compounds in this review, 104 are triterpenoids. From the literature review, ursolic acids and their saponins are undoubtedly the most abundant in Actinidia species.

2.1.1 Ursane Triterpenoids

Ursane-type triterpenes are characterized of ursolic acid and its saponins, possessing a 6/6/6/6/6-fused carbon skeleton. A total of 76 ursane-type triterpenoids (176) have been identified from plants of the genus Actinidia (Fig. 2, Table 1). Ursolic acid (3β-Hydroxyurs-12-en-28-oic acid 1) [7], is one of the most frequently obtained compound in many kinds of kiwifruit plants with unique flavor. Great attention had been paid on biological activities about ursolic acid, attracting much interest in recent years. Ursolic acid exhibits different pharmacological activities, including anti-cancer, amylolytic enzyme inhibitors, cytotoxicity, downregulating thymic stromal lymphopoietin and others [7-11].

Fig. 2

Structures of ursane triterpenoids 176 from Actinidia plants

Table 1

Information of ursane triterpenoids from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
1 3β-Hydroxyurs-12-en-28-oic acid A. eriantha [7] Roots Anticancer (in vitro) [8]
Inhibiting amylolytic enzyme (in vitro) [9]
Antidepressant and neuroprotective (in vitro) [10]
Downregulating thymic stromal lymphopoietin
(in vitro) [11]
2 3β, 24-Dihydroxyurs-12-en-28-oic acid A. arguta [37]
A. polygama [23]
Leaves
Fruit galls
3 2α, 3β-Dihydroxyurs-12-en-28-oic acid A. polygama [23]
A. arguta [13]
Fruit galls
Roots
Anti-metastation
(In vitro) [38]
Anticancer (In vitro) [12]
4 23-Hydroxyursolic acid A. arguta [13] Roots Anti-pancreatic lipase
(In vitro) [13]
Anticancer(In vitro) [14, 15, 16]
Anti-inflammatory
(in vitro) [17]
5 2β, 3β-Dihydroxyursolic acid A. sp [39]
6 2α, 3α-Dihydroxyurs-12-en-28-oic acid A. chinensis [30] Roots
7 2α, 3α, 24-Trihydroxyurs-12-en-28-oic acid A. eriantha [40] Roots
8 2α, 3β, 24-Trihydroxy-urs-12-en-28-oic acid A. eriantha Benth [41]
A. polygama [18]
Fruit galls Against A549, LOVO, and HepG2 cell lines
(in vitro) [19]
9 2α, 3β, 23-Trihydroxyurs-12-en-28-oic acid A. polygama [18]
A. chrysantha [42]
Fruit galls
Roots
Against A549, LOVO, and HepG2 cell lines
(in vitro) [19]
10 2α, 3α, 23-Trihydroxyurs-12-en-28-oic acid A. polygama [18] Fruit galls
11 2β, 3α, 24-Trihydroxy-urs-12-en-28-oic acid A. rufa [43] Roots
12 2β, 3β, 10-Trihydroxy ursolic acid A. sp [39]
13 2α, 3β, 14β-Trihydroxy ursolic acid A. sp [39]
14 2α, 3α, 19-Trihydroxyurs-12-en-28-oic acid A. chinensis [44] Roots Inhibiting tumor angiogenesis (in vitro) [45]
15 2β, 3β, 23-Trihydroxyurs-12-en-28-oic acid A. eriantha [7] Roots Against HepG2, A549, MCF-7, SK-OV-3, and HeLa cell lines (in vitro) [32]
16 2β, 3α, 23-Trihydroxyurs-12-en-28-oic acid A. chinensis Planch [32] Roots Against HepG2, A549, MCF-7, SK-OV-3, and HeLa cell lines (in vitro) [32]
17 2α, 3α, 23, 24-Tetrahydroxyurs-12-en-28-oic acid A. polygama [18] Fruit galls Against A549, LOVO and HepG2 cell lines
(in vitro) [20]
18 2α, 3β, 19α, 23-Tetrahydroxyurs-12-en-28-oic acid A. chinensis Planch [32] Roots
19 2α, 3β, 19α, 24-Tetrahydroxyurs-12-en-28-oic acid A. indochinensis Merr. Var [46] Roots
20 2α, 3α, 19α, 24-Tetrahydroxyurs-12-en-28-oic acid A. valvata [21] Leaves Anti-tumor (in vitro) [21]
21 2α, 3β, 23, 24-Tetrahydroxyurs-12-en-28-oic acid A. chinensis Planch [32] Roots
22 2α, 3β, 6β, 23-Tetrahydroxyurs-12-en-28-oic acid A. valvata Dunn [47] Roots
23 2α, 3β, 23, 27-Tetrahydroxy-12-en-28-ursolic acid A. deliciosa [48] Roots
24 2α, 3α, 19α, 23, 24-Pentahydroxy-urs-12-en-
28-oic acid
A. chinensis Planch [19] Roots
25 2α, 3β, 19α, 23, 24-Pentahydroxyurs-12-en-28-oic acid A. rufa Planch ex miq [43] Roots
26 (2β, 3α, 6α)-2, 3, 6, 20, 23, 30-Hexahydroxyurs-12-en-28-oic acid A. valvata Dunn [22] Roots Against BEL-7402 and SMMC-7721 cells lines (in vitro) [22]
27 2β, 3β-Dihydroxy-23-oxours-12-en-28-oic acid A. eriantha Benth [49] Roots
28 2α, 3α-Dihydroxyurs-12-ene-24-al-28-oic acid A. polygama [18] Fruit galls
29 2α, 3α, 24-Trihydroxyurs-12-ene-23, 28-dioic acid A. polygama [18] Fruit galls
30 3β-O-Acetylursolic acid A. polygama [23] Fruit galls Inhibiting PTP1B
(in vitro) [24]
31 24-Acetyloxy-2α, 3α-dihydroxyurs-12-en-28-oic acid A. eriantha [7] Roots
32 2α, 3β, 19α-Trihydroxyurs-12-en-23, 28-dioic, acid-23-methylester A. chinensis Radix [50] Roots
33 3β-Hydroxy-13, 28-epoxyurs-11-en-3-ol A. kolomikta [51] Rhizomes
34 28-Norurs-12-en-3β, 17β-diol A. kolomikta [51] Rhizomes
35 Triptohypol E A. kolomikta [51] Rhizomes
36 Neoilexonol A. kolomikta [51] Rhizomes
37 11α-Methoxyurs-12-ene-3β, 12-diol A. arguta [34] Leaves
38 Ilelatifol A A. arguta [34] Leaves
39 (2α, 3β)-2, 3, 23-Trihydroxyurs-13(18)-en-28-oic acid A. chinensis Planch [52] Roots
40 Fupenzic acid A. chinensis [25] Root bark Antiviral (in vitro) [25]
41 Nrsolaldehyde A. arguta [26] Stems
42 α-Amyrin A. arguta [26] Stems
43 Uvaol A. arguta [26] Stems Anti-inflammatory
(in vivo) [27]
Anticancer (in vitro) [28]
Wound healing (in vivo) [29]
44 Pseudotaraxasterol A. chinensis Planch [19] Roots
45 2α, 3α, 24-Trihydroxyurs-11-en-13, 28-olide A. polygama [23] Fruit galls
46 2α, 3β-Dihydroxyurs-12-en-28, 30-olide A. chinensis [30] Roots
47 2α, 3β, 24-Trihydroxyurs-12-en-28, 30-olide A. chinensis [30] Roots
48 Ehretiolide A. kolomikta [51] Rhizomes
49 3β-Acetoxyurs-11-en-28-oic 13(28)-lactone A. kolomikta [51] Rhizomes
50 3β-Hydroxyurs-12, 18-dien-28-oic acid A. chinensis [30] Roots
51 (2α, 3β, 4α)-2, 3-Dihydroxy-24-norursa-12, 18-dien-28-oic acid A. valvata Dunn [47] Roots
52 2α, 3α, 23-Trihydroxy-12, 20(30)-ursadien-28-oic acid A. polygama [18]
A. deliciosa [31]
Fruit galls
Peels
Antifungal (in vitro) [31]
53 2α, 3β, 23-Trihydroxy-12, 20(30)-ursadien-28-oic acid A. deliciosa [31] Peels Antifungal (in vitro) [31]
54 2α, 3α, 24-Trihydroxy-12, 20(30)-ursadien-28-oic acid A. deliciosa [31] Peels Antifungal (in vitro) [31]
55 2α, 3α, 23, 24-Tetrahydroxyursa-12, 20(30)-dien-28-oic acid A. chinensis Planch [32] Roots Anti-tumor (in vitro) [32]
56 3β-Trans-p-coumaroyloxy-2α, 24-dihydroxy-urs-12- en-28-oic acid A. polygama [23] Fruit galls
57 3-O-Trans-p-coumaroyl tormentic acid A. chinensis Radix [50] Roots
58 3-O-Cis-p-coumaroyl tormentic acid A. chinensis Radix [50] Roots
59 3-O-Trans-p-coumaroylasiatic acid A. polygama [18] Fruit galls
60 23-O-Trans-p-coumaroylasiatic acid A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
61 Actiniargupene E A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
62 Actiniargupene F A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
63 Actiniargupene G A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
64 3-O-Trans-p-coumaroyl actinidic acid A. arguta [13]
A. arguta [34]
Roots
Leaves
65 3-O-Cis-p-coumaroylactinidic acid A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
66 Actiniargupene A A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
67 Actiniargupene B A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
68 Actiniargupene C A. arguta [34] Leaves Inhibiting α-glucosidase (in vitro) [34]
69 (+)-Tormentoside A. arguta [53] Roots
70 (+)-Euscaphic acid-28-O-β-d-glucopyranoside A. arguta [53] Roots
71 2α, 3α, 19α, 24-Tetrahydroxyurs-12-en-28-oic acid 28-O-β-d-glucopyranoside A. chinensis Planch [19] Roots Inhibiting SKVO3 and TPC-1 cancer cells lines
(in vitro) [42]
72 2α, 3β, 19α, 23-Tetrahydroxyurs-12-en-28-oic acid 28-O-β-d-glucopyranoside A. chinensis Radix [50] Roots
73 2α, 3β, 19α, 23, 24-Pentahydroxyurs-12-en-28-oic acid-28-O-β-d-glucopyranoside A. rufa [35] Roots
74 (2β, 3α)-2, 3, 20, 23, 24, 30-Hexahydroxyurs-12-en-28-oic acid O-β-d-glucopyranosyl ester A. valvata Dunn [22] Roots Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [22]
75 2α, 3β, 23, 30-Tetrahydroxyurs-12, 18-diene-
28-oic acid O-β-d-glucopyranosyl ester
A. valvata Dunn [36] Roots Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [36]
76 30-O-β-d-Glucopyranosyloxy-2α, 3α, 24-
trihydroxyurs-12, 18-diene-28-oic acid O-β-d-glucopyranosyl ester
A. valvata Dunn [36] Roots Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [36]

Compounds 27 are ursane triterpenoids featuring with two hydroxyl groups. Compound 3 (2α-Hydroxyursolic acid) was tested for its antiproliferative activity and cytotoxicity in MDA-MB-231 human breast cancer cells through the methylene blue assay. It significantly down-regulated expressions of TRAF2, PCNA, cyclin D1, and CDK4 and up-regulated the expressions of p-ASK1, p-p38, p-p53, and p-21. Furthermore, it induced apoptosis in MDA-MB-231 cell by significantly increasing the Bax/Bcl-2 ratio and inducing the cleaved caspase-3 [12]. Compound 4 exhibited inhibitory activity on pancreatic lipase with an IC50 value of 20.42 ± 0.95 μM [13]. It also showed cytotoxicity to human lung adenocarcinoma (A549), ovarian cancer (SK-OV-3), skin melanoma (SK-MEL-2), and colon cancer (HCT-15) cell lines with IC50 values ranging from 11.96 to 14.11 μM [14-17].

Compounds 714 are trihydroxy-ursolic acid derivatives. In early 1992, Sashida et al. reported the isolation of 810. Compounds 8 and 9 were evaluated for their cytotoxicity against A549 cells, LOVO cells, and HepG2 cells with IC50 values of 32.9, 31.6, 35.7 μg/mL respectively for 8 and 34.6, 13.9, 34.5 μg/mL respectively for 9 [18, 19]. Compounds 1726 are ursolic acids with four or five hydroxy groups. Xu et al. reported 17 from roots of A. valvata, this compound exhibited weak cytotoxicity against A549, LOVO and HepG2 cell lines with IC50 values of above 100 μg/mL [20]. 2α, 3α, 19α, 24-Tetrahydroxyurs-12-en-28-oic acid 20 was separated from the leaves of A. valvata which showed cytotoxicity against PLC, Hep3B, HepG2, HeLa, SW480, MCF-7 and Bel7402 in vitro [21]. A new polyoxygenated triterpenoid (2β, 3α, 6α)-2, 3, 6, 20, 23, 30-hexahydroxyurs-12-en-28-oic acid 26 was obtained from the roots of A. valvata DUNN, it exhibited moderate cytotoxic activity against BEL-7402 and SMMC-7721 tumor cell lines in vitro [22].

Compound 30 (3β-O-acetylursolic acid) was isolated from the fruit galls of A. polygama and the structure was elucidated on the basis of chemical and spectral evidence. It was reported to be a mixed-type protein tyrosine phosphatase 1B (PTP1B) inhibitor with an IC50 value of 4.8 ± 0.5 μΜ [23, 24]. Isolation of the antiviral active ingredient of A. chinensis root bark gave fupenzic acid 40, which showed moderate inactivity under the concentration of 100 μg/mL [25]. Callus tissue from the stems of A. arguta (Actinidiaceae) produced three ursane-type triterpenes including ursolaldehyde 41, α-amyrin 42, and uvaol 43 [26]. Of them, compound 43 showed anti-inflammatory, anticancer, and wound healing activities [27-29]. Anti-inflammatory properties of 43 on DSS-induced colitis and LPS-stimulated macrophages have been explored detailly and completely. It showed excellent potential of NO production inhibition. It could attenuate disease activity index (DAI), colon shortening, colon injury, and colonic myeloperoxidase activity in DSS-induced colitis mice. What's more, studies on LPS challenged murine macrophage RAW246.7 cells also revealed that uvaol reduces mRNA expression and production of pro-inflammatory cytokines and mediators. These results indicating that uvaol is a prospective anti-inflammatory agent for colonic inflammation [27]. Guided by the hepatoprotective activity, the phytochemical study on the roots of A. chinensis led to the isolation of two new compounds 2α, 3β-dihydroxyurs-12-en-28, 30-olide 46, 2α, 3β, 24-trihydroxyurs-12-en-28, 30-olide 47 and 3β-hydroxyurs-12, 18-dien-28-oic acid 50 [30]. Compounds 5254 showed antifungal activity against C. musae at 3 μg/mL [31]. A new compound 2α, 3α, 23, 24 -tetrahydroxyursa-12, 20(30)-dien-28-oic acid 55 was isolated from the roots of A. chinensis Planch. It exhibited moderate antitumor activities against five human cancer cell lines (HepG2, A549, MCF-7, SK-OV-3, and HeLa) with IC50 values of 19.62 ± 0.81, 18.86 ± 1.56, 45.94 ± 3.62, 62.41 ± 2.29, and 28.74 ± 1.07 μM, respectively [32].

Compounds 5963 are actinidic acid derivatives with a phenylpropanoid unit that were identified as 3-O-trans-p-coumaroylasiatic acid 59, 23-O-trans-p-coumaroylasiatic acid 60, actiniargupene E 61, actiniargupene F 62, and actiniargupene G 63 from the leaves of A. arguta. All the compounds showed inhibitory effects on α-glucosidase activity. Among them compound 59 showed most potentially inhibitory activity on α-glucosidase with an IC50 of 81.3 ± 2.7 μM, equal to that of the positive control (acarbose, 72.8 ± 3.1 μM) [33]. The structure–activity relationship suggested that triterpenoids with a phenylpropanoid moiety exhibited more potent effects than those without such a unit [34]. Compound 71 showed potent cytotoxic activity against human SKVO3 and TPC-1 cancer cell lines with IC50 values of 10.99 and 14.34 μM, respectively [19, 35]. Compound 74 exhibited moderate cytotoxic activity against BEL-7402 and SMMC-7721 tumor cell lines [22]. Compounds 75 and 76 were isolated from roots of A. valvata Dunn. They exhibited moderate cytotoxic activity in vitro against BEL-7402 and SMMC-7721 tumor cell line [36].

2.1.2 Oleanane Triterpenoids

Oleanane-type triterpenoids also possessed a 6/6/6/6/6 pentacyclic carbon skeleton. Unlike ursane triterpenes, oleanane-type triterpenoids have two methyl groups at the C-20 position instead of each one at the C-19 and C-20, respectively. So far, a total of 24 oleanane-type triterpenoids have been identified from Actinidia plants (77100, Fig. 3, Table 2). The most representative compound is oleanolic acid 77. It was found from callus tissue from the stems of A. arguta, together with 2α, 3β-dihydroxyolean-12-en-28-oic acid 78 [26]. Oleanolic acid 77 is abundant in nature and exhibits a wide range of biological activities including anti-inflammatory [54], anti-hypertension [55], anti-tumor [56, 57], neuroprotection [58], and anti-cholesterol activities [59]. Oleanolic acid was performed to test the effect on apoptosis and autophagy of SMMC-7721 Hepatoma cells. It can significantly inhibit the growth of liver cancer SMMC-7721 cells and induce autophagy and apoptosis [57]. Compound 78 also showed anti-tumor and anti-inflammatory activities [60, 61]. Lim et al. have demonstrated that 78 showed very strong anti-tumor-promoting activity with an IC50 of 0.1 mg/mL [60].

Fig. 3

Structures of oleanane triterpenoids 77100 from Actinidia plants

Table 2

Information of oleanane triterpenoids from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
77 Oleanolic acid A. arguta [26] Stems Anti-inflammatory (in vitro) [54] Anti-hypertension
(in vivo) [55] Anti-tumor
(in vitro) [56, 57]
Neuroprotection(in vitro) [58]
Anti-cholesterol(in vitro) [59]
78 2α, 3β-Dihydroxyolean-12-en-28-oic acid A. arguta [26] Stems
79 2α, 3α-Dihydroxyolean-12-en-28-oic acid A. chinensis Planch [63] Fruits
80 2α, 3β, 23-Trihydroxyolean-12-en-28-oic acid A. deliciosa [31] Peels Antifungal (in vitro) [31]
81 2α, 3α, 24-Trihydroxyolean-12-en-28-oic acid A. deliciosa [31] Peels Antifungal (in vitro) [31]
82 3β-O-Acetyloleanolic acid A. arguta [64]
A. chinensis [45]
Stems
Roots
Anti-angiogenesis (in vitro) [45]
83 2α, 3β, 19-Trihydroxyolean-12-en-28-oic acid A. chinensis [45] Roots Anti-angiogenesis (in vitro) [45]
84 (3β, 4α, 16α)-3, 16, 23-Trihydroxyolean-12-
en-28-oic acid
A. valvata Dunn [47] Roots
85 (2β, 3β, 4α, 16α)-2, 3, 16, 23-Tetrahydroxyolean-12-en-28-oic acid A. valvata Dunn [47] Roots
86 2α, 3β, 19α, 23-Tetrahydroxyoleanolic acid A. deliciosa [65] Roots
87 3β, 23, 24-Trihydroxyl-12-oleanen-28-oic acid A. eriantha Benth [62] Roots Anti-angiogenesis (in vitro) [62]
88 9(11), 12-Diene-30-oic acid A. chinensis [25] Roots bark Anti-viral (in vitro) [25]
89 12α-Chloro-2α, 3β, 13β, 23-tetrahydroxyolean-28-oic acid-13-lactone A. chinensis Planch [19] Roots Anti-catalysis (in vitro) [43]
90 β-Amyrin A. arguta [26] Stems
91 Erythrodiol A. kolomikta [51] Dried rhizomes
92 12-Oleanene 2α, 3α, 24-triol A. macrosperma [66] Roots
93 3β-(2-Carboxybenzoyloxy) oleanolic acid A. chinensis [25] Root bark Anti-phytoviral (in vitro) [25]
94 Spathodic acid-28-O-β-d-glucopyranoside A. chinensis [25] Root bark Anti-phytoviral (in vitro) [25]
95 Oleanolic acid-23-O-β-d-glucopyranoside A. eriantha Benth [62] Roots Anti-angiogenesis (in vitro) [62]
96 2α, 3β, 19α, 23, 24-Pentahydroxy-12-oleanen 28-oic acid 28-β-d-glucopyranosyl A. chinensis Radix [50] Roots
97 3-O-β-d-Glucopyranosyl-2α, 3β, 6β, 19α, 21β, 23-hexahydroxylolean-12-en-28-oic acid A. kolomikta [67] Leaves
98 3β, 23-Dihydroxy-30-norolean-12, 20(29)-
dien-28-oic acid
A. chinensis Radix [50] Roots
99 3β, 23-Dihydroxy-1-oxo-30-norolean-
12, 20(29)-dien-28-oic acid
A. chinensis Radix [50] Roots
100 2α, 3α, 23, 24-Tetrahydroxy-30-norolean-
12, 20(29)-dien-28-oic acid
A. chinensis Radix [50] Roots

Bioassay- and 1H NMR-guided fractionation of the methanol extract afforded two oleanolic acids of 2α, 3β, 23-trihydroxyolean-12-en-28-oic acid 80 and 2α, 3α, 24-trihydroxyolean-12-en-28-oic acid 81, showing antifungal activity against C. musae at 3 μg/mL [31]. The EtOAc extract of the roots of A. eriantha Benth exhibited potent growth inhibitory activity against SGC7901 cells, CNE2 cells and HUVECs cells. From which, compound 87 (3β, 23, 24-trihydroxyl-12-oleanen-28-oic acid) was identified [62]. Compound 88 was extracted from the roots bark of A. chinensis, which showed anti-viral activity [25]. A new triterpenoid 12α-chloro-2α, 3β, 13β, 23 -tetrahydroxyolean-28-oic acid-13-lactone 89 was extracted from the roots of A. chinensis Planch (Actinidiaceae). It was tested for cytochrome P450 (CYPs) enzyme inhibitory activity in later years, which could significantly inhibit the catalytic activities of CYP3A4 to < 10% of its control activities [19, 52].

3β-(2-Carboxybenzoyloxy) oleanolic acid 93 and spathodic acid-28-O-β-D-glucopyranoside 94 were extracted from the root bark of A. chinensis. The anti-phytoviral activity test indicated that 94 showed potent activity on TMV, and CMV with inactivation effect of 46.67 ± 1.05, and 45.79 ± 2.23 (100 mg/L), compared to ningnanmycin with inactivation effect of 30.15 ± 1.16 and 27.18 ± 1.02 (100 mg/L) respectively [25]. 3β, 23-Dihydroxy- -30-norolean-12, 20(29)-dien-28-oic acid 98, 3β, 23-dihydroxy-1-oxo-30-norolean-12, 20(29)-dien-28-oic acid 99, and 2α, 3α, 23, 24-tetrahydroxy-30-norolean-12, 20(29)-dien-28-oicacid 100 are three one-carbon-degraded oleanane triterpenoids that were identified from A. chinensis Radix for the first time [50].

2.1.3 Lupane Triterpenoids

Lupane triterpenoids possess a 6/6/6/6/5-fused carbon skeleton. Compared with ursane and oleanane triterpenoids, the number of lupane triterpenoids in the Actinidia plants is much smaller, only four related compounds have been identified (101104, Fig. 4, Table 3). Three of them (101103) were identified from the rhizomes of A. kolomikta [51]. Betulinic acid 101 is one of the most representative compound of lupane triterpenes, it has been extensively studied in recent years based on the wide biological activities including anti-inflammatory, antitumor, anti-HIV, anti-diabetic and antimalarial activities [68-73]. Much attention as a molecular target about protein tyrosine phosphatase 1B had been paid to the treatment of insulin resistance diseases because of its critical roles in negatively regulating insulin- and leptin-signaling cascades. Betulinic acid showed significant PTP1B inhibitory activity, with IC50 values of 3.5 μM [24].

Fig. 4

Structures of lupane triterpenoids 101104 from Actinidia plants

Table 3

Information of lupane triterpenoids from Actinidia Plants

No. Compound name Species Refs. Part Bioactivity Refs.
101 Betulinic acid A. kolomikta [51] Rhizomes Anti-inflammatory
(in vitro) [68]
Antitumor(in vitro) [69]
Anti-HIV(in vitro) [72]
Anti-diabetic(in vivo) [73]
102 Betulin A. kolomikta [51] Rhizomes Anti-tumor(in vitro) [74-76]
103 Diospyrolide A. kolomikta [51] Rhizomes
104 Lupa-12, 20(30)-diene-2β, 3β, 28-triol A. deliciosa [48] Roots

2.1.4 Other Terpenoids

A total of 19 other terpenoids including iridoids, diterpenoids, and their glycosides have been found from Actinidia plants (105 − 123, Fig. 5, Table 4). None of these compounds have good biological activities, only compound 120 showed certain anti-angiogenesis activity [77].

Fig. 5

Structures of other terpenoids 105123 from Actinidia plants

Table 4

Information of other triterpenoids from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
105 Dihydroepinepetalactone A. polygama [78] Fresh fruits
106 Isodihydroepinepetalactone A. polygama [78] Fresh fruits
107 Isoepiiridomyrmecin A. polygama [78] Fresh fruits
108 Isoneonepetalactone A. polygama [78] Fresh fruits
109 Dehydroiridomyrmecin A. polygama [78] Fresh fruits
110 Isodehydroiridomyrmecin A. polygama [78] Fresh fruits
111 Actinidialactone A. polygama [78] Fresh fruits
112 Isoactinidialactone A. polygama [78] Fresh fruits
113 Neonepetalactone A. polygama [78] Fresh fruits
114 Dihydronepetalactone A. polygama [78] Fresh fruits
115 Isodihydronepetalactone A. polygama [78] Fresh fruits
116 Iridomyrmecin A. polygama [78] Fresh fruits
117 Isoiridomyrmecin A. polygama [78] Fresh fruits
118 Matatabiether A. polygama [79] Leaves and galls
119 (R)-1, 2, 6, 7, 8, 9-Hexahydro-10-hydroxy-1, 6, 6-trimethylphenanthro[1, 2-b]furan-5, 11-dione A. valvataDunn [47] Roots
120 (6R, 7E, 9S)-6, 9-Hydroxy-megastigman-4, 7-dien-3-one-9-O-β-glucopyranoside A. eriantha Benth [62] Roots Anti-angiogenesis (in vitro) [62]
121 Kiwiionoside A. chinensis [80] Fresh leaves
122 Iridodialo-β-d-gentiobioside A. polygama [77] Leaves
123 Dehydroiridodialo-β-d-gentiobioside A. polygama [77] Leaves

2.2 Steroids

β-Sitosterol 124 is a very normal phytosterol almost distributed in all plants. Eight phytosterols have been obtained from the Actinidia plants (124131, Fig. 6, Table 5). Pharmacological studies on these steroids have demonstrated that β-sitosterol showed various bioactivities including anti-inflammatory, anti-cancer, antimicrobial and anti-diabetic properties [81-88]. A study suggested that β-sitosterol may serve as a potential therapeutic in the treatment of acute organ damages [82].

Fig. 6

Structures of steroids 124138 from Actinidia plants

In addition to phytosterols, seven normal ergosterols (132137, Fig. 6, Table 5) were obtained from peel or rhizomes of kiwifruit plants. It is well known that ergosterols should be fungal products. Compounds 132137 may be produced by fungal infected kiwifruit plants.

Table 5

Information of steroids from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
124 β-Sitosterol A. eriantha [7] Roots Anti-inflammatory
(In vivo) [84]
Anticancer (in vitro) [85]
Anti-microbial
(in vitro) [86]
Anti-diabetic
(In vivo) [88]
125 Stigmast-3, 6-dione A. chrysantha [42] Roots
126 Masterol A. deliciosa [89] Peels
127 Stigmast-7-en-3β-ol A. deliciosa [89] Peels
128 3β-Hydroxystigmast-5-en-7-one A. chinensis Planch [52] Roots
129 Sitostanetriol A. kolomikta [51] Dried rhizomes
130 (24R)-Stigmast-4-en-3-one A. kolomikta [51] Dried rhizomes
131 Stigmasterol A. arguta [26] Stems Anti-inflammatory
(in vitro) [90]
132 Daucosterol A. eriantha [40]
A. chinensis [44]
Roots
Roots
133 Campesterol A. deliciosa [89] Peels
134 Ergosterol A. deliciosa [89] Peels
135 Ergost-22-en-3-ol A. deliciosa [89] Peels
136 5, 7, 14, 22-Ergostatetraen-3β-ol A. deliciosa [89] Peels
137 5, 8-Epidioxyergosta-6, 22-dien-3β-ol A. kolomikta [51] Dried rhizomes
138 24-Methylene-pollinastanol A. kolomikta [51] Dried rhizomes

2.3 Phenols

2.3.1 Catechins and Epicatechins

A total of 16 related compounds (139154) have been obtained from kiwifruit plants (Fig. 7, Table 6). Compounds 148 and 149 possessed a novel structure featuring with a pyrrolidin-2-one substituent at C-6 and C-8, respectively. Compounds 152 and 153 were two sulfur-containing catechins that was rare in nature. Pharmacological studies have revealed that (+)-catechin 139 and (−)-epi-catechin 140 showed nitric oxide inhibitory activity in LPS stimulated RAW 264.7 cell with IC50 values of 26.61 and 25.30 μg/mL, respectively [53, 91]. Compound 147 showed moderate radical scavenging and antioxidant capabilities by measuring their capacity to scavenge DPPH and anion superoxide radical and to reduce a Mo(VI) salt [89]. Two new flavan-3-ols, 6-(2-pyrrolidinone-5-yl)-(−)-epicatechin 148 and 8-(2-pyrrolidinone-5-yl)-(−)-epicatechin 149, as well as proanthocyanidin B-4 150, were isolated from an EtOAc-soluble extract of the roots of A. arguta. The isolates were tested in vitro for their inhibitory activity on the formation of advanced glycation end products (AGEs). All of them exhibited significant inhibitory activity against AGEs formation with IC50 values ranging from 10.1 to 125.2 μM [92].

Fig. 7

Structures of catechins and epicatechins 139154 from Actinidia plants

Table 6

Information of catechins and epicatechins from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
139 (+)-Catechin A. arguta [41] Roots Anti-DPPH radical and inhibiting nitric oxide
(in vitro) [57]
Anti-bacteria
(in vitro) [93]
140 (−)-Epi-catechin A. arguta [41] Roots Anti-DPPH radical and inhibiting nitric oxide (in vitro) [57]
141 (+)-Afzelechin A. chinensis Planch [94] Roots
142 (−)-Epi-afzelechin A. chinensis Planch [94] Roots
143 (+)-Catechin(4α→8)(+)-catechin A. chinensis Planch [94] Roots
144 (−)-Epi-catechin(4β→8)(−)-epi-catechin A. chinensis Planch [94] Roots
145 (+)-Afzelechin(4α→8) (+)-afzelechin A. chinensis Planch [94] Roots
146 (−)-Epi-afzelechin(4β→8)(−)-epi-afzelechin A. chinensis Planch [94] Roots
147 Gallocatechin A. deliciosa [89] Peels Radical scavenging and antioxidant
(in vitro) [89]
148 6-(2-Pyrrolidinone-5-yl)-(−)-epicatechin A. arguta [92] Roots Against advanced glycation-end
(in vitro) [92]
149 8-(2-Pyrrolidinone-5-yl)-(−)-epicatechin A. arguta [92] Roots Against advanced glycation-end
(in vitro) [92]
150 Proanthocyanidin B-4 A. arguta [92] Roots Against advanced glycation-end
(in vitro) [92]
151 (−)-Epi-Catechin-5-O-β-D-glucopyranoside A. arguta [92] Roots Against advanced glycation-end
(in vitro) [92]
152 Benzylthio-(−)-epicatechol A. chinensis [95] Vegetative parts
153 4′-Benzylthioprocyanidol B2 A. chinensis [95] Vegetative parts
154 Procyanidol C1 A. chinensis [95] Vegetative parts

2.3.2 Flavones, Isoflavones, and Flavonols

A total of 48 flavone derivatives have been identified from kiwifruit plants, most of which are glycosides (155202, Fig. 8, Table 7). Pharmacological studies indicated that these compounds, particularly kaempferol and its derivative, had a wide range of biological activities including antiproliferation, antioxidation, anti-inflammation, anticancer, anti-free radical, and neuroprotection activities [96-99]. Kaempferol 157 was found to prevent neurotoxicity by several ways which was able to completely block N-methyl-D-aspartate (NMDA)-induced neuronal toxicity and potently inhibited MAO (monoamine oxidase) with the IC50 of 0.8 μM [99]. Two novel flavonoids 171 and 172 were separated from the leaves of A. valvata Dunn. They exhibited dose-dependent activity in scavenging 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, superoxide anion radicals, and hydroxyl radicals, and inhibited lipid peroxidation of mouse liver homogenate in vitro [100]. Compounds 178 [101] and 179 [102] were two new compounds obtained from the leaves of A. kolomikta. The latter was screened for its protective effect on human erythrocytes against AAPH-induced hemolysis, which could slow the hemolysis induced by AAPH [102]. Eerduna et al. evaluated the effects of compound 182 on acute myocardial infarction in rats, the groups treated with 182 showed a dose-dependent reduction in myocardial infarct size model, markedly inhibited the elevation of the activity of creatine kinase, troponin T level, and the content of malondialdehyde induced by AMI [103]. Compound 182 also showed a capacity to increase the activities of superoxide dismutase, catalase, and endothelial nitric oxide synthase [104]. Lim et al. tested the DPPH radical scavenging activity and nitric oxide production inhibitory activity in IFN-γ, LPS stimulated RAW 264.7 cell of quercetin 185, quercetin-3-O-β-D-glucoside 186, and quercetin 3-O-β-D-galactoside 193 with IC50 value of 20.41, 18.23, and 30.46 μg/mL, respectively [91].

Fig. 8

Structures of flavones, isoflavones, and flavonols 155202 from Actinidia plants

Table 7

Information of flavones, isoflavones, and flavonols from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
155 7, 4′-Dihydroxyflavone A. chinensis Planch [105] Roots Anti-inflammatory
(in vitro) [106]
156 Formononetin A. chinensis Planch [105] Roots
157 Kaempferol A. deliciosa [107] Leaves Antiproliferation human tumor cell
(in vitro) [96]
Antioxidant and anti-inflammatory
(in vitro) [ 97]
Anticancer (in vitro) [98]
Neuroprotection
(in vitro) [99]
158 6-C-Glucose-5, 7, 3′, 4′-tetrahydroxy flavone A. arguta [108] Roots
159 6-C-Glucose-5, 7, 4′-trihydroxy flavone A. arguta [108] Roots
160 6-C-Glycopyranosyl-8-C-xyloeyl apigenin A. polygama [109] Leaves
161 Vicenin-I A. polygama [110] Aerial Parts
162 Kaempferol 3-O-glucoside A. deliciosa [107] Leaves
163 Kaempferol 3-O-rhamnoside A. deliciosa [107] Leaves
164 Kaempferol 7-O-glucoside A. deliciosa [107] Leaves
165 Kaempferol 3-O-β-d-galactopyranoside A. polygama [109] Leaves
166 Kaempferol-7-O-β-l-rhamnoside A. kolomikta [102] Leaves
167 Kaempnferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside A. polygama [109] Leaves
168 Kaempferol 3-O-rutinoside A. deliciosa [107] Leaves
169 Kaempferol-7-O-(4″-O-acetylrhamnosyl)-3-O-rutinoside A. kolomikta [111] Leaves
170 Kaempferol-3-O-α-l-rhamnopyranosyl- (1→3)-α-l-rhamnopyranosyl- (1→6)-β-d-galactopyranoside A. polygama [109] Leaves
171 Kaempferol 3-O-α-l-rhamnopyranosyl-(1→3) (2, 4-di-O-acetyl-α-l-rhamnopyranosyl) (1→6)β-d-galactopyranoside A. valvata Dunn [100] Leaves Anti-free radical
(in vitro) [100]
172 Kaempferol 3-O-α-l-rhamnopyranosyl (1→3) (4-O-acetyl-α-l-rhamnopyranosyl) (1→6)β-D-galactopyranoside A. valvata Dunn [100] Leaves Anti-free radical
(in vitro) [100]
173 Kaempferol 3-O-[α-l-rhamnopyranosyl-(1→3)-
(4-O-acetyl)-O-α-l-rhamnopyranosyl-(1→6)-
O-acetyl)-O-β-d-galactopyranoside]
A. polygama [110] Aerial parts
174 Kaempferol 3-O-[α-rhamnopyranosyl-(1→4)-
rhamnopyranosyl-(1→6)-β-galactopyranoside]
A. deliciosa [112] Leaves
175 Kaempferol 3-O-[α-rhamnopyranosyl-(1→4)-
rhamnopyranosyl-(1→6)-β-glucopyranoside]
A. deliciosa [112] Leaves
176 Kaempferol 3-O-[α-rhamnopyranosyl-(1→4)-3‴
-O-acetyl-α-rhamnopyranosyl-(1→6)-β-galactop-yranoside]
A. deliciosa [112] Leaves
177 Kaempferol-7-O-α-l-rhamnosyl-3-O-rutinoside A. kolomikta [102] Leaves
178 Kaempferide-7-O-rhamnoside A. kolomikta [101] Leaves
179 Kaempferide-7-O-(4″-O-acetyl)-α-l-rhamnoside A. kolomikta [102] Leaves Against AAPH-​induced hemolysis
(in vitro) [102]
180 Kaempferide-3-O-rutinoside A. kolomikta [113] Leaves Anti-free radical
(in vitro) [113]
181 Kaempferide-7-O-(4″-O-acetyl-rhamnosyl)-3-O-glucoside A. kolomikta [113] Leaves Anti-free radical
(in vitro) [113]
182 Kaempferide-7-O-(4″-O-acetyl-rhamnosyl)-3-O-rutinoside A. kolomikta [113] Leaves Anti-free radical
(in vitro) [113]
Reducing myocardial infarction (in vivo) [104]
183 Kaempferide-7-O-rhamnosyl-3-O-rutinoside A. kolomikta [101] Leaves
184 Kaempferide-7-O-(3″-O-acetylrhamnosyl)-3-O-rutinoside A. kolomikta [111] Leaves
185 Quercetin A. deliciosa [107] Leaves
186 Quercetin-3-O-β-d-glucoside A. deliciosa [107] Leaves
187 Quercetin 3-O-rhamnoside A. deliciosa [107] Leaves
188 Quercetin 7-O-glucoside A. deliciosa [107] Leaves
189 Quercetin 3-O-xyloside A. deliciosa [107] Leaves
190 Quercetin 3-O-arabinoside A. deliciosa [107] Leaves
191 Quercetin 3-O-rutinoside A. deliciosa [107] Leaves
192 Quercetin 3-O-rhamnoside 7-O-glucoside A. deliciosa [107] Leaves
193 Quercetin 3-O-β-d-galactoside A. polygama [110] Aerial parts Anti-DPPH radical and nitric oxide production (in vitro) [110]
194 Quercetin 3-O-β-d-glucofuranoside (isoquercitrin) A. chinensis Planch [114]
195 Quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside A. arguta [108] Roots
196 Isorhamnetin-3-O-β-d-glucoside A. kolomikta [102] Leaves
197 Quercetin3-O-[α-rhamnopyranosyl-(1→4)-rhamnopyranosyl-(1→6)-β-galactopyranoside A. deliciosa [112] Leaves
198 Quercetin 3-O-β-d-[2G-O-β-d-xylopyranosyl-6G-O-α-l-rhamnopyranosyl] glucopyranoside A. arguta [115] Leaves
199 Quercetin 3-O-β-d-xylopyranosyl- (1→2)-O-β-d-glucopyranoside A. arguta [115] Leaves
200 7-O-[β-d-Pyranrhamnose-(1→6)-β-D-pyran glucose]-5, 3′-dihydroxy-4′-methoxy two dihydrogen flavone A. arguta [108] Roots
201 4′-Methoxyl-quercetin-7-(4″-O-acetylrhamnosyl)-3-O-β-D-glucopyranoside A. kolomikta [111] Leaves
202 4′-Methoxyl-quercetin-7-(4″-O-acetylrhamnosyl)-3-O-rutinoside A. kolomikta [111] Leaves

2.3.3 Xanthones

Three xanthones were isolated from n-butyl alcohol fraction of A. arguta (Sieb. & Zucc) Planch. ex Miq and identified as 2-β-D-glu-1, 3, 7-trihydrogen xanthone 203, 7-O-[β-D-xylose-(1 → 6)-β-D-glucopyranoside]-1, 8-dihydroxy-3-methoxy xanthone 204, and 1-O-[β-D-xylose-(1 → 6)-β-D-glucopyranside] -8-hydroxy-3, 7-dimethoxy xanthone 205 (Fig. 9, Table 8). They were isolated from this plant for the first time [108]. Compound 203 showed extensive biological activities, including inhibiting α-Glycosidase, NO production inhibition and NF-κB inhibition and PPAR activation [116, 117]. It has been demonstrated the inhibitory effects on NF-κB transcriptional activation in HepG2 cells stimulated with TNFα with an IC50 value of 0.85 ± 0.07 μM, which was more potent than the positive control of sulfasalazine (IC50 = 0.9 μM) [118].

Fig. 9

Structures of xanthones, isoflavones, and flavonols 203219 from Actinidia plants

Table 8

Information of xanthones, anthocyanins, and emodins from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
203 2-β-d-Glu-1, 3, 7-trihydrogen xanthone A. arguta [108] Roots Inhibiting α-Glycosidase
(in vitro) [116]
NO inhibitory (in vitro) [117]
NF-κB Inhibition and PPAR Activation
(in vitro) [118]
204 7-O-[β-d-Xylose-(1→6)-β-d-glucopyranoside]-1, 8-dihydroxy-3-methoxy xanthone A. arguta [108] Roots
205 1-O-[β-d-Xylose-(1→6)-β-d-glucopyranoside] -8-hydroxy-3, 7-dimethoxy xanthone A. arguta [108] Roots
206 Delphinidin 3-galactoside A. deliciosa [119] Fruits Antioxidation (in vitro) [135]
207 Cyanidin 3-galactoside A. deliciosa [119] Fruits
208 Cyanidin 3-glucoside A. deliciosa [119] Fruits Anti-inflammatory
(in vitro) [120, 121] Neuroprotective (in vivo) [122]
Anti-cancer (in vitro) [123]
Antioxidation (in vivo) [124]
209 Delphinidin 3-[2-(xylosyl)galactoside] A. deliciosa [119] Fruits
210 Cyanidin 3-[2-(xylosyl)galactoside] A. deliciosa [119] Fruits
211 Aloe-emodin A. deliciosa [125] Roots Anti-inflammatory
(in vitro) [126]
Antifungal (in vitro) [127]
Anticancer (in vitro) [128]
212 11-O-Acetyl-aloe-emodin A. deliciosa [125] Roots
213 Aloe-emodin 11-O-α-l-rhamnopyranoside A. deliciosa [125] Roots
214 Physcion (emodin-6-Me ether) A. chinensis Planch [133] Roots
215 Emodin (frangala-emodin) A. chinensis Planch [133] Roots Anti-inflammatory (in vivoandin vitro) [129]
Neuroprotection (in vitro) [130]
Anti-cardiovascular
(in vitro) [131]
Inhibiting α-Glucosidase (in vitro) [132]
216 Questin (emodin-8-Me ether) A. chinensis Planch [133] Roots Hepatoprotection
(in vitro) [134]
217 Citreorosein (ω-hydroxyemodin) A. chinensis Planch [133] Roots
218 Emodic acid A. chinensis Planch [133] Roots
219 Emodin-8-β-d-glucoside A. chinensis Planch [133] Roots

2.3.4 Anthocyanins

Five anthocyanins were obtained from the flesh of larger fruit of A. deliciosa and A. chinensis and identified as delphinidin 3-galactoside 206, cyanidin 3-galactoside 207, cyanidin 3-glucoside 208, delphinidin 3-[2-(xylosyl)galactoside] 209, and cyanidin 3-[2-(xylosyl)galactoside] 210, respectively (Fig. 9, Table 8) [119]. Cyanidin 3-glucoside 208 exhibited a wide range of pharmacological activities including anti-inflammatory, neuroprotective, anti-cancer, and antioxidant activities [120, 121, 122, 123, 124].

2.3.5 Emodins

A total of nine emodin derivatives were obtained (211219, Fig. 9, Table 8). Three emodin constituents were isolated from EtOAc fraction of the roots of A. deliciosa for the first time, and their structures were identified to be aloe-emodin 211, 11-O-acetyl-aloe-emodin 212, and aloe-emodin 11-O-α-L-rhamno -pyranoside 213 [125]. Compound 211 exhibited intriguing biological activities including inflammatory, antifungal, and anticancer activity [126-128]. Lipoxygenases (LOXs) are potential treatment targets in a variety of inflammatory conditions, enzyme kinetics showed that aloe emodin inhibited lipoxygenase competitively with an IC50 of 29.49 μM [126]. Compound 215 was reported to possess wide biological activities including anti-inflammatory, neuroprotection, anti-cardiovascular and α-glucosidase inhibitory activity [129-132]. It exhibited potent inhibition of α-glucosidase with an IC50 value of 19 ± 1 μM and lower cytotoxicity to the Caco-2 cell line [132].

2.3.6 Phenylpropionic Acids

A total of 38 phenylpropionic acid derivatives have been identified from kiwifruit plants (220257. Fig. 10, Table 9), while most of them were glycosides or quinic acid derivatives. Phytochemical examination of the fruits of A. arguta led to the isolation of two organic acids including caffeic acid 220 and caffeoyl-β-D-glucopyranoside 221, which were tested for their nitric oxide production inhibitory activity in LPS-stimulated RAW 264.7 cells and DPPH radical scavenging activities. Compared with positive control (L-NMMA), they were potently reduced nitric oxide productions and showed anti-oxidative activities [135]. Nine succinic acid derivatives (228236), eleven quinic acid (245255) derivatives and two shikimic acid derivatives (256 and 257) were isolated from the fruits of A. arguta. The NF-κB transcriptional inhibitory activity of the compounds was evaluated using RAW 264.7 macrophages cells induced by lipopolysaccharide. Among the groups of different organic acid derivatives, the quinic acid derivatives inhibited NF-κB transcriptional activity with an IC50 value of 4.0 μM [136].

Fig. 10

Structures of phenylpropionic acids 220257 from Actinidia plants

Table 9

Information of phenylpropionic acids from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
220 Caffeic acid A. arguta [135] Fruits Anti-oxidation
(in vitro) [135]
221 Caffeoyl-β-d-glucopyranoside A. arguta [135] Fruits Anti-oxidation
(in vitro) [135]
222 Trans-ferulic acid A. polygama [110] Aerial parts
223 Coumaric acid 4-O-glucoside A. polygama [110] Aerial parts
224 Trans-phydroxycinnamic acid A. chinensis [137] Roots
225 Caffeic 3-O-β-d-glucopyranoside acid A. deliciosa [89] Pulps
226 Caffeic 4-O-β-d-glucopyranoside acid A. deliciosa [89] Pulps
227 4, 4′-Dihydroxyl-dihydrochalcone-2′-O-β-d-glucopyranoside A. chinensis Plach [52] Roots
228 Argutinoside A A. arguta [136] Fruits
229 Argutinoside B A. arguta [136] Fruits
230 Argutinoside C A. arguta [136] Fruits
231 Argutinoside D A. arguta [136] Fruits
232 Argutinoside E A. arguta [136] Fruits
233 Argutinoside F A. arguta [136] Fruits
234 Argutinoside G A. arguta [136] Fruits
235 Argutinoside H A. arguta [136] Fruits
236 Argutinoside I A. arguta [136] Fruits
237 Fertaric acid A. arguta [138] Fruits
238 Cryptochlorogenic acid A. chinensis [137] Roots
239 Neochlorogenic acid A. chinensis [137] Roots Anti-inflammatory
(in vitro) [139]
Antibacteria and antioxidation
(in vitro) [140]
240 3-O-Coumaroylquinic acid A. chinensis [137] Roots
241 Chlorogenic acid A. deliciosa [89] Pulp Antitumor (in vitro) [141]
Anti-inflammatory
(in vitro) [142]
242 5- Trans-p-coumaroylmalic acid A. chinensis Radix [50] Roots
243 5- Cis-p-coumaroylquinic acid A. chinensis Radix [50] Roots
244 4-O- Cis-p-coumaroylquinic acid A. chinensis Radix [50] Roots
245 3-O-Trans-p-coumaroyl quinic acid methyl ester A. arguta [136] Fruits Inhibiting NF-κB transcription (in vitro) [136]
246 3-O-Cis-p-coumaroyl quinic acid methyl ester A. arguta [136] Fruits
247 3-O-Trans-p-caffeoyl quinic acid methyl ester A. arguta [136] Fruits
248 5-O-Trans-p-coumaroyl quinic acid methyl ester A. arguta [136] Fruits
249 5-O-Cis-p-coumaroyl quinic acid methyl ester A. arguta [136] Fruits
250 5-O-Trans-p-caffeoyl quinic acid methyl ester A. arguta [136] Fruits
251 5-O-Cis-p-caffeoyl quinic acid methyl ester A. arguta [136] Fruits
252 3-O-Trans-p-caffeoyl quinic acid butyl ester A. arguta [136] Fruits
253 4-O-Trans-p-caffeoyl quinic acid butyl ester A. arguta [136] Fruits
254 5-O-Trans-p-coumaroyl quinic acid butyl ester A. arguta [136] Fruits
255 5-O-Trans-p-caffeoyl quinic acid butyl ester A. arguta [136] Fruits
256 3-O-Trans-p-coumaroyl shikimic acid A. arguta [136] Fruits
257 3-O-Cis-p-coumaroyl shikimic acid A. arguta [136] Fruits

2.3.7 Coumarins

Coumarins are rarely identified from kiwifruit plants, and only eleven members have been reported (258267, Fig. 11, Table 10). Umbelliferone 258 was obtained from the leaves of A. polygama (Sieb. et Zucc.) Miq [109]. A number of studies demonstrate the pharmacological properties of 258 including antitumor, anti-inflammatory, antioxidant, antidiabetic, and immunomodulatory activities [143-149]. It showed cytotoxicity against MCF-7 and MDA-MB-231 cell lines with IC50 values of 15.56 and 10.31 μM, respectively [148]. Phytochemical examination of the fruits of A. arguta led to the isolation of esculetin 259 [135]. Two coumarins were isolated from the roots of A. deliciosa and identified as fraxetin 260 and isoscopoletin 261 [150]. Compound 260 showed potent inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation with an IC50 value of 10.11 ± 0.47 µM [151]. Esculin 263 and fraxin 264 were characterized from the stems and fruits of A. deliciosa (kiwifruit) and A. chinensis [152]. Compound 264 showed inhibitory activity towards HepG2 with an IC50 value of 14.71 μM [153].

Fig. 11

Structures of coumarins 258268 from Actinidia plants

Table 10

Information of coumarins from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
258 Umbelliferone A. polygama [109] Leaves Anti-tumor (in vitro) [143]
Anti-inflammatory (in vitro) [144]
Antioxidant (in vitro) [149]
Antidiabetic (in vitro and in vivo) [146]
Immunomodulatory(in vitro) [148]
259 Esculetin A. arguta [135] Fruits Anti-tumor (in vitro) [154]
Anti-oxidant and anti-inflammatory (in vivo) [155]
260 Fraxetin A. deliciosa [150] Roots Anti-inflammatory (in vitro) [151]
Anti-tumor (in vitro) [156]
261 Isoscopoletin A. deliciosa [150] Roots Anti-inflammatory [151]
262 Isofraxoside A. chinensis [137] Roots
263 Esculin A. deliciosa [152] Stems
264 Fraxin A. chinensis [152] Fruits Anti-inflammatory (in vivo) [157]
Antitumor (in vitro) [153]
265 5-Hydroxy-6-methoxy-7-O-β-d-
glycopyranosylcoumarin
A. chinensis Radix [50] Roots
266 6′-Acetoxy-8-β-d-glucopyranosyloxy-7-
hydroxy-6-methoxy-coumarin
A. chinensis Radix [50] Roots
267 6-Hydroxy7-(β-d-glucopyranosyloxy) coumarin A. deliciosa [89] Peels
268 6, 8-Dimethoxy-7-(β-d-glucopyranosyloxy) coumarin A. deliciosa [89] Peels

2.3.8 Lignans

Lignans also had a narrow distribution in kiwi plants, only six members have been identified from Actinidia plants (269274, Fig. 12, Table 11). (+)-Pinoresinol 271, (+)-medioresinol 272, and (−)-syringaresinol 273 were partitioned from the fraction of the roots of A. arguta [53]. Compound 271 is a biologically active lignan and widely found in many dietary plants. It was reported to possess antifungal, anti-inflammatory, antioxidant, hypoglycemic, and antitumor activities [158-162]. A study on this compound suggested that 271 displayed significant inhibition of fMLP/CB-induced superoxide anion generation and elastase release, with an IC50 value of 1.3 ± 0.2 μg/mL [159]. The 50% ethanol extract of A. arguta showed strong inhibitory effect on α-glucosidase (32.6%), while a bio-guided isolation on the extract gave a bioactive compound pinoresinol diglucoside 274 [138].

Fig. 12

Structures of lignans 269274 from Actinidia plants

Table 11

Information of of lignans from Actinidia plants

No. Compound name Species Refs. Part Cytotoxicity Refs.
269 Urolingoside A. polygama [110] Aerial parts
270 4′-O-β-Dxylopyranoside A. chinensis Radix [50] Roots
271 (+)-Pinoresinol A. arguta [53] Roots Antifungal (in vitro) [158]
Anti-inflammatory (in vitro) [159]
Antioxidation (in vitro) [160]
Hypoglycemic (in vitro) [161]
Anti-tumor (in vitro) [162]
272 (+)-Medioresinol A. arguta [53] Roots
273 (−)-Syringaresinol A. arguta [53] Roots
274 Pinoresinol diglucoside A. arguta [138] Leaves Inhibiting α-glucosidase (in vitro) [138]

2.3.9 Simple Phenols

Simple benzene derivatives including glycosides and isoprenylated benzene products from Actinidia plants were collected (275298, Fig. 13, Table 12). Phytochemical examination of the fruits of A. arguta led to the isolation of protocatechuic acid 279 [135]. It showed anti-inflammatory [163], antioxidant [163], neuroprotective [164], and anti-proliferative activities [165]. Protocatechuic acid exhibited significant (p < 0.05) anti-inflammatory (83% and 88% inhibition for egg-albumin induced and xylene induced oedema, respectively), analgesic (56% inhibition and 22 s of pain suppression for acetic acid-induced and hot plate-induced pain, respectively), and antioxidant effects (97% inhibition and absorbance of 2.516 at 100 μg/mL for DPPH and FRAP assay, respectively) in the models [166]. Extraction of leaf tissue from the golden-fleshed kiwifruit cultivar A. chinensis "Hort16A" expressing genotype-resistance against the fungus Botrytis cinerea, a new phenolic compound, 3, 5-dihydroxy-2-(methoxycarbonylmethyl)phenyl 3, 4-dihydroxybenzoate 278 was therefore obtained [167].

Fig. 13

Structures of simple phenols 275298 from Actinidia plants

Table 12

Information of simple phenols from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
275 Tyrosol A. arguta [168] Roots Anti-​inflammatory (in vitro) [151]
276 2, 2-Dimethyl-6-chromancarboxylic acid A. deliciosa [150] Roots
277 Monodictyphenone A. chinensis Radix [50] Roots Inhibiting protein tyrosine phosphatase (in vitro) [169]
278 3, 5-Dihydroxy-2-(methoxycarbonyl methyl) phenyl 3, 4-dihydroxybenzoate A. chinensis [167] Leaves
279 Protocatechuic acid A. arguta [135] Fruits Anti-inflammatory and antioxidant (in vitro and in vivo) [163]
Neuroprotective (in vitro) [164]
Anti-proliferative (in vitro) [165]
280 4-Hydroxy benzoic acid A. arguta [92] Roots
281 Vanillic acid A. deliciosa [150] Roots
282 4-(β-d-Glucopyranosyloxy)-3-hydroxybenzoic acid A. chinensis Radix [50] Roots
283 p-Hydroxybenzaldehyde A. chinensis Radix [50] Roots
284 Tachioside A. deliciosa [150] Roots
285 Syringaldehyde A. chinensis Planch [105] Roots Anti-inflammatory (in vitro) [170]
286 Vanillic acid 4-O-β-d-glucopyranoside A. deliciosa [150] Roots
287 Protocatechualdehyde A. chinensis [171] Roots Antioxidant and anti-inflammatory (in vitro) [172]
288 4-Hydroxy-2-methoxyphenyl-β-d-glucopyranoside A. macrosperma
[66]
Roots
289 Erythro-1, 2-bis-(4-hydroxy-3-methoxyphenyl)-1, 3-propanediol A. chinensis [171] Roots
290 Threo-1, 2-bis-(4-hydroxy-3-methoxyphenyl)-1, 3-propanediol A. chinensis [171] Roots
291 Planchols A A. chinensis Planch [94] Roots Against P-388 and A-549 cell lines (in vitro) [94]
292 Planchols B A. chinensis Planch [94] Roots Against P-388 and A-549 cell lines (in vitro) [94]
293 Planchols C A. chinensis Planch [94] Roots Against P-388 and A-549 cell lines (in vitro) [94]
294 Planchols D A. chinensis Planch [94] Roots Against P-388 and A-549 cell lines (in vitro) [94]
295 2, 8-Dimethyl-2-(4, 8, 12-trimethyltridec-11-enyl)chroman-6-ol A. deliciosa [89] Peels
296 α-Tocopherol A. deliciosa [89] Peels
297 δ-Tocopherol A. deliciosa [89] Peels
298 2, 8-Dimethyl-2-(4, 8, 12-trimethyltridec-11-enyl)chroman-6-ol A. chinensis [173] Peels

Four novel skeleton phenolic compounds planchols A‒D (291294) were isolated from the roots of A. chinensis Planch. Their structures were elucidated by spectroscopic analysis and chemical evidence. The structure of 291 was further confirmed by the single-crystal X-ray diffraction. Moreover, it was found that 291 and 292 showed remarkable cytotoxic activity against P-388 with IC50 of 2.50 and 3.85 μM, respectively, and against A-549 with IC50 of 1.42 and 2.88 μM, respectively [94].

2.4 Miscellaneous

Three alkaloids (299301), eleven fatty acids and derivatives (302312), and other thirteen small molecules (313325) were obtained from Actinidia plants (Fig. 14, Table 13). Actinidine 299 and boschniakine 300 were isolated from the leaves and galls of A. polygama and also isolated from A. arguta which might be converted from iridoids [174, 175]. A bioassay-guided fractionation of the fruits of A. polygama led to the separation and identification of a polyunsaturated fatty acid, α-linolenic acid (ALA) 305 [176]. This compound was found to possess a broad biological properties including anti-inflammatory [177], anti-tumor [178], anti-hyperlipidemic [179], anti-diabetic [180], and anti-fungal [181] activities. By a bio-guided fractionation, a ceramide namely actinidiamide 312 was identified as an anti-inflammatory component from the EtOAc fraction of A. polygama Max. It potently inhibited nitric oxide production (30.6% inhibition at 1 μg/mL) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and β-hexosaminidase release (91.8% inhibition at 1 μg/mL) in IgE-sentized RBL-2H3 cells [182].

Fig. 14

Structures of other molecules 299325 from Actinidia plants

Table 13

Information other molecules from Actinidia plants

No. Compound name Species Refs. Part Bioactivity Refs.
299 Actinidine A. polygama [174] Leaves and galls Anti-obesity (in vivo) [183]
300 Boschniakine A. arguta [175]
301 Indole-3-carboxylic acid A. chinensis Planch [184] Roots
302 Undecanoic acid A. deliciosa [185] Roots Anti-inflammatory
(in vivo) [186]
303 n-Stearic acid A. deliciosa [150] Roots
304 Tetracosanoic acid A. eriantha Benth [41] Roots
305 α-Linolenic acid A. polygama [176] Fruits Anti-inflammatory
(in vivo) [177]
Anti-tumor (in vivo) [178]
Anti-hyperlipidemic (in vivo) [179]
Anti-diabetic (in vivo) [180]
Anti-fungal (in vitro) [181]
306 (9Z, 11E)-13-Hydroxy-9, 11-octadecadienoic acid A. chinensis Radix [50] Roots
307 Ricinoleic acid A. chinensis Radix [50] Roots
308 Lignoceric acid A. chinensis Planch [187] Roots
309 Stearyl-β-d-glucopyranoside A. chinensis Planch [187] Roots
310 Dotriacontanic acid A. chinensis Planch [52] Roots
311 Sphingolipid A. chinensis Planch [52] Roots
312 Actinidiamide A. polygama [182] Fruits Anti-inflammatory
(in vitro) [182]
313 n-Butyl-O-β-d-fructopyranoside A. deliciosa [188] Roots
314 Sucrose A. chinensis Planch [187] Roots
315 γ-Quinide A. chinensis Planch [187] Roots
316 1-Methyl-5-ethyl citrate A. arguta [136] Fruits
317 1, 6-Dimethyl citrate A. arguta [136] Fruits
318 1, 5, 6-Trimethyl citrate A. arguta [136] Fruits
319 1, 6-Dimethyl-5-ethyl citrate A. arguta [136] Fruits
320 6-Butyl citrate A. arguta [136] Fruits
321 1-Methyl-6-butyl citrate A. arguta [136] Fruits
322 Succinic acid A. kolomikta [189] Leaves
323 Meso-inositol A. kolomikta [189] Leaves
324 Maltose A. kolomikta [189] Leaves
325 α-Kolomiktriose A. kolomikta [190] Roots

In summary, this review focused on the biological components and related pharmacological activities of various parts of Actinidia plants, including triterpenoids, steroids, flavonoids, catechins, coumarins, lignans, phenols, and other small organic molecules. A total of 325 molecules have been collected in this review. Most of the active molecules are derived from the roots of Actinidia plants, while triterpenes and flavonoids are the most important types regardless of the number of compounds and their biological activity significance. The stems, leaves, fruit galls, and other parts of kiwi are mainly rich in flavonoids, phenylpropionic acids, and other small molecule compounds. Currently, these chemical components are not structurally novel. In addition, there are few in-depth researches on pharmacological activities of the bioactive compounds. Therefore, research on the chemical constituents of Actinidia plants is still promising. We hope that this review can provide positive information for the further exploration of the chemical components and their biological activities of Actinidia plants.

Notes

Funding

This work was financially supported by the National Natural Science Foundation of China (22177139) and the Scientific Research Program of Hubei Provincial Department of Education, China (D20183001).

Copyright informatio

© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

  1. 1.
    S.J. Henare, S.M. Rutherfurd, L.N. Drummond, V. Borges, M.J. Boland, P.J. Moughan, Food Chem. 130, 67-72 (2012) CrossRef PubMed Google Scholar
  2. 2.
    G. Du, M. Li, F. Ma, D. Liang, Food Chem. 113, 557-562 (2009) CrossRef PubMed Google Scholar
  3. 3.
    C.V. Garcia, S.Y. Quek, R.J. Stevenson, R.A. Winz, J. Agric. Food Chem. 59, 8358-8365 (2011) CrossRef PubMed Google Scholar
  4. 4.
    X. Xiao, R. Sun, S. Jiang, T. Du, G. Yang, F. Ye, China Med. Hered. 11, 157-159 (2014) PubMed Google Scholar
  5. 5.
    Y.N. Zhang, L. Liu, C.Q. Ling, Chin J. Chin. Mater. Med. 31, 918-920 (2006) PubMed Google Scholar
  6. 6.
    T. Fang, M. He, J. Xia, J. Hou, L. Wang, M. Zheng, X. Wang, J. Xia, Cell Biol. Toxicol. 32, 499-511 (2016) CrossRef PubMed Google Scholar
  7. 7.
    C. Huang, Z. Zhang, G. Li, J. Zhou, Plant Divers. Resour. 10, 93-100 (1988) PubMed Google Scholar
  8. 8.
    A. Manayi, M. Nikan, N. Nobakht-Haghighi, M. Abdollahi, Curr. Med. Chem. 25, 4866-4875 (2018) PubMed Google Scholar
  9. 9.
    A.K. Singh, H. Pandey, P.W. Ramteke, S.B. Mishra, Lat. Am. J. Pharm. 38, 513-517 (2019) PubMed Google Scholar
  10. 10.
    A.B. Ramos-Hryb, N. Platt, A.E. Freitas, I.A. Heinrich, M.G. Lopez, R.B. Leal, M.P. Kaster, A.L.S. Rodrigues, Neurochem. Res. 44, 2843-2855 (2019) CrossRef PubMed Google Scholar
  11. 11.
    P.D. Moon, N.R. Han, J.S. Lee, H.M. Kim, H.J. Jeong, Int. J. Mol. Med. 43, 2252-2258 (2019) PubMed Google Scholar
  12. 12.
    X. Jiang, T. Li, R.H. Liu, J. Agric. Food Chem. 64, 1806-1816 (2016) CrossRef PubMed Google Scholar
  13. 13.
    D.S. Jang, G.Y. Lee, J. Kim, Y.M. Lee, J.M. Kim, Y.S. Kim, J.S. Kim, Arch. Pharmacal. Res. 31, 666-670 (2008) CrossRef PubMed Google Scholar
  14. 14.
    M. Takaya, M. Nomura, T. Takahashi, Y. Kondo, K.T. Lee, S. Kobayashi, Anticancer Res. 29, 995-1000 (2009) PubMed Google Scholar
  15. 15.
    J.H. Won, K.S. Chung, E.Y. Park, J.H. Lee, J.H. Choi, L.A. Tapondjou, H.J. Park, M. Nomura, A.H.E. Hassan, K.T. Lee, Molecules 23, 3306 (2018) CrossRef PubMed Google Scholar
  16. 16.
    K.W. Woo, S.U. Choi, K.H. Kim, K.R. Lee, J. Braz. Chem. Soc. 26, 1450-1456 (2015) PubMed Google Scholar
  17. 17.
    K.M. Shin, R.K. Kim, T.L. Azefack, L. David, S.B. Luc, M.I. Choudhary, H.J. Park, J.W. Choi, K.T. Lee, Planta Med. 70, 803-807 (2004) CrossRef PubMed Google Scholar
  18. 18.
    Y. Sashida, K. Ogawa, N. Mori, T. Yamanouchi, Phytochemistry 31, 2801-2804 (1992) CrossRef PubMed Google Scholar
  19. 19.
    Y.X. Xu, Z.B. Xiang, Y.S. Jin, Y. Shen, H.S. Chen, Fitoterapia 81, 920-924 (2010) CrossRef PubMed Google Scholar
  20. 20.
    Y.X. Xu, Z.B. Xiang, X.J. Chen, H.S. Chen, Acad. J. Second Mil. Med. Univ. 32, 749-753 (2011) PubMed Google Scholar
  21. 21.
    H.L. Xin, Y.C. Wu, Y.F. Xu, Y.H. Su, Y.N. Zhang, C.Q. Ling, Chin. J. Nat. Med. 8, 260-263 (2010) CrossRef PubMed Google Scholar
  22. 22.
    H.L. Xin, X.Q. Yue, Y.F. Xu, Y.C. Wu, Y.N. Zhang, Y.Z. Wang, C.Q. Ling, Helv. Chim. Acta. 91, 575-580 (2008) CrossRef PubMed Google Scholar
  23. 23.
    Y. Sashida, K. Ogawa, T. Yamanouchi, H. Tanaka, Y. Shoyama, I. Nishioka, Phytochemistry 35, 377-380 (1994) CrossRef PubMed Google Scholar
  24. 24.
    D. Li, W. Li, K. Higai, K. Koike, J. Nat. Med. 68, 427-431 (2014) CrossRef PubMed Google Scholar
  25. 25.
    X.Y. Zhang, Y. Zhou, Z.P. Wei, J. Shen, L.K. Wang, Z.Q. Ma, X. Zhang, Pest Manag. Sci. 74, 1630-1636 (2018) CrossRef PubMed Google Scholar
  26. 26.
    H. Takazawa, K. Yoshimura, A. Ikuta, K. Kawaguchi, Plant Biotechnol. 19, 181-186 (2002) CrossRef PubMed Google Scholar
  27. 27.
    S.Y. Du, H.F. Huang, X.Q. Li, L.X. Zhai, Q.C. Zhu, K. Zheng, X. Song, C.S. Xu, C.Y. Li, Y. Li, Z.D. He, H.T. Xiao, Chin. Med. 15, 43 (2020) CrossRef PubMed Google Scholar
  28. 28.
    G.C. Bonel-Perez, A. Perez-Jimenez, I. Gris-Cardenas, A.M. Parra-Perez, J.A. Lupianez, F.J. Reyes-Zurita, E. Siles, R. Csuk, J. Peragon, E.E. Rufino-Palomares, Molecules 25, 4254 (2020) CrossRef PubMed Google Scholar
  29. 29.
    J. Carmo, P. Cavalcante-Araujo, J. Silva, J. Ferro, A.C. Correia, V. Lagente, E. Barreto, Molecules 25, 4982 (2020) CrossRef PubMed Google Scholar
  30. 30.
    X.F. Zhou, P. Zhang, H.F. Pi, Y.H. Zhang, H.L. Ruan, H. Wang, J.Z. Wu, Chem. Biodivers. 6, 1202-1207 (2009) CrossRef PubMed Google Scholar
  31. 31.
    E.H. Lahlou, N. Hirai, T. Kamo, M. Tsuda, H. Ohigashi, Biosci. Biotechnol. Biochem. 65, 480-483 (2001) CrossRef PubMed Google Scholar
  32. 32.
    L.B. Wei, S.Y. Ma, H.X. Liu, C.S. Huang, N. Liao, Chem. Biodivers. 15, e1700454 (2018) CrossRef PubMed Google Scholar
  33. 33.
    N.A. Dangroo, J. Singh, A.A. Dar, N. Gupta, P.K. Chinthakindi, A. Kaul, M.A. Khuroo, P.L. Sangwan, Eur. J. Med. Chem. 120, 160-169 (2016) CrossRef PubMed Google Scholar
  34. 34.
    J.H. Ahn, Y. Park, S.W. Yeon, Y.H. Jo, Y.K. Han, A. Turk, S.H. Ryu, B.Y. Hwang, K.Y. Lee, M.K. Lee, J. Nat. Prod. 83, 1416-1423 (2020) CrossRef PubMed Google Scholar
  35. 35.
    C.S. Huang, S.Y. Ma, H.X. Liu, Q. Lu, C.S. Huang, H.X. Liu, L.B. Wei, L.G. Shi, N. Liao, L.B. Wei, China J. Chin. Mater. Med. 42, 2714-2718 (2017) PubMed Google Scholar
  36. 36.
    L.P. Qu, G.Y. Zheng, Y.H. Su, H.Q. Zhang, Y.L. Yang, H.L. Xin, C.Q. Ling, Int. J. Mol. Sci. 13, 14865-14870 (2012) CrossRef PubMed Google Scholar
  37. 37.
    Y. Shi, H. Wang, B. Ma, Chin. Tradit. Herb. Drugs. 24, 386-387 (1993) PubMed Google Scholar
  38. 38.
    S.C. Dong, T.Y. Shin, J.S. Eun, D.K. Kim, H. Jeon, Arch. Pharmacal. Res. 34, 425-436 (2011) CrossRef PubMed Google Scholar
  39. 39.
    D. Xu, A. Qiu, N. Tang, G. Liu, Y. Lai, CN101502542. PubMed Google Scholar
  40. 40.
    C. Huang, G. Li, H. Fan, Z. Zhang, J. Zhou, Plant Divers. Resour. 8, 489-491 (1986) PubMed Google Scholar
  41. 41.
    C. Huang, X. Chen, Nat. Prod. Res. Dev. 4, 27-30 (1992) PubMed Google Scholar
  42. 42.
    L. Meng, C. Huang, H. Liu, X. Chen, Chin. Tradit. Herb. Drugs 32, 1544-1546 (2009) PubMed Google Scholar
  43. 43.
    L. Wei, C. Huang, H. Liu, X. Chen, Technol. Dev Chem. Ind. 38, 1-3 (2009) PubMed Google Scholar
  44. 44.
    Y. Cui, X.M. Zhang, J.J. Chen, Y. Zhang, X.K. Lin, L. Zhou, China J. Chin. Mater. Med. 32, 1663-1665 (2007) PubMed Google Scholar
  45. 45.
    W.J. Zhu, D.H. Yu, M. Zhao, M.G. Lin, Q. Lu, Q.W. Wang, Y.Y. Guan, G.X. Li, X. Luan, Y.F. Yang, X.M. Qin, C. Fang, G.H. Yang, H.Z. Chen, Anti-Cancer Agents Med. Chem. 13, 195-198 (2013) CrossRef PubMed Google Scholar
  46. 46.
    Y. Qin, C. Huang, X. Chen, M. Cai, H. Liu, Chin. Tradit. Herb. Drugs. 30, 323-326 (1999) PubMed Google Scholar
  47. 47.
    F. Lu, L. Zhao, L. Zheng, L. Lu, Cent. S. Pharm. 12, 165-168 (2014) PubMed Google Scholar
  48. 48.
    Y.D. Xu, L. Yin, Chin. Tradit. Herb. Drugs. 44, 935-937 (2013) PubMed Google Scholar
  49. 49.
    S. Bei, C. Huang, X. Chen, Nat. Prod. Res. Dev. 9, 15-18 (1997) PubMed Google Scholar
  50. 50.
    C. Nie, J. Yang, D. Wu, L. Wan, G. Liang, Chem. Res. Chin. Univ. 35, 823-829 (2019) CrossRef PubMed Google Scholar
  51. 51.
    C. Ye, M. Jin, Y. Zhou, W. Zhou, G. Li, Chem. Nat. Compd. 55, 975-977 (2019) CrossRef PubMed Google Scholar
  52. 52.
    Y.X. Xu, Z.B. Xiang, Y.S. Jin, W. Xu, L.N. Sun, W.S. Chen, HSJC Chem. Biodivers. 13, 1454-1459 (2016) CrossRef PubMed Google Scholar
  53. 53.
    J.I. Whang, H.I. Moon, O.P. Zee, Saengyak Hakhoechi. 31, 357-365 (2000) PubMed Google Scholar
  54. 54.
    Y. Han, Z. Tong, C. Wang, X. Li, G. Liang, Eur. J. Pharmacol. 893, 173811 (2021) CrossRef PubMed Google Scholar
  55. 55.
    S. Zhang, Y. Liu, X. Wang, Z. Tian, D. Qi, Y. Li, H. Jiang, Int. J. Mol. Med. 46, 2019-2034 (2020) CrossRef PubMed Google Scholar
  56. 56.
    P.M. Edathara, S. Chintalapally, V.K.K. Makani, C. Pant, S. Yerramsetty, M.D. Rao, M.P. Bhadra, Gene 771, 145370 (2021) CrossRef PubMed Google Scholar
  57. 57.
    W. Zhou, X. Zeng, X. Wu, Med. Sci. Monit. 26, e921606 (2020) PubMed Google Scholar
  58. 58.
    J.M. Castellano, S. Garcia-Rodriguez, J.M. Espinosa, M.C. Millan-Linares, M. Rada, J.S. Perona, Biomolecules 9, 683 (2019) CrossRef PubMed Google Scholar
  59. 59.
    W.J.A. Musa, B. Situmeang, J. Sianturi, Int. J. Food Prop. 22, 1439-1444 (2019) CrossRef PubMed Google Scholar
  60. 60.
    L.Y. Mooi, N. Abdul Wahab, N.H. Lajis, A.M. Ali, Chem. Biodivers. 7, 1267-1275 (2010) CrossRef PubMed Google Scholar
  61. 61.
    L. Huang, T. Guan, Y. Qian, M. Huang, X. Tang, Y. Li, H. Sun, Eur. J. Pharmacol. 672, 169-174 (2011) CrossRef PubMed Google Scholar
  62. 62.
    J.G. Wu, L. Ma, S.H. Lin, Y.B. Wu, J. Yi, B.J. Yang, J.Z. Wu, K.H. Wong, J. Ethnopharmacol. 203, 1-10 (2017) CrossRef PubMed Google Scholar
  63. 63.
    F. A. Ma, D. L. Wu, F. Q. Xu, W. Zhang, S. R Y., Chin. Tradit. Pat. Med. 38, 591-593 (2016) PubMed Google Scholar
  64. 64.
    H. Zhao, B.Z. Wang, B.R. Ma, J.Y. Sun, Chin. Pharm. J. 29, 523-524 (1994) PubMed Google Scholar
  65. 65.
    Y. Lai, D. Xu, J. Chin. Med. Mater. 30, 166-168 (2007) PubMed Google Scholar
  66. 66.
    L. Ding, S. Wang, Z. Wang, China J. Chin. Mater. Med. 32, 1893-1895 (2007) PubMed Google Scholar
  67. 67.
    J. Lu, R. Yang, M. Gui, Y. Jin, J. Dong, X. Li, Chin. Pharm. J. 44, 1215-1217 (2009) PubMed Google Scholar
  68. 68.
    L.J. Zhu, S.T. Xiang, X.H. Wang, J. Zhao, Z.I. Tan, J.E. Yi, J. Tradit. Chin. Vet. Med. 35, 18-22 (2016) PubMed Google Scholar
  69. 69.
    C.G. Farcas, C. Dehelean, I.A. Pinzaru, M. Mioc, V. Socoliuc, E.A. Moaca, S. Avram, R. Ghiulai, D. Coricovac, I. Pavel, P.K. Alla, O.M. Cretu, C. Soica, F. Loghin, Int. J. Nanomed. 15, 8175-8200 (2020) CrossRef PubMed Google Scholar
  70. 70.
    L. Kun, J.Y. Wang, L. Zhang, Y.Y. Pan, X.Y. Chen, Y. Yuan, Int. J. Immunopathol. Pharmacol. 34, 2058738420945078 (2020) PubMed Google Scholar
  71. 71.
    H. Wang, F. Dong, Y. Wang, X.A. Wang, D. Hong, Y. Liu, J. Zhou, Acta Biochim. Biophys. Sin. 52, 200-206 (2020) CrossRef PubMed Google Scholar
  72. 72.
    Q. Wang, Y. Li, L. Zheng, X. Huang, Y. Wang, C.H. Chen, Y.Y. Cheng, S.L. Morris-Natschke, K.H. Lee, A.C.S. Med, Chem. Lett. 11, 2290-2293 (2020) PubMed Google Scholar
  73. 73.
    G.A. Birgani, A. Ahangarpour, L. Khorsandi, H.F. Moghaddam, Braz. J. Pharm. Sci. 54, e17171 (2018) PubMed Google Scholar
  74. 74.
    Z. Zhou, C. Zhu, Z. Cai, F. Zhao, L. He, X. Lou, X. Qi, Oncol. Lett. 15, 7319-7327 (2018) PubMed Google Scholar
  75. 75.
    Y.H. Han, J.G. Mun, H.D. Jeon, J.Y. Kee, S.H. Hong, Nutrients 12, 66 (2019) CrossRef PubMed Google Scholar
  76. 76.
    F. Yin, F. Feng, L. Wang, Z. Li, X. Wang, Y. Cao, Cell Death Dis. 10, 672 (2019) CrossRef PubMed Google Scholar
  77. 77.
    F. Murai, M. Tagawa, Planta Med. 37, 234-240 (1979) CrossRef PubMed Google Scholar
  78. 78.
    T. Sakai, K. Nakajima, T. Sakan, Bull. Chem. Soc. Jpn. 53, 3683-3686 (1980) CrossRef PubMed Google Scholar
  79. 79.
    S. Isoe, T. Ono, S.B. Hyeon, T. Sakan, Tetrahedron Lett. 9, 5319-5323 (1968) CrossRef PubMed Google Scholar
  80. 80.
    F. Murai, M. Tagawa, H. Ohishi, Planta Med. 58, 112-113 (1992) CrossRef PubMed Google Scholar
  81. 81.
    S. Jain, A. Ganeshpurkar, N. Dubey, Pharmacogn. Commun. 10, 134-135 (2020) CrossRef PubMed Google Scholar
  82. 82.
    K. Koc, F. Geyikoglu, O. Cakmak, A. Koca, Z. Kutlu, F. Aysin, A. Yilmaz, H. Askin, Naunyn-Schmiedeberg's Arch. Pharmacol. 394, 469-479 (2021) CrossRef PubMed Google Scholar
  83. 83.
    J.Y. Ye, L. Li, Q.M. Hao, Y. Qin, C.S. Ma, Korean J. Physiol. Pharmacol. 24, 39-46 (2020) CrossRef PubMed Google Scholar
  84. 84.
    F. Zhang, Z. Liu, X. He, Z. Li, B. Shi, F. Cai, Drug Deliv. 27, 1329-1341 (2020) CrossRef PubMed Google Scholar
  85. 85.
    L. Karthik, B. Vijayakumar, Int. J. Pharm. Phytopharm. Res. 10, 8-21 (2020) PubMed Google Scholar
  86. 86.
    A. Sen, P. Dhavan, K.K. Shukla, S. Singh, G. Tejovathi, Sci. Secure J. Biotechnol. 1, 9-13 (2012) PubMed Google Scholar
  87. 87.
    S. Babu, S.J.B. Jayaraman, Pharmacotherapy 131, 110702 (2020) CrossRef PubMed Google Scholar
  88. 88.
    S. Babu, M. Krishnan, P. Rajagopal, V. Periyasamy, V. Veeraraghavan, R. Govindan, S. Jayaraman, Eur. J. Pharmacol. 873, 173004 (2020) CrossRef PubMed Google Scholar
  89. 89.
    A. Fiorentino, B.D. Abrosca, S. Pacifico, C. Mastellone, M. Scognamiglio, P. Monaco, J. Agric. Food Chem. 57, 4148-4155 (2009) CrossRef PubMed Google Scholar
  90. 90.
    M. Ahmad Khan, A.H.M.G. Sarwar, R. Rahat, R.S. Ahmed, S. Umar, Int. Immunopharmacol. 85, 106642 (2020) CrossRef PubMed Google Scholar
  91. 91.
    H.W. Lim, J.G. Shim, H.K. Choi, M.W. Lee, Saengyak Hakhoechi. 36, 245-251 (2005) PubMed Google Scholar
  92. 92.
    D.S. Jang, G.Y. Lee, Y.M. Lee, Y.S. Kim, H. Sun, D.H. Kim, J.S. Kim, Chem. Pharm. Bull. 57, 397-400 (2009) CrossRef PubMed Google Scholar
  93. 93.
    B. Riyana, D.H. Putri Huspa, M.H. Satari, D. Kurnia, Lett. Drug Des. Discov. 17, 1531-1537 (2020) CrossRef PubMed Google Scholar
  94. 94.
    J. Chang, R. Case, Planta Med. 71, 955-959 (2005) CrossRef PubMed Google Scholar
  95. 95.
    J. Michaud, M. Ane-Margail, Bull. Soc. Pharm. Bordeaux. 116, 52-64 (1977) PubMed Google Scholar
  96. 96.
    J. Wang, X. Fang, L. Ge, F. Cao, L. Zhao, Z. Wang, W. Xiao, PLoS ONE 13(5), e0197563 (2018) CrossRef PubMed Google Scholar
  97. 97.
    S. Bakhshii, S. Khezri, R. Ahangari, A. Jahedsani, A. Salimi, Drug Dev. Res. (2021). https://doi.org/10.1002/ddr.21790 PubMed Google Scholar
  98. 98.
    M.A. Arowosegbe, O.T. Amusan, S.A. Adeola, O.B. Adu, I.A. Akinola, B.F. Ogungbe, O.I. Omotuyi, G.M. Saibu, A.J. Ogunleye, R.I. Kanmodi, N.E. Lugbe, O.J. Ogunmola, D.C. Ajayi, S.O. Ogun, F.O. Oyende, A.O. Bello, P.G. Ishola, P.E. Obasieke, Curr. Drug Discov. Technol. 17, 682-695 (2020) CrossRef PubMed Google Scholar
  99. 99.
    B.D. Sloley, L.J. Urichuk, P. Morley, J. Durkin, J.J. Shan, P.K.T. Pang, R.T. Coutts, J. Pharm. Pharmacol. 52, 451-459 (2000) PubMed Google Scholar
  100. 100.
    H.L. Xin, Y.C. Wu, Y.H. Su, J.Y. Sheng, C.Q. Ling, Planta Med. 77, 70-73 (2011) CrossRef PubMed Google Scholar
  101. 101.
    X. Chang, B. Ma, L. He, Y. Xiao, X. Li, Chin. Tradit. Herb. Drugs. 24, 283-285 (1993) PubMed Google Scholar
  102. 102.
    J. Lu, Y. Jin, G. Liu, N. Zhu, M. Gui, A. Yu, X. Li, Chem. Nat. Compd. 46, 205-208 (2010) CrossRef PubMed Google Scholar
  103. 103.
    M. Horiuch, C. Murakami, N. Fukamiya, D. Yu, K.H. Lee, J. Nat. Prod. 69, 1271-1274 (2006) CrossRef PubMed Google Scholar
  104. 104.
    G. Eerduna, D. Wei, X. Yu, S. Qu, D. Sui, Pharmazie 68, 453-458 (2013) PubMed Google Scholar
  105. 105.
    G.N. He, B.C. Wang, H. Wang, L. Fan, X.M. Hu, Chin. Arch. Tradit. Chin. Med. 31, 2353-2355 (2016) PubMed Google Scholar
  106. 106.
    C. Liu, D. Weir, P. Busse, N. Yang, Z. Zhou, C. Emala, X.M. Li, Phytother. Res. 29, 925-932 (2015) CrossRef PubMed Google Scholar
  107. 107.
    R.F. Webby, N. Z. J. Crop Hortic. Sci. 18, 1-4 (1990) CrossRef PubMed Google Scholar
  108. 108.
    M. Xiang, C. Jin, R. Kou, G. Yang, J. Li, J. Huazhong, Norm. Univ. Nat. Sci. 49, 397-401 (2015) PubMed Google Scholar
  109. 109.
    J. Lu, G. Cui, X. Wang, N. Zhu, G. Liu, X. Li, Y. Jin, Chin. Pharm. J. 44, 328-330 (2009) PubMed Google Scholar
  110. 110.
    A.S. Syed, J.S. Jeon, C.Y. Kim, Nat. Prod. Res. 31, 1501-1508 (2017) CrossRef PubMed Google Scholar
  111. 111.
    J. Lu, X.W. Li, M.Y. Gui, G.Y. Liu, N. Zhu, A.M. Yu, T. Okuyama, B. Masaki, Y.R. Jin, Chem. J. Chin. Univ. 30, 468-473 (2009) PubMed Google Scholar
  112. 112.
    R.F. Webby, K.R. Markham, Phytochemistry 29, 289-292 (1990) CrossRef PubMed Google Scholar
  113. 113.
    Y. Jin, M. Gui, X. Li, CN1566127A. PubMed Google Scholar
  114. 114.
    A. Kalandiya, M. Vanidze, S. Papunidze, I. Chkhikvishvili, A. Shalashvili, Bull. Georgian Acad. Sci. 163, 157-159 (2001) PubMed Google Scholar
  115. 115.
    R.F. Webby, Phytochemistry 30, 2443-2444 (1991) CrossRef PubMed Google Scholar
  116. 116.
    C.T. Luo, H.H. Zheng, S.S. Mao, M.X. Yang, C. Luo, H. Chen, Planta Med. 80, 201-208 (2014) PubMed Google Scholar
  117. 117.
    T.X. Shi, S. Wang, K.W. Zeng, P.F. Tu, Y. Jiang, Bioorg. Med. Chem. Lett. 23, 5904-5908 (2013) CrossRef PubMed Google Scholar
  118. 118.
    W. Li, Y. Ding, T.H. Quang, T.T.N. Nguyen, Y.N. Sun, X.T. Yan, S.Y. Yang, C.W. Choi, E.J. Lee, K.Y. Paek, Y.H. Kim, Bull. Korean Chem. Soc. 34, 1407-1413 (2013) CrossRef PubMed Google Scholar
  119. 119.
    D.J. Comeskey, M. Montefiori, P.J.B. Edwards, T.K. McGhie, J. Agric. Food Chem. 57, 2035-2039 (2009) CrossRef PubMed Google Scholar
  120. 120.
    D. Ferrari, F. Cimino, D. Fratantonio, M.S. Molonia, R. Bashllari, R. Busa, A. Saija, A. Speciale, Mediat. Inflamm. 2017, 3454023 (2017) PubMed Google Scholar
  121. 121.
    S.R. Pereira, L.M. Almeida, T.C.P. Dinis, J. Funct. Foods. 63, 103586 (2019) CrossRef PubMed Google Scholar
  122. 122.
    G.C. Di, R. Acquaviva, R. Santangelo, V. Sorrenti, L. Vanella, V.G. Li, N.D. Orazio, A. Vanella, F. Galvano, J. Evid. Based Complement. Altern. Med. 20, 285750 (2012) PubMed Google Scholar
  123. 123.
    X. Ma, S. Ning, Phytother. Res. 33, 81-89 (2019) CrossRef PubMed Google Scholar
  124. 124.
    P. Zhang, S. Liu, Z. Zhao, L. You, M.D. Harrison, Z. Zhang, Food Chem. 343, 128482 (2021) CrossRef PubMed Google Scholar
  125. 125.
    W. Fu, C. Tan, X. Meng, L. Lu, S. Jiang, D. Zhu, Chin. J. Med. Chem. 20, 116-118 (2010) PubMed Google Scholar
  126. 126.
    C.S. Sharanya, K.G. Arun, A. Sabu, M. Haridas, Prostaglandins Other Lipid Mediat. 150, 106453 (2020) CrossRef PubMed Google Scholar
  127. 127.
    W. Ma, C. Liu, J. Li, M. Hao, Y. Ji, X. Zeng, Photochem. Photobiol. Sci. 19, 485-494 (2020) CrossRef PubMed Google Scholar
  128. 128.
    S. Jangra, B. Sharma, S. Singh, Mater. Res Innov. 25, 264-275 (2020) PubMed Google Scholar
  129. 129.
    M.R. De Oliveira, I.C.C. De Souza, F.B. Brasil, Neurochem. Res. 46, 482-493 (2020) PubMed Google Scholar
  130. 130.
    S.W. Leung, J.H. Lai, J.C.C. Wu, Y.R. Tsai, Y.H. Chen, S.J. Kang, Y.H. Chiang, C.F. Chang, K.Y. Chen, Int. J. Mol. Sci. 21, 2899 (2020) CrossRef PubMed Google Scholar
  131. 131.
    Q. Li, J. Gao, X. Pang, A. Chen, Y. Wang, Front. Pharmacol. 11, 559607 (2020) CrossRef PubMed Google Scholar
  132. 132.
    C. Wang, L. Guo, J. Hao, L. Wang, W. Zhu, J. Nat. Prod. 79, 2977-2981 (2016) CrossRef PubMed Google Scholar
  133. 133.
    Z. Ji, X. Liang, Acta Pharm Sin. 20, 778-781 (1985) PubMed Google Scholar
  134. 134.
    M.Y. Ali, S. Jannat, H.A. Jung, B.S. Min, P. Paudel, J.S. Choi, J. Food Biochem. 42 (2018) PubMed Google Scholar
  135. 135.
    H.W. Lim, S.J. Kang, M. Park, J.H. Yoon, B.H. Han, S.E. Choi, M.W. Lee, Nat. Prod. Sci. 12, 221-225 (2006) PubMed Google Scholar
  136. 136.
    J.H. Ahn, Y. Park, Y.H. Jo, S.B. Kim, S.W. Yeon, J.G. Kim, A. Turk, J.Y. Song, Y. Kim, B.Y. Hwang, M.K. Lee, Food Chem. 308, 125666 (2020) CrossRef PubMed Google Scholar
  137. 137.
    J. He, B.Z. Ma, X.X. Wang, F. Liu, W.J. Qin, X.I. Zhang, T. Zhao, Chin. Pharm. J. 50, 1960-1963 (2015) PubMed Google Scholar
  138. 138.
    D. Kwon, G.D. Kim, W. Kang, J.E. Park, S.H. Kim, E. Choe, J.I. Kim, J.H. Auh, J. Korean Soc. Appl. Biol. Chem. 57, 473-479 (2014) CrossRef PubMed Google Scholar
  139. 139.
    X.H. Gao, S.D. Zhang, L.T. Wang, L. Yu, X.I. Zhao, H.Y. Ni, Y.Q. Wang, J.D. Wang, C.H. Shan, Y.J. Fu, Molecules 25, 1385 (2020) CrossRef PubMed Google Scholar
  140. 140.
    J. Hu, X. Han, X. Li, B. Huang, Med. Plant. 9, 9-13 (2018) PubMed Google Scholar
  141. 141.
    A. Zeng, X. Liang, S. Zhu, C. Liu, S. Wang, Q. Zhang, J. Zhao, D.L. Song, Oncol. Rep. 45, 717-727 (2021) PubMed Google Scholar
  142. 142.
    D. Wang, L. Tian, H. Lv, Z. Pang, D. Li, Z. Yao, S. Wang, Biomed. Pharmacother. 132, 110773 (2020) CrossRef PubMed Google Scholar
  143. 143.
    J.S. Lopez-Gonzalez, H. Prado-Garcia, D. Aguilar-Cazares, J.A. Molina-Guarneros, J. Morales-Fuentes, J.J. Mandoki, Lung Cancer 43, 275-283 (2004) CrossRef PubMed Google Scholar
  144. 144.
    V.M. Navarro-Garcia, G. Rojas, M. Aviles, M. Fuentes, G. Zepeda, Mycoses 4, e569-e571 (2011) PubMed Google Scholar
  145. 145.
    J.R.S. Hoult, M. Paya, Gen. Pharmacol. 27, 713-722 (1996) CrossRef PubMed Google Scholar
  146. 146.
    H. Li, Y. Yao, L. Li, J. Pharm. Pharmacol. 69, 1253-1264 (2017) CrossRef PubMed Google Scholar
  147. 147.
    J.F. Vasconcelos, M.M. Teixeira, J.M. Barbosa-Filho, M.F. Agra, X.P. Nunes, A.M. Giulietti, R. Ribeiro-dos-Santos, M.B.P. Soares, Eur. J. Pharmacol. 609, 126-131 (2009) CrossRef PubMed Google Scholar
  148. 148.
    R. Rashmi, N. Prakash, D. Rathnamma, S. Rao, A. Sahadev, C.R. Santhosh, U. Sunilchandra, K.S. Naveen, R.S. Wilfred, G.P. Kalmath, K.R.A. Kumar, H.M. Yathish, P. Waghe, Pharma Innov. 8, 29-35 (2019) PubMed Google Scholar
  149. 149.
    R. Rashmi, N. Prakash, D. Rathnamma, S. Rao, A. Sahadev, C.R. Santhosh, U. Sunilchandra, N.S. Kumar, W.S. Ruban, G.P. Kalmath, H. Dhanalakshmi, G L., A.R. Gomes, K.R.A. Kumar, P. Waghe, Pharma Innov. 8, 36-40 (2019) PubMed Google Scholar
  150. 150.
    W.W. Fu, C.H. Tan, L.L. Lu, X.X. Meng, H.F. Luo, D.Y. Zhu, Chin. J. Nat. Med. 8, 247-249 (2010) CrossRef PubMed Google Scholar
  151. 151.
    H.C. Chang, S.W. Wang, C.Y. Chen, T.L. Hwang, M.J. Cheng, P.J. Sung, K.W. Liao, J.J. Chen, Molecules 25, 5911 (2020) CrossRef PubMed Google Scholar
  152. 152.
    A.M. Hirsch, A. Longeon, M. Guyot, Biochem. Syst. Ecol. 30, 55-60 (2002) CrossRef PubMed Google Scholar
  153. 153.
    Y. Li, C. Ma, J. Huang, Chin. Pharm. J. 44, 1294-1297 (2009) PubMed Google Scholar
  154. 154.
    Y. Kimura, M. Sumiyoshi, Eur. J. Pharmacol. 746, 115-125 (2015) CrossRef PubMed Google Scholar
  155. 155.
    B. Aouey, A.M. Samet, H. Fetoui, M.S.J. Simmonds, M. Bouaziz, Biomed. Pharmacother. 84, 1088-1098 (2016) CrossRef PubMed Google Scholar
  156. 156.
    S. Ren, Y. Xing, C. Wang, F. Jiang, G. Liu, Z. Li, T. Jiang, Y. Zhu, D. Piao, Int. J. Biochem. Cell Biol. 125, 105777 (2020) CrossRef PubMed Google Scholar
  157. 157.
    P. Wu, W. He, Y. Fu, J. Wu, J. Li, L. Xiao, Immunol. J. 36, 22-28 (2020) PubMed Google Scholar
  158. 158.
    B. Hwang, J. Lee, Q.H. Liu, E.R. Woo, D.G. Lee, Molecules 15, 3507-3516 (2010) CrossRef PubMed Google Scholar
  159. 159.
    P.C. Kuo, H.Y. Hung, C.W. Nian, T.L. Hwang, J.C. Cheng, D.H. Kuo, E.J. Lee, S.H. Tai, T.S. Wu, J. Nat. Prod. 80, 1055-1064 (2017) CrossRef PubMed Google Scholar
  160. 160.
    X.L. Ouyang, L.X. Wei, H.S. Wang, Y.M. Pan, S. Afr, J. Bot. 98, 162-166 (2015) PubMed Google Scholar
  161. 161.
    A. Wikul, T. Damsud, K. Kataoka, P. Phuwapraisirisan, Bioorg. Med. Chem. Lett. 22, 5215-5217 (2012) CrossRef PubMed Google Scholar
  162. 162.
    Y. Zhang, H. Zhao, Y. Di, Q. Li, D. Shao, J. Shi, Q. Huang, J. Funct. Foods. 45, 206-214 (2018) CrossRef PubMed Google Scholar
  163. 163.
    I. Paterniti, D. Impellizzeri, M. Cordaro, R. Siracusa, C. Bisignano, E. Gugliandolo, A. Carughi, E. Esposito, G. Mandalari, S. Cuzzocrea, Nutrients 9, 915 (2017) CrossRef PubMed Google Scholar
  164. 164.
    A.N. Winter, M.C. Brenner, N. Punessen, M. Snodgrass, C. Byars, Y. Arora, D.A. Linseman, Oxid. Med. Cell. Longevity. 2017, 6297080 (2017) PubMed Google Scholar
  165. 165.
    Y.H. Wang, Y. Gao, Z. Li, D.I. Wang, W.H. Ling, Acta Nutr. Sin. 36, 53-57 (2014) PubMed Google Scholar
  166. 166.
    P. Thomas, E. Essien, A. Udoh, B. Archibong, O. Akpan, E. Etukudo, M. Leo, O. Eseyin, G. Flamini, K. Ajibesin, J. Ethnopharmacol. 269, 113737 (2021) CrossRef PubMed Google Scholar
  167. 167.
    K.V. Wurms, J.M. Cooney, Asian J. Biochem. 1, 325-332 (2006) CrossRef PubMed Google Scholar
  168. 168.
    X. Qin, C.H. Zhang, D.L. Yao, J.M. Cui, G. Li, J. Yanbian Med. Coll. 36, 187-189 (2013) PubMed Google Scholar
  169. 169.
    D.A. Sumilat, H. Yamazaki, K. Endo, H. Rotinsulu, D.S. Wewengkang, K. Ukai, M. Namikoshi, J. Nat. Med. 71, 776-779 (2017) CrossRef PubMed Google Scholar
  170. 170.
    M.H. Farah, G. Samuelsson, Planta Med. 58, 14-18 (1992) CrossRef PubMed Google Scholar
  171. 171.
    J. He, B.Z. Ma, T. Zhao, W. Wang, F.L. Wei, J. Lu, X.L. Zhang, Chin. Pharm. J. 49, 184-186 (2014) PubMed Google Scholar
  172. 172.
    Z.Q. Chang, E. Gebru, S.P. Lee, M.H. Rhee, J.C. Kim, H. Cheng, S.C. Park, J. Nutr. Sci. Vitaminol. 57, 118-122 (2011) CrossRef PubMed Google Scholar
  173. 173.
    A. Fiorentino, C. Mastellone, B.D. Abrosca, S. Pacifico, M. Scognamiglio, G. Cefarelli, R. Caputo, P. Monaco, Food Chem. 115, 187-192 (2009) CrossRef PubMed Google Scholar
  174. 174.
    T. Sakan, A. Fujino, F. Murai, Y. Butsugan, A. Suzui, Bull. Chem. Soc. Jpn. 32, 315-316 (1959) CrossRef PubMed Google Scholar
  175. 175.
    D. Gross, W. Berg, H.R. Schuette, Phytochemistry 11, 3082-3083 (1972) CrossRef PubMed Google Scholar
  176. 176.
    J. Ren, E.J. Han, S.H. Chung, Arch. Pharmacal. Res. 30, 708-714 (2007) CrossRef PubMed Google Scholar
  177. 177.
    J. Kim, M. Ahn, Y. Choi, T. Kang, J. Kim, N.H. Lee, G.O. Kim, T. Shin, Inflammation 43, 1876-1883 (2020) CrossRef PubMed Google Scholar
  178. 178.
    M. Vara-Messler, M.E. Pasqualini, A. Comba, R. Silva, C. Buccellati, A. Trenti, L. Trevisi, A.R. Eynard, A. Sala, C. Bolego, M.A. Valentich, Eur. J. Nutr. 56, 509-519 (2017) CrossRef PubMed Google Scholar
  179. 179.
    Y. Mounika, R.M. Naik, Int. J. Pharm. Pharm. Res. 17, 306-328 (2019) PubMed Google Scholar
  180. 180.
    T. Suanarunsawat, G. Anantasomboon, C. Piewbang, Exp. Ther. Med. 11, 832-840 (2016) CrossRef PubMed Google Scholar
  181. 181.
    P.U.M. Devi, P.S. Reddy, N.R.U. Rani, K.J. Reddy, M.N. Reddy, P. Reddanna, Eur. J. Plant Pathol. 106, 857-865 (2000) CrossRef PubMed Google Scholar
  182. 182.
    M.H. Bang, I.G. Chae, E.J. Lee, N.I. Baek, Y.S. Baek, D.Y. Lee, I.S. Lee, S.P. Lee, S.A. Yang, Biosci. Biotechnol. Biochem. 76, 289-293 (2012) CrossRef PubMed Google Scholar
  183. 183.
    K. Kono, A. Yamashita, T. Ishihara, JP2008120772A. PubMed Google Scholar
  184. 184.
    G.N. He, X.M. Hu, H. Wang, L. Fan, B.C. Wang, China J. Chin. Mater. Med. 30, 498-500 (2015) PubMed Google Scholar
  185. 185.
    Y. Lai, D.P. Xu, Chin. Tradit. Herb. Drugs. 30, 166-168 (2007) PubMed Google Scholar
  186. 186.
    P. Roger, J. P. Fournier, A. Martin, J. Choay, EP238401A2. PubMed Google Scholar
  187. 187.
    X. Chen, S. Yang, S. Bai, Chin. Tradit. Herb. Drugs. 42, 841-843 (2011) PubMed Google Scholar
  188. 188.
    J. Liang, H. Zhen, S. Li, W. Zhang, X. Wang, C. Liang, China J. Chin. Mater. Med. 33, 1275-1277 (2008) PubMed Google Scholar
  189. 189.
    X. Chang, B. Ma, J. Shan, L. Chen, Chin. Tradit. Herb. Drugs. 27, 395 (1996) PubMed Google Scholar
  190. 190.
    P. Li, A. Lu, B. Ma, J. Wei, China J. Chin. Mater. Med. 17, 420-421 (1992) PubMed Google Scholar

Authors and Affiliations

  • Jin-Tao Ma
    • 1
  • Da-Wei Li
    • 2
  • Ji-Kai Liu
    • 1
  • Juan He
    • 1
  •     
  1. 1. School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
  2. 2. Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China