Traditional Herbal Medicines Against CNS Disorders from Bangladesh

Abstract

The majority of the population in Bangladesh uses traditional plant-based medicines to manage various ailments, including central nervous system (CNS) disorders. This review presents ethnobotanical information and relevant scientific studies on plants used in traditional healthcare for the management of various CNS disorders in Bangladesh. The information on the medicinal plants of Bangladesh effective against CNS disorders published in scientific journals, books, and reports was compiled from different electronic databases using specific key words. The present article provides comprehensive information on a total of 224 medicinal plant species belonging to 81 families used for the treatment of CNS disorders by the various peoples of Bangladesh. In total, we reviewed more than 290 relevant papers. In this study, leaves were found as the most often used plant organ, followed by roots, fruits, whole plants, barks, seeds, stems, rhizomes, and flowers. The Fabaceae family contributes the highest number of used species, followed by Rubiaceae, Lamiaceae, Cucurbitaceae, Vitaceae, Euphorbiaceae, Malvaceae, and Zingiberaceae. The most frequently used species (in decreasing order) are Asparagus racemosus, Centella asiatica, Stephania japonica, Aegle marmelos, Coccinia grandis, Tabernaemontana divaricata, Bacopa monnieri, Abroma augusta, and Scoparia dulcis. This review may serve as a starting point for a rational search for neuroactive natural products against CNS disorders within the Flora of Bangladesh.

Graphical Abstract

Keywords

CNS disorder    Medicinal plants    Traditional plants    Ethnopharmacology    Review    

Table

Abbreviations

CAMComplementary and alternative medicine
CNSCentral nervous system
FDAFood and drug administration
TBMTraditional Bangladeshi medicine
T & CMTraditional and complementary medicine
WHOWorld Health Organization

1 Introduction

The central nervous system (CNS), as an integral part of the nervous system, is associated with a number of important functions and mainly consists of the brain and the spinal cord. A CNS disorder refers to a disease that affects the structure or function of brain (encephalopathy) or spinal cord (myelopathy) causing neurological or psychiatric or neurodegenerative complications. Neuroprotection denotes strategies to defend the central nervous system (CNS) against a number of factors such as structural defects, infections, neuronal injury, autoimmune disorders, tumors, neurodegeneration, and others, which may lead to CNS disorders [1]. In recent years, these disorders are rising due to the increase of life expectancy, and thus place a tremendous burden on families and social economies. A new report from the World Health Organization (WHO) shows that neurological disorders affect up to one billion people worldwide, among them 6.8 million people die every year. In addition, the prevalence of CNS disorders is around two times higher in developing countries than in the developed world [2].

Herbal supplements have long played important roles to treat various neuronal and pathological disorders without or with limited side effects. During recent years, complementary and alternative medicine (CAM) has become more popular worldwide. Many plant species have emerged as herbal medicines, and their active components have been subjected to extensive scientific research around the world [3-5]. CAM or traditional medicines are considered safe and effective in sensitive and complicated diseases like CNS disorder, while having less side effects than synthetic compounds [6]. Newman and Cragg reported that more than two thirds of the active agents recently introduced into the market have some relationship to natural sources and only 30% of new chemical entities used as medicines are of purely synthetic origin [7]. The knowledge of ethnobotany therefore continues to provide a valuable starting point for many successful drug-screening projects [8].

Also in western societies, there has been an increasing interest in herbal medicines, which are often perceived as more 'natural' and 'softer' treatments compared to synthetic drugs [9]. Drug discovery based on traditional knowledge has been termed 'reverse pharmacology'; in this approach, drug candidates are first identified based on large-scale usage in the population before initiating clinical trials. This approach can cut the time span, needed for drug discovery, from on average twelve years (classical approach) to five years or even less (reverse pharmacology); the latter has the additional advantage of far lower development costs [10].

Traditional knowledge of medicinal plants as a complementary and alternative therapy has additionally the great significance for conserving cultural traditions and identities. Moreover, community healthcare is fostered and interesting leads for future drug development projects can be found. From this perspective, ethnopharmacological data of medicinal plants on CNS disorders will ease the identification of important species utilized in traditional medicine. In this review, we summarize ethnopharmacological knowledge of all currently known popular CNS active herbal remedies in Bangladesh. Additionally, we provided more details on six selected species: Bacopa monnieri, Centella asiatica, Curcuma longa, Cyperus rotundus, Morinda citrifolia, and Withania somnifera (author citations for these and all other scientific species names mentioned in this text have been consistently omitted from the main body of the text, but are provided in Table 1). This review on species from Bangladesh is intended to stimulate the interest in a deeper evaluation of the mentioned species as potential sources for structurally and functionally novel CNS active drug leads or hits.

Table 1

Plant species along with their experimental records used for care of CNS disorders in Bangladesh

FamiliesPlant speciesLocal nameLife-formUsed partTypes of CNS disorderExperimental evidence on CNS disorderReferences
AcanthaceaeAndrographis paniculata (Burm.f.) Wall.KalomeghHerbLeavesVertigoIncrease cognitive functions[86, 87]
Justicia gendarussa Burm.f.NilnishindaUndershrubLeavesParalysisNRE[88]
Staurogyne argentea Wall.Ranga Jari (tribal)HerbLeavesMental disorderNRE[89]
AcoraceaeAcorus calamus L.BachHerbRhizome, leavesParalysis, epilepsy, heat stroke (Kh)Increase cognitive function[90-92]
AmaranthaceaeAchyranthes aspera L.ApangHerbWhole plantEpilepsy, paralysisAttenuate epilepsy, Anticonvulsant[93-96]
Aerva lanata (L.) Juss.ChayaHerbWhole plantHeadacheNRE[97]
Amaranthus viridis L.Notey shakHerbLeavesEpilepsyNRE[98]
Cyathula prostrata BlumeUphutlengraForb/herbLeaves, rootEpilepsy, headache (Ma)Antinociceptive[89, 99, 100]
AnacardiaceaeMagnifera sylvatica Roxb.Jongli aamTreeYoung shootHeadacheNRE[101]
Semecarpus anacardium L.f.BhelaTreeFruitNervous debilityNeuroprotective[102, 103]
ApiaceaeCentella asiatica (L.) Urb.ThankuniHerbLeavesMemory loss, mental disorder, insanityAlzheimer's disease, Parkinson's disease[14, 47, 89, 104-106]
Foeniculum vulgare MillMouriHerbFruit, seedNervous debility, headacheEnhances cognitive function and memory[107-109]
ApocynaceaeAlstonia scholaris (L.) R.Br.SatimTreeBarkNervous debility (Or)anti-dopaminergic (schizophrenia)[88, 110, 111]
Calotropis gigantea (L.) W.T.AitonBara akandShrubShootParalysis (Or)Alzheimer's disease and Parkinson's disease[91, 111, 112]
Carissa carandas L.KaramchaTreeFruitInsanity, headacheAnticonvulsant[113, 114, 115]
Hemidesmus indicus (L.) R.Br.AnantamulShrubLeaves, rootMental disorder, nervous debility, heat strokeAnticholinesterase activity[113-116]
Marsdenia tenacissima MoonChittiHerbLeavesParalysisNRE[89]
Rauvolfia serpentina Benth.SarpagandhaUndershrubLeaves, rootEpilepsy, insanity, vertigo, schizophreniaAcetylcholinesterase inhibition[13, 89, 117]
Tabernaemontana divaricata (L.) R.Br.TagarShrubLeaves, root, flowerParalysis, epilepsyAlzheimers's disease[118-122]
Thevetia peruviana
(Pers.) K.Schum.
Holde,
Korobi
ShrubBark, seedSchizophreniaAnti-acetylcholinesterase[4, 123]
AraceaeAlocasia macrorrhizos (L.)
G.Don
Mankachuforb/herbPetioleMental disorderNRE[124]
Colocasia esculenta (L.) SchottMukhikachuForb/herbWhole plantNervous system disorderNerve tonic[14, 125]
Pothos scandens L.SunatEpiphyteLeavesMigraine, vertigoNRE[101]
Typhonium trilobatum (L.) SchottGhetkaachuHerbWhole plantNervous debility, mental disorderNRE[89, 126]
Xanthosoma violaceum SchottShada kochuForb/herbTuberAlzheimer's disease (Ga)Antinociceptive[127, 128]
AraliaceaeSchefflera roxburghii GambleDen annoTreeLeavesInsomniaNRE[129]
Trevesia palmata Vis.ArgozaShrubLeaves, fruit, rootParalysisNRE[129]
ArecaceaeAreca catechu L.ShupariPalmFruitHeat stroke (Sa)Alzheimer's disease, Antidepressant[130-132]
Borassus flabellifer L.TalPalmFruitEpilepsyNRE[88]
Phoenix sylvestris (L.) Roxb.KhejurPalmRoot, FruitNervous debilityCNS depressant[14, 94, 133]
AsclepiadaceaeHoya parasitica Wall.CherapataEpiphyteLeavesParalysisNRE[101]
AsparagaceaeAsparagus racemosus Willd.SotamuliUndershrubRootMental disorder (Be), nervous debility, memory loss, epilepsyImproves cognition, enhances memory, amnesia[14, 88, 91, 134, 135]
Dracaena spicata Roxb.DracaenaShrubLeavesParalysisNRE[114]
AsteraceaeCyanthillium patulum H.Rob.KukurshungaHerbLeaves, root, flowerVertigoNRE[101, 136]
Eclipta prostrata L.KesutiHerbLeaves, rootBrain tonic, vertigoNootropic and anxiolytic activity[101, 137]
Enhydra fluctuans Lour.HelenchaHerbWhole plantNervous system disorderCNS depressant[126, 138]
Synedrella nodiflora Gaertn.RelanodiHerbLeaves, stemVertigoAntipsychotic properties[101, 139]
AthyriaceaeDiplazium esculentum (Retz.) SwDhekishakFernLeavesHeadache, epilepsy, paralysisCholinesterase and NADH oxidase inhibition[106, 118, 140]
BegoniaceaeBegonia silhetensis (A.DC.) C.B.ClarkeGoni kantiHerbLeavesHeadacheNRE[89]
BignoniaceaeCampsis radicans (L.) SeemEgro (Ma)VineLeavesHeadache (Ma)NRE[99]
Crescentia cujete L.Jummu makalTreeBark, fruitBrain disorder (Mental disorder)CNS depressant[141, 142]
Oroxylum indicum (L.) Benth.KhonaTreeStemMental disorder (Be)Parkinson's disease, neurogenin 2 promoter activator[91, 143, 144]
BixaceaeBixa orellana L.LatkanTreeSeedEpilepsyReduce oxidative stress in brain[91, 145]
BoraginaceaeHeliotropium indicum L.HatishuraForb/herbLeavesHeat stroke, mental disorderNRE[113, 146]
Tournefortia roxburghii C.B.ClarkeShamshogClimberLeavesMental disorder, paralysisNRE[89]
BrassicaceaeBrassica napus L.SarishaHerbseedMental disorder (Be)NRE[91]
BurseraceaeCanarium euphyllum KurzSheti dhupTreeBarkHeadache, insomniaNRE[146]
CactaceaeCereus grandiflorus (L.) Mill.Kuth-raazHerbWhole plantNervous system disorderNRE[147]
Opuntia dillenii Haw.PhanimansaShrubLeavesParalysis (Tr), insanity, headacheNeurodegenerative disease[141, 148, 149]
CannabaceaeCannabis sativa L.Bhang, SiddhiHerbLeavesSchizophreniaNeurodegenerative diseases, Alzheimer's disease[4, 150, 151]
Trema orientalis (L.) BlumeJibonTreeWhole plantNervous debilityAnticholinesterase activity[108, 152]
CapparaceaeCrateva religiosa G. ForstBarunTreeBark, leavesMental disorder (Be)Glutamatergic neurotransmission[91, 153]
CleomaceaeCleome diffusa Roxb.SultaeForb/herbLeavesNRE[141]
CombretaceaeTerminalia arjuna (Roxb.) Wight & Arn.ArjunTreeBarkNervous debility, paralysisProtects neurons from cerebral ischemia[88, 154]
Terminalia bellirica (Gaertn.) Roxb.BaheraTreeFruitParalysis, headacheTranquilizer[14, 114, 155]
Terminalia chebula RetzHaritakiTreeFruitBrain disorder (mental disorder)Protects ischemic neuronal damage[88, 107, 156]
CommelinaceaeAmischotolype mollissima Hassk.MolisimaHerbRootEpilepsyNRE[101]
CompositaeAgeratum conyzoides L.DochuntiHerbWhole plantHeadache, Paralysis (Kh) VertigoAntinociceptive[89, 99, 118, 157]
Blumea balsamifera DC.KakrondaShrubLeavesHeadache, insomniaInhibition of NO (Alzheimer's disease)[158, 159]
Emilia sonchifolia DC.SadimodiHerbLeavesParalysis (Ch)Antinociceptive[160, 161]
Eupatorium ayapana Vent.AyapanHerbLeavesEpilepsySedative, anxiolytic, and antidepressive[89, 162]
Gynura nepalensis DC.Dhup baisak (Ch)HerbLeavesParalysis (Ch)NRE[160]
ConvolvulaceaConvolvulus pluricaulis ChoisyShonkapuspoHerbLeaves, flowerNeurosis, epilepsyNeuroprotective[86, 163]
Ipomoea aquatica Forssk.Kalmi ShakVineWhole plantNervous system disorder, headacheCNS depressant, memory and Alzheimer's disease[126, 164-166]
Ipomoea mauritiana JackBhui kumraVineLeaves, rootHeadache, insomniaNRE[146]
CostaceaeCheilocostus speciosus C.D.Specht (Costus speciosus Sm.)BandukiForb/herbWhole plantMental disorder (Be), paralysisNeuroinflammatory diseases[89, 91, 167]
CrassulaceaeBryophyllum pinnatum KurzPathorkuchiHerbLeavesEpilepsy, headache (Ma), vertigoNeurosedative[99, 168]
Kalanchoe pinnata (Lam.) Pers.PatharkuchiSubshrubLeavesEpilepsy, headacheCNS depressant[14, 141, 147, 169]
Kalanchoe spathulata DC.HimsagorSubshrubLeavesHeadacheNRE[141]
CucurbitaceaeBenincasa hispida (Thunb.) Cogn.ChalkumraVineSeed, fruitEpilepsy, nervous system disorderManagement of depressive illness[170]
Citrullus lanatus (Thunb.) Mansf.TarmujClimberFruit, seedBrain tonic (Nervous debility)Neurodegenerative diseases[171, 172]
Coccinia grandis (L.) VoigtTelakuchaClimberLeavesMental disorder, Paralysis, Schizophrenia, heat stroke, headacheChemoprotective in brain[4, 14, 98, 108, 173, 174]
Cucumis callosus Cogn.BangiVineFruit, seedMemory loss, vertigoNRE[171]
Lagenaria vulgaris Ser.Lau, KaduVineFruitHeat stroke, HeadacheNRE[113, 171]
Solena amplexicaulis (Lam.) GandhiKundriShrubLeavesEpilepsy, mental disorderNRE[89]
Trichosanthes bracteata (Lam.) VoigtMakalphalClimberFruit, seedHeadacheNRE[97]
Trichosanthes cucumerina L.ChichingaClimberFruit, seedHeadacheNRE[129]
CyperaceaeCyperus rotundus L.Mutha, Takudare (Sa)GraminoidRootParalysis, (Sa)Modulate memory impairment[175, 176]
DilleniaceaeDillenia indica L.ChaltaTreeFruitEpilepsy, headacheInhibit diabetic neuropathic pain[114, 177, 178]
DioscoreaceaeDioscorea bulbifera L.BanaluClimberAerial part, tuberHeadacheNRE[101]
Dioscorea pentaphylla L.ThubriVineLeavesParalysisNRE[114]
DroseraceaeDrosera indica L.MukhjaliHerbWhole plantHeadacheNRE[179]
EuphorbiaceaeAcalypha indica L.MuktajhuriHerbWhole plantInsanityNRE[107]
Croton caudatus GeiselerSabarjalaShrubRoot, leavesParalysis (Ch)NRE[160]
Euphorbia neriifolia L.MonshaseezTreeLeavesSchizophreniaAnti-anxiety, anti-psychotic, anti-convulsant[4, 180]
Euphorbia tirucalli L.Lanka SijTreeStemParalysis (Ba)CNS depressant[181, 182]
Macaranga denticulate Müll.Arg.Dati buraTreeLeaves, flowerEpilepsyNRE[101]
Macaranga peltata Müll.Arg.Pelta buraTreeBark, rootParalysisNRE[101]
Pedilanthus tithymaloides (L.) Poit.Barakut (Ch)Shrubwhole plantHeadache (Ch)Sedative[160, 183]
FabaceaeCassia occidentalis L.KalkasundeUndershrubLeaves, fruitParalysisNRE[14]
Desmodium gangeticum DC.AlpaniShrubLeaves, rootMental disorderCNS depressant[101]
Desmodium triquetrum DC.KomorsinaUndershrubRootEpilepsy, paralysis (Ch)NRE[89, 129, 184]
Mucuna pruriens DC.AlkushiClimberRoot, seedNervine tonicNeuroprotection for Parkinson's disease[101, 185]
Saraca indica L.AshokTreeLeaves, barkNervous debilityAntidepressant[186, 187]
LamiaceaeCallicarpa arborea Roxb.BormalaTreeLeaves, bark, root, stemEpilepsyNRE[101]
Clerodendrum indicum KuntzeBamunhattiShrubLeaves, rootEpilepsyNRE[99]
Clerodendrum viscosum Vent.BhatShrubLeavesParalysisCNS depressant[89, 188]
Leucas aspera LinkDonkolosHerbWhole plantHeadache (Kh, Ma)NRE[99, 118]
Leucas zeylanica (L.) R.Br.KushaHerbLeaves, flowerEpilepsy, headache (Kh), insomnia (Kh)NRE[99]
Ocimum americanum L.Radha tulshiUndershrubLeaves, seedSchizophreniaAnti-cholinesterase activity[4, 189]
Ocimum gratissimum L.Ram TulsiSubshrubWhole plantParalysis, mental disorder (Be), headacheNeurodegenerative disorder[91, 119, 160, 190]
Premna corymbosa Merr.GaniariShrubRootNeurological problemAntinociceptive[179, 191]
Vitex negundo L.NishindaSmall treeLeavesSchizophrenia, headacheReduce cerebral oxidative stress[4, 192-194]
Vitex peduncularis Wall.HorinaTreeLeaves, bark, rootEpilepsyNRE[101]
LauraceaeActinodaphne obovate BlumeKula pataTreeLeaves, rootEpilepsy, mental disorderNRE[101]
Litsea polyantha Juss.Uruijja, MendaTreeBarkSchizophreniaCNS depressant, anti-convulsant[4, 195, 196]
LecythidaceaeBarringtonia acutangula (L.) Gaertn.HijalTreeSeed, root barkHeadacheCNS depressant activities[86, 170]
LeguminosaeAbrus precatorius L.KuchClimberRoot, seedHeadache, ParalysisNeuroinflammatory disorder[97, 179, 197]
Acacia farnesiana (L.) Willd.BelatibablaTreeFlower, leaves, rootVertigo, headache (Ch)Antinociceptive[99, 129, 198]
Adenanthera pavonina L.Rokto chondonTreeWoodHeadache (Sa)NRE[199]
Bauhinia acuminata L.KanchanTreeRoot, flowerMental disorder, epilepsyNRE[89]
Caesalpinia crista L.Baghinjanum (Sa)ClimberFruit, seedHeadache (Sa)Alzheimer's disease[89, 200]
Cassia fistula L.SonaluTreeLeaves, fruit, rootEpilepsy, nervous debilityAntinociceptive[14, 113, 201]
Clitoria ternatea L.AparajitaHerbFlowerMemory lossEnhances cognitive function[202-204]
Codariocalyx motorius H.Ohashi, (Desmodium motorium Merr.)GorachandShrubLeavesMental disorder (Be)NRE[91]
Crotalaria pallida AitonJhun JhuniUndershrubWhole plantParalysisCentral inflammatory diseases[2, 205]
Erythrina variegate L.MandarTreeLeaves, seedEpilepsyNRE[86]
Mimosa diplotricha C.WrightBra lojjabotiShrubSeed, rootMental disorder (Be)NRE[91]
Mimosa pudica L.LajjabotiUndershrubWhole plantInsomniaMemory enhance, 5-HT neuronal activity[113, 206, 207]
Senna tora Roxb.ChakundaForb/herbLeavesMental disorder, insanityAlzheimer's disease, amyloid-beta induced diseases[89, 208, 209]
Sesbania cannabina (Retz.) Poir.Lal chaincheShrubRoot, bark, leavesEpilepsyNRE[94]
Sesbania grandiflora Poir.Bock phoolTreeLeavesEpilepsy (Sa)Neuroprotective[199, 210]
Uraria crinita (L.) DC.DianglejaShrubWhole plantParalysis (Ch)NRE[184]
Uraria prunellaefolia GrahamBilai-langurUndershrubRootEpilepsy (Ch)NRE[129]
LygodiaceaeLygodium flexuosum (L.) Sw.Shona jhuriClimberLeaves, stem, rootHeadache, mental disorder, epilepsyNRE[101, 141]
Lygodium altum Alderw.Dheki ShakFernWhole plantEpilepsy, mental disorder, headache (Kh, Tr)NRE[99]
LythraceaeLawsonia inermis L.MehediShrubLeavesMental disorder (Be), epilepsyEnhances memory[91, 93, 211]
MalvaceaeAbroma augusta (L.) L.f.UlothkombalShrubFruit, flowerSchizophrenia, Heat stroke, mental disorder (Ta)CNS depressant[4, 113, 212, 213]
Grewia laevigata VahlMonsimais (Ch)HerbLeaves, root, barkParalysis (Ch)NRE[160]
Grewia serrulata DC.PanicherraTreeLeaves, rootParalysisNRE[101]
Pterospermum acerifolium (L.) Willd.KanokchapaTreeFlowerBrain disorder (Mental disorder) (Sa)NRE[176]
Sida acuta Burm.f.Ban MethiShrubLeavesNervous system disorderCNS Depressant[13, 214]
Sida cordata (Burm.f.) Borss.Waalk.JunkaForb/herbLeavesNervous system disorder, heat strokeNRE[215]
Sida cordifolia L.BerelaSubshrubLeaves, bark of rootsNervous debilityParkinson's disease[173, 216]
MarantaceaeMaranta arundinacea L.ArarutForb/herbRhizomeEpilepsyNRE[93]
MarsileaceaeMarsilea minuta L.Shusni ShakForb/herbLeaves, whole plantEpilepsy, insomniaImprove memory and learning[106, 217, 218]
MelastomataceaeOxyspora cernua Hook. f. & ThomsonChokhaHerbLeaves, rootMental disorderNRE[101]
MenispermaceaeStephania japonica (Thunb.) MiersAkanadiClimberLeavesParalysis (Ch), vertigo, mental disorderAntinociceptive[13, 97, 160, 219, 220]
Tinospora crispa (L.) Hook.f. & ThomsonGulanchaClimberLeaves, stemParalysisCerebral malaria[118, 221]
MoraceaeFicus auriculata Lour.Kani-botTreeRootEpilepsyNRE[101]
Ficus hispida L.f.DumurTreeLeaves, flower, seed, root, barkEpilepsy, paralysisCNS stimulation[101, 222]
Ficus benghalensis L.BotTreeAerial root, barkEpilepsyAntinociceptive[93, 223]
Ficus hederacea Roxb.DumurShrubFruit, leavesEpilepsy, paralysisNRE[99]
Ficus hirta VahlPakurShrubLeaves, rootSchizophreniaNRE[4]
Ficus religiosa L.PipalTreeLeaves, barkInsanityMemory deficit, Anti-Parkinson,[113, 224, 225]
MoringaceaeMoringa oleifera Lam.SajinaShrubLeaves, fruitEpilepsy (Sa), paralysisCNS depressant, neuroprotective, dementia[97, 106, 131, 226, 227]
MusaceaeMusa sapientum L.Acchi-mio-bong (Ra)Forb/herbLeaves, stemMemory lossAcetylcholinesterase inhibition[106, 228]
NelumbonaceaeNelumbo nucifera Gaertn.Rakta padmaForb/herbWhole plantNervous debilityMemory impairment and brain damage[106, 229]
NyctaginaceaeBoerhavia repens L.PunarnavaHerbLeaves, whole plant, rootEpilepsyNRE[91, 97]
OleaceaeJasminum sambac (L.) AitonBely PhulVineRootInsanityAntidepressive and modulate mood in humans[119, 230, 231]
OphioglossaceaeHelminthostachys zeylanica (L.) Hook.Shada DhekiaHerbRhizomeheadache (Kh)Reduce inflammation of brain cells[99, 232]
OrchidaceaeCymbidium aloifolium (L.) Sw.Tosabak, Suri mach (Ta)HerbWhole plantParalysisAntinociceptive[233, 234]
Rhynchostylis retusa (L.) BlumeTosabakHerbWhole plantEpilepsy, vertigoNRE[234]
Vanda tessellata Hook. (Syn:Vanda roxburghii R.Br.)RasnaEpiphytic herbAerial rootsNervous system disorderAnticholinesterase activity[234-236]
PandanaceaePandanus foetidus Roxb.Keya kantaShrubRootNervous debilityCNS depressant[14, 237]
ParmeliaceaeUsnea longissima Ach.Shailaj gachTreeRoot, leavesNervous debilityNRE[238]
PassifloraceaeAdenia cardiophylla Engl.PindopataTreeBark, rootHeadache, vertigoNRE[101]
Passiflora foetida L.Jhumkoludhi (Ch)ClimberLeavesHeadache (Ch)Epilepsy[84, 252]
PhyllanthaceaePhyllanthus emblica L.AmlokiTreeFruitEpilepsy (Tr), paralysis, headacheAlzheimer's disease, memory enhance[88, 149, 239, 240]
Phyllanthus reticulatus Poir.Chitki, Panjuli, Chitkidari (Sa)ShrubRoot, leavesEpilepsy, heat strokeAlzheimer's disease, Cognitive dysfunction[113, 241, 242]
PiperaceaePiper betel BlancoPanClimberWhole plantMental disorder (Be)Cognitive dysfunction[91, 165, 243]
Piper cubeba L.f.Kabab chiniShrubFruitHeadache, mental disorderAcetylcholinesterase inhibitor[91, 107, 244]
Piper longum L.PepulVineLeaves, rootParalysisNeuroprotective, Parkinson's disease[91, 245, 246]
Piper peepuloides Roxb.PipilShrubLeavesNervous debilityNRE[98]
Piper retrofractum VahlChoiClimberLeavesSchizophreniaNeurotrophic Activity, Alzheimer's disease[4, 247]
PlantaginaceaeBacopa monniera (L.) Wettst.BrammishakHerbWhole plantBrain disorder (mental disorder), (Be), mental peace, insomnia, epilepsyMemory enhance, Alzheimer's disease, neuroprotective[91, 93, 219, 248, 249]
Scoparia dulcis L.MisridanaSubshrubRoot, fruitNerve system disorderIncrease memory[14, 88, 177, 250]
PlumbaginaceaePlumbago auriculata Lam.Nil ChitaShrubRoot, barkEpilepsy, headache (Ga)NRE[127]
Plumbago rosea L.Lal ChitaShrubRootParalysis, memory lossNRE[88, 104]
PoaceaeCymbopogon citratus StapfDhan shabangHerbLeavesHeadacheSedative, anxiolytic, hypnotic, neuroprotective[251-253]
PolygonaceaePersicaria hydropiper (L.) DelarbreBishkatal, Jiyoto (Sa)HerbWhole plantEpilepsyAcetylcholinesterase inhibitor[241, 254]
Drynaria quercifolia (L.) J.Sm.PankhirajFernRhizomeEpilepsy (Ta), vertigoAntinociceptive[89, 212, 255]
PrimulaceaeMaesa indica Wall.Sesu, SirkhiShrubWhole plantParalysisNRE[99]
RanunculaceaeNigella sativa L.KalojiraForb/herbFruitEpilepsyAlzheimer's, Parkinson's, schizophrenia[93, 256, 257]
RhamnaceaeGouania tiliifolia Lam.MoshkanturShrubLeavesHeadacheNRE[141]
Ziziphus mauritiana Lam. (Ziziphus jujube Mill.)BoroiTreeLeavesHeadacheEpilepsy, anxiolytic and hypnotic-sedative[98, 99, 258-260]
RubiaceaeBorreria articularis F.N.WilliamsTodargil shakHerbWhole plantHeadacheNRE[179]
Ceriscoides campanulata Roxb.BehlomTreeLeaves, fruitBrain tonic (Nervous debility)NRE[261]
Hedyotis scandens Roxb.BishlataClimberWhole plantParalysis, vertigoNRE[99]
Ixora cuneifolia Roxb.BeophulShrubLeaves, rootEpilepsyNRE[99]
Ixora nigricans R.Br. ex Wall.KalashonaSmall treeLeavesParalysis (Ch)NRE[129]
Maesa ramentacea A.DC.MorichaShrubLeaves, rootParalysisNRE[101]
Morinda angustifolia Roxb.Rang gachTreeRoot, leavesEpilepsyNRE[252]
Morinda citrifolia L.Holdi Kachu, NoniTreeFruit, leavesSchizophreniaStress-induced neurological disorder, prevent ischemic neuronal damage[4, 66, 262]
Mussaenda roxburghii Hook.f.RanirtakShrubRootParalysis, epilepsy, headache (Ma)NRE[89, 252]
Ophiorrhiza mungos L.GandhanakuliHerbLeaves, rootMental disorder, paralysisNRE[89, 129]
Paederia foetida L.GandalVineLeavesParalysis (Sa)NRE[199]
Randia dumetorum (Retz.) Poir.MonkataShrubBarkSchizophreniaNRE[4]
RutaceaeAegle marmelos (L.) CorreaBelTreeLeaves, fruitMemory loss, schizophrenia, paralysisAnticholinesterase activity[4, 14, 88, 263]
Citrus grandis OsbeckJamburaTreeFruitEpilepsyMemory enhance[113, 264]
Clausena heptaphylla Wight & Arn.Alkatra (Ch), Pan mouriShrubFruitHeadache (Ch), mental disorder, epilepsyNRE[101, 129]
SantalaceaeSantalum album L.Sheto chandanTreeStemMental disorder, epilepsy, headacheSedative[93, 107, 108, 265]
SmilacaceaeSmilax zeylanica L.KumarialataClimberLeaves, stemMemory lossNRE[146]
SolanaceaeDatura metel L.DhuturaShrubLeaves, flower, seedInsanity, schizophrenia, mental disorder (Be)Acute psychoactive[4, 14, 91, 104, 266]
Solanum indicum L.Pokhongkhesi (Ma)HerbFruitHeadache (Ma)Protect blood–brain barrier breakdown[252, 267]
Solanum torvum Sw.Tit BegunShrubFruit, leaves, rootParalysis, insomniaAnticonvulsant, antidepressant, anxiolytic[113, 268, 269]
Withania somnifera (L.) DunalAswagandhaUndershrubWhole plantMental disorder (Be)Alzheimer's disease, Parkinson's disease[79, 91, 270]
StemonaceaeStemona tuberosa Lour.Lalguraniya aluHerbTuberMental disorderNRE[179]
TaccaceaeTacca integrifolia Ker. GawlBara hikandHerbTuberEpilepsy, paralysisNRE[101]
ThymeliaceaeAquilaria agallocha Roxb.AgorTreeWoodNervous debility, headacheNRE[114, 177]
TrapaceaeTrapa natans var. bispinosa (Roxb.) MakinoPanifolHerbFlowerNervous debilityNRE[101]
UrticaceaeBoehmeria glomerulifera Miq.BorthurthuriShrubLeavesEpilepsyNRE[101]
Boehmeria kurzii Hook.f.BarokurziShrubLeaves, stemEpilepsyNRE[101]
Elatostema papillosum Wedd.SilajharaHerbLeavesParalysisAnticholinesterase activity[101, 271]
Pouzolzia zeylanica (L.) Benn.Aguni-bolla gachHerbLeaves, rootParalysis (Tr)NRE[149]
Sarcochlamys pulcherrima GaudichKorobiShrubLeavesParalysisNRE[101]
VerbenaceaeLantana camara L.Chotra,TreeLeavesHeadache (Ma)Anxiolytic[99, 272]
Phyla nodiflora (L.) GreeneSaitta okraHerbWhole plantNervous system disorderNRE[273]
VitaceaeCissus adnata Roxb.Bhatia-lota, Bodlar (Sa)ClimberStemParalysis (Sa), mental disorder, epilepsy, paralysisAntinociceptive[176, 274]
Cissus assamica CraibAmasha lataClimberLeavesMental disorder, paralysisNRE[101]
Cissus carnopa Lam.Gai goblaeClimberLeaves, stemHeadacheNRE[141]
Cissus javana DC.Rangila lataClimberLeaves, stem, rootMental disorderNRE[101]
Cissus repens Lam.Marmaria PataClimberLeavesEpilepsy, vertigoAntinociceptive[89, 275]
Leea indica Merr.BonfotkaShrubLeaves, rootEpilepsySedative and anxiolytic[101, 276]
Leea macrophylla Roxb.HastikarmaShrubLeavesBrain and nervous debilityNRE[113]
Tetrastigma bracteolatum (Wall.) PlanchKhurangul ludiLeavesHeadache (Ch)NRE[129]
XanthorrhoeaceaeAloe vera L.GhritakumariHerbLeavesStroke, ParalysisProtect neurotoxicity[113, 258, 277]
ZingiberaceaeAlpinia conchigera GriffKhetrangaHerbRhizomeHeadache, vertigo (Ma)Antinociceptive[99, 278]
Alpinia nigra
(Gaertn.) B.L.Burtt
Jangli adaHerbStem, rhizomeVertigo (Ta)CNS depressant[212, 279]
Amomum aromaticum Roxb.ElachHerbFruitMental and nervous system disorders, epilepsyNRE[107]
Curcuma aromatica Salisb.Jangli HaludHerbLeaves, rhizomeVertigo (Ta)Anti- depressant[212, 280]
Curcuma longa L.HaludForb/herbRhizomeMemory lossReduce memory loss, Parkinson's disease[14, 88, 281, 282]
Kaempferia galanga L.ChandumulaHerbRhizomeHeadache, paralysis (Ch)CNS depressant[160, 283]
Zingiber zerumbet (L.) Sm.Bhul-changaHerbRhizomeParalysis (Ch)NRE[184]
NRE: no recorded experiment on CNS disorder; Tribal community in parentheses
Ba Bauri; Be Beideye; Ch Chakma; Ga Garo; Kh Khumi; Ma Marma; Or Oraon; Ra Rakhain; Sa Santal; Ta Tanchongya; Tr Tripura

The CNS is a complex and sophisticated system, and today, CNS disorders are categorized and treated considering critical single or multiple targets. The traditional healers, particularly herbal medicine practitioners, focus on a typical category of disease commensurate with their knowledge and experience rather than employing a specific single biomarker targeted therapy. However, this review highlights ethnobotanical together with the respective experimental records focused on broadly categorized CNS disorders. The reviewed plant species, as a group, have been recommended against almost all classical types of CNS disorders.

2 Materials and Methods

2.1 Search Strategy

A comprehensive literature study published in journals, books, and reports was performed to get a systematic overview about the medicinal plants used against CNS disorders in Bangladesh. Various electronic databases were searched, including Web of Science, SciFinder, PubMed, Science Direct, Scopus, Springer, Taylor & Francis online, Wiley online library, and Google Scholar. The following keywords were employed in combination with Bangladesh: brain, memory, CNS, neurological disorder, neurodegenerative disease, psychological disorder, medicinal plants, traditional plants, survey of medicinal plants, ethnobotanical survey, ethnomedicinal survey, and survey of plants acting on CNS.

2.2 Study Selection and Data Extraction

All publications dealing with plant species effective against CNS disorder have been identified from all of the possible sources published until the end of July 2020. The search was limited to literature published in English. The name of the plant species responsible in the treatment of CNS disorders has only been extracted among all other uses and species. For the pharmacological evidence, articles presenting first-hand research information including clinical, pre-clinical, ex-vivo, and in-vitro studies were also part of the inclusion criteria.

3 History and Present Status of Traditional Bangladeshi Medicine (TBM)

Bangladesh, a tropical South Asian country, harbors a huge range of biodiversity including numerous medicinal plant species due to its diverse landscape and pronounced seasonal diversity [11]. Large parts of Bangladesh are covered by tropical forests featuring heterogeneous ecologic conditions such as fertile alluvial lands, warm and humid climates. Bangladesh is home to a rich plant diversity with more than 5300 species of higher plants [12]. Around 80% of the population of Bangladesh use herbal medicines for their primary healthcare where plants used in traditional ethnomedicine constitute a major component [13]. Bangladesh is also home to 35 indigenous communities living in various, mostly hilly, remote areas of Bangladesh; these communities contribute about 2% to the total population of the country. Each of these communities has a diverse cultural background and practices their own traditional ethnomedicine for primary healthcare [14].

4 Distribution of Plant Species and Their Taxonomy

A total of 224 plant species from 182 genera and from 81 different families were reported to be used against CNS disorders. All recorded plant species are presented in Table 1, detailing their family, local name(s), life-form, plant part(s) used, traditional uses, and the available pharmacological data supporting their traditional use. The life forms of the documented species were (in decreasing order) herbs (24.5%), trees (22.7%), shrubs (20.0%), climbers (9.8%), forbs/herbs (6.6%), vines (4.9%), undershrubs (4.4%), subshrubs (2.2%), palms (1.7%), ferns (1.3%), and epiphytes (1.3%) (Fig. 1). Analogous studies from other areas in tropical Asia yielded similar results regarding the life form of the medicinally used species [15-17].

Fig. 1

Growth habits of the covered species

The most often utilized plant parts were leaves (51.3%), followed by roots (26.3%), fruits (15.6%), whole plants (14.2%), stems (12.5%), barks (9.3%), seeds, flowers, and rhizomes; while other parts were only rarely utilized (Fig. 2). Leaves are very often used in herbal medicine, because they often contain high amounts of active compounds and are easy to collect and prepare, and consequently, a larger number of plant natural product studies are available for leaves compared to studies concerning other plant organs. In our survey, roots were the second most frequently used plant organs, possibly due to their high concentration of bioactive compounds [18]. Regarding botanical systematics, the families with the highest number of species used against CNS disorders were the Fabaceae (syn.: Leguminosae; seventeen), Rubiaceae (twelve), Lamiaceae (ten), Apocynaceae, Cucurbitaceae and Vitaceae (each eight species), Euphorbiaceae, Malvaceae, and Zingiberaceae (each seven species), Araceae, Compositae, Fabaceae, Piperaceae, and Urticaceae (each five species), Amaranthaceae, Asteraceae, Moraceae, and Solanaceae (each four species). The remainder of the medicinally used plant families contributed only one to three species (Table 1).

Fig. 2

List of the most frequently used plant parts along with the number of corresponding species used in ethnomedicinal preparations

According to the fundamental book on the Bangladeshi Flora [12], the largest five families in Bangladesh are the Poaceae, Fabaceae, Orchidaceae, Rubiaceae, and Asteraceae, respectively. The dominance of Fabaceae and Rubiaceae species in treating CNS disorder might amongst other factors, be explained by the presence of bioactive alkaloids, flavonoids, and terpenoids in many members of these families [19].

5 CNS-Active Natural Products

Numerous plant natural products have been reported to have beneficial effects on the human CNS. Table 2 presents some of these natural products and their mechanism of actions. Two general postulates try to explain why natural products elicit effects on the human CNS: firstly, due to the connection of the numerous molecular signaling pathways that are conserved between the taxa and the systematic actions in natural product synthesis within plants [20]. The second hypothesis is that plant natural products exhibit similar effects on the nervous systems of humans and the most prevalent natural herbivores, via the same mechanisms [21].

Table 2

Bioactive compounds against CNS disorders from native species of Bangladesh

Species nameActive compoundsMechanism of actionAilmentsReferences
Acorus calamus L.α-Asarone, β-asaroneAcetylcholiesterase inhibitorAlzheimer's disease, memory loss[284]
Bacopa monniera (L.) Wettst.Bacoside A3, bacopaside Ⅱ, bacopasaponin C, bacopaside XInhibits β-amyloid (Aβ) and fibrilationAlzheimer's disease, memory loss[41]
Blumea balsamifera DC.Blumpenes A, B, C, and DInhibition of NOAlzheimer's disease[158]
Cannabis sativa L.Δ9-TetrahydrocannabinolInhibits β-amyloidAlzheimer's disease[285]
Attenuates the motor coordination deficits and huntingtin aggregateHuntington's disease[85]
Prevent neuronal damageParkinson's disease[286]
CannabidiolReduces Aβ-induced neuroinflammationAlzheimer's disease[287]
Prevent neuronal damageParkinson's disease[286]
Centella asiatica (L.) Urb.Asiatic acidPrevent MPTP/p-induced neuronal cells lossParkinson's disease[47]
Citrus grandis Osbeck3, 5, 6, 7, 8, 3′, 4′-HeptamethoxyflavoneInduce activation of ERK1/2 and CREB in cultured neuronsMemory disorders, Alzheimer's disease[264]
Clerodendrum infortunatum L. (Syn:Clerodendrum viscosum Vent.)ActeosideInhibits β-amyloidAlzheimer's disease, cognitive deficit[82, 83]
Costus speciosus (J.Koenig) Sm.CostunolideInhibition of NFkappaB and MAPKinase activationNeuroinflammatory diseases[167]
Curcuma longa L.Curcumin, demethoxycurcumin, bis-demethoxycurcuminPrevent acute neuroinflammation, mitochondrial dysfunction and apoptosisNeuroinflammation and memory impairment, Parkinson's disease[50, 51]
Cyperus rotundus Vahlα-Cyperone, terpinen-4-olDestabilization of microtubule fibers in brainBrain inflammation[61, 62]
Lantana camara L.Ursolic acid stearoyl glucosideUnknownAnxiety[272]
Nigella sativa L.ThymoquinoneInhibits β-amyloidAlzheimer's disease[288]
Retrieved dopaminergic neuronsParkinson's disease[257]
Oroxylum indicum (L.) Benth.Apigenin, baicalein, baicalin, chrysin, hispidulin, oroxylin AInduce neuronal differentiationDisorder of nerve tissue development[144]
Piper betel BlancoHydroxychavicolAtenuate cytokines and both β- and γ-secretaseCognitive dysfunction, Alzheimer's disease[243]
Piper cubeba L.f.CubebinAcetylcholiesterase inhibitorCognitive dysfunction, Alzheimer's disease[244]
Piper retrofractum VahlPiperodioneNerve growth factor (NGF) potentiationNeurodegenerative diseases, Alzheimer's disease[247]
Santalum album L.α-Santalol, β-santalolSedationAnxiety[289]
Solanum indicum L.SeasmolProtect blood-brain barrier breakdownAlzheimer's disease and multiple sclerosis[267]
Withania somnifera (L.) DunalWithanolide A, withanone, withaferin A, withanoside Ⅳ, sitoindoside Ⅶ, sitoindoside Ⅷ, sitoindoside Ⅸ, sitoindoside ⅩPrevent loss of axons, dendrites, and synapses; neuroprotection, enhance antioxidant enzymesAlzheimer's disease[73, 78, 80, 290]
Ziziphus mauritiana Lam. (Syn: Ziziphus jujube Mill.)cis-9, 10Octadecenamide, jujuboside-A, jujuboside-BIncrease cholinesterase and cholinesterasetrasferase activity, GABA-binding modulationEpilepsy, depression, memory loss[259, 260, 291]
CREB cAMP response element-binding protein; MAPKinase mitogen-activated protein kinases; ERK1/2 extracellular signal-regulated kinase-1/2; NFkappaB nuclear factor kappa of activated B cells

Alkaloids are one of the largest groups of plant natural products. These compounds usually act as agonists and antagonists to a variety of neurotransmitter through direct binding to neuro-receptors and/or by interference with neurotransmitter metabolism. Plant-derived alkaloids possess potential therapeutic effects against several neurodegenerative disorders (Alzheimer's disease, Huntington's disease, and Parkinson's disease), epilepsy, schizophrenia, and stroke [22].

Phenols are the most widespread and ubiquitous class of natural products. Besides free radical and reactive oxygen species scavenging, and metal chelating abilities, phenolic compounds demonstrate a significant role in various CNS disorders by direct interaction with neurotransmitter systems including sedative, anxiolytic, antipsychotic, cognitive enhancement, cholinergic upregulation, and antidepressant effects [23].

Saponins are a structurally diverse group of glycosidic compounds, featuring either pentacyclic triterpenoids or steroids as aglycones. Saponins have significant neuroprotective effects on the attenuation of CNS disorders, such as stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease [24]. In this review, Table 2 displays a selection of saponins (Fig. 9), which are potentially effective on brain disorders. Terpenes are a large class of natural products exhibiting a wide range of effects within the CNS. Many natural terpenoids have been reported to interact with the octopaminergic and noradrenergic systems, to inhibit cholinesterase, and to directly or allosterically bind to the GABAergic system; all with a relation to disorders like anxiety, insomnia, convulsion, pain, and cognitive deficits [25].

Fig. 3

Comparison of the documented plant species with traditional use and experimental evidence over categorized CNS disorders

Fig. 4

Chemical structure of some commonly used natural products for the treatment of nervous system disorders

Fig. 5

Monoterpenes

Fig. 6

Sesquiterpenes

Fig. 7

Diterpene

Fig. 8

Triterpenes 1: ursane derivatives

Fig. 9

Triterpenes 2: steroidal saponins

6 Plants, Traditional Medicines, and CNS Disorder: Globally

Approximately one out of nine human deaths is related to a nervous system disorder worldwide, and more than 28% have to live with disability caused by nervous system disorder at some stage of their lives [26]. Depression is the major cause of disability and is globally more frequent than all other nervous system disorders. The top twenty leading causes for disability also include anxiety disorders, schizophrenia, autism and Asperger syndrome, Alzheimer's disease and other dementias, and illicit drug use [27].

In traditional systems of medicine, plants have been used to treat a huge number of disorders including nervous disorder for centuries, because they are easily available and affordable. The latest global survey of traditional and complementary medicine (T & CM) shows that significant momentum has been achieved over the past decade (WHO, 2013). Over 100 million Europeans are currently using T & CM. Thus, in Europe one fifth of the population regularly use T & CM and the same share is preferring healthcare, which includes T & CM [28]. It is evident that there are many more T & CM users in Africa, Asia, Australia, and North America [29]. Traditional medicines could be a potential source of novel compounds or phytomedicines/supplements in the management of nervous disorders. Apomorphine, galanthamine, lisdexamfetamine, and valproic acid (Fig. 4) are the first line drugs currently used to treat Parkinson's disease, Alzheimer's disease, attention-deficit/hyperactivity disorder, and epilepsy, respectively. The active compounds were originally derived from Papaver somniferum L, Galanthus nivalis L., Ephedra sinica Stapf., and Valeriana officinalis L., respectively. Since the 1950s, the FDA approved six plant derived drugs (Fig. 4), namely benzatropine (1954) (derived from atropine from e.g. Atropa belladonna L.), levodopa (1970) [from Mucuna pruriens (L.) DC.], carbidopa (1975) (from levodopa, e.g. from Mucuna pruriens), pergolide (1988) [from ergot alkaloids from, e.g. Claviceps purpurea (Fr.) Tul.], melevodopa (1993) (from levodopa from, e.g. Mucuna pruriens), and apomorphine (2004) (from morphine from e.g. Papaver somniferum) to treat Parkinson's disease. A report showed that by the end of 2013, the FDA had approved 307 natural products and natural product derivatives from plants, bacteria, fungi, and marine organisms, respectively. These comprise 21% of all approved new chemical entities [30].

7 Plants, Traditional Medicines, and CNS Disorder: in Bangladesh

In a global study, Bangladesh has been ranked 133rd among 195 countries regarding personal healthcare access and quality [31]. In Bangladesh, over six million people experience depressive disorders and almost seven million people are suffering from anxiety disorders [32]. It is estimated that more than ten thousand people are dying every year by suicide in the country [33]. Most of the nervous system disorders are chronic and polygenic in nature. The development of more effective treatments, for example in schizophrenia and depression, based on selective drugs for single molecular targets has been largely unsuccessful [34]. Hence, multi-targeted therapeutic approach of nervous system disorders employing traditional medicine is often advantageous, easier, cheaper, and more cost effective. A handful of ethnomedicinal surveys on medicinal plants over different divisions, districts, villages, and even hill tract and tribal areas of the country revealed that medicinal plants are used to treat various disorders including nervous system disorders. Among the medicinal plants used in nervous system disorders Sotamuli (Asparagus racemosus), Thankuni (Centella asiatica), Akanadi (Stephania japonica), Bel (Aegle marmelos), Telakucha (Coccinia grandis), Tagar (Tabernaemontana divaricate), Misridana (Scoparia dulcis), Brammishak (Bacopa monnieri), and Aswagandha (Withania somnifera) are the most popular herbal medications for nervous system disorders in Bangladesh (Table 1). Table 1 contains all local names of the plant species used against CNS disorders in Bangladesh.

Ulothkombal (Abroma augusta), Apang (Achyranthes aspera), Halud (Curcuma longa), Noni (Morinda citrifolia), Sajina (Moringa oleifera), and Mutha (Cyperus rotundus) are also widely used in the management of CNS disorders. All of the above-mentioned species have demonstrated their notable pharmacological activity against nervous system disorders in different experimental models. The experimental evidence available for Achyranthes aspera, Aegle marmelos, Asparagus racemosus, Bacopa monnieri, Bryophyllum pinnatum, Centella asiatica, Clitoria ternatea, Coccinia grandis, Convolvulus pluricaulis, Curcuma aromatica, Curcuma longa, Datura metel, Euphorbia neriifolia, Hemidesmus indicus, and Musa sapientum also support the claims of traditional users (Table 1). In addition, for some of the species traditionally used in various nervous disorders, no pharmacological investigations have been performed yet, including Ghetkaachu (Typhonium trilobatum), Kundri (Solena amplexicaulis), Lal Chita (Plumbago rosea), Dheki shak (Lygodium altum), and Kanchan (Bauhinia acuminata) (Table 1). To cure paralysis, epilepsy, insanity and mental disorder, and nervous debility are the most often mentioned indications among all covered CNS disorders. In contrast, most experimental evidence so far has been provided for activity against insanity and mental disorder, memory loss, and Alzheimer's disease (Fig. 3).

Traditional medicine and conventional healthcare systems are offered in separate facilities at secondary and tertiary levels in nine countries in South-Eastern Asia (Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand), while all three levels of care are available in the same health care facilities in South Korea. In Bangladesh, there are 469 small factories (268 Unani and 201 Ayurvedic) producing traditional drugs worth approximately US$ 100 million every year [35] (Fig. 4).

8 Evidence-Linked Plants and Active Metabolites of TBM Effective on CNS Disorder

Many plant-derived natural products are claimed to have beneficial effects against CNS disorders. Some pure natural products derived from the plant species mentioned in this review, have already been tested as efficacious candidates against CNS disorders. Table 2 displays these metabolites with the corresponding disorder, where they were found to be active. Name and structures of all mentioned plant natural products from different source species have been summarized in Table 2 and in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 (based on chemical compound classes). From all of the mentioned species, Bacopa monnieri, Centella asiatica, Curcuma longa, Cyperus rotundus, Morinda citrifolia, and Withania somnifera have been selected and discussed in some detail below. The focus of the discussion is on their impact on nervous system disorders. The species have been selected based on their widespread use, a large body of experimental records, and commercial availability. The main point of giving in-depth records on some selected species is to show the large potential of such traditional medicinal plants both from a medicinal and from a commercial perspective.

Fig. 10

Triterpenes 3: steroidal lactones

Fig. 11

Flavonoids

Fig. 12

Phenylpropanoids

Fig. 13

Diphenylheptanoids

Fig. 14

Miscellaneous (cannabinoid, lignan, oleamide, and alkaloid)

Bacopa monnieri, "Brammishak", a small herb from the Plantaginaceae family, is distributed mainly in the coastal area of Bangladesh such as Chittagong, Cox's Bazar, and Saint Martin's island. Brammishak is named after the word 'Brama', the mythical 'creator' in the Hindu pantheon. 'Brahmi', which also means 'bringing knowledge of the Supreme Reality' [36]. The herb was used by ancient Vedic scholars to sharpen the cognitive functions and is mentioned as part of many Ayurvedic preparations. Brammishak is also traditionally used as a green leafy vegetable (shak) due to its well-known health benefits [37]. The experimental evidence has proven potent activity of Brammishak on the regulation of reactive oxygen species, neuroprotection, acetylcholinesterase (AChE) inhibition, choline acetyltransferase activation, β-amyloid reduction, increased cerebral blood flow, and monoamine potentiation and modulation [38]. Brammishak contains triterpenoid saponins called bacosides. Among the twelve analogs of bacosides, bacoside A is the best studied and most potent constituent of Brammishak, which additionally includes bacoside A3, bacopaside Ⅱ, bacopasaponin C, and bacopaside X (a jujubogenin isomer of bacosaponin C) (Fig. 9) [39]. Bacoside A significantly inhibit β-amyloid toxicity, fibrillation, improve memory and cognitive functions, decreased GABA receptors associated with epilepsy as well as increased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase [40, 41]. In a review study on human trials, Neale et al. [42] compared the nootropic effects of two neutraceuticals Brammishak and Panax ginseng with modafinil (a synthetic eugeroic drug); in this comparison, Brammishak displayed the most consistent and largest effect of the three tested preparations.

Centella asiatica, "Thankuni", a perennial herbaceous creeper with kidney shaped leaves belonging to the Apiaceae family, is distributed throughout Bangladesh in fallow lands. Thankuni leaf is an ancient Ayurvedic, Unani, and has been used as a folk medicine in Bangladesh and South Asian countries for many centuries. The species is used as a revitalizing herb that supposedly strengthens nervous function and memory. An aqueous extract of C. asiatica leaves contributes to improved learning and memory processes by modulating dopamine, 5-hydroxytryptamine (5-HT), and noradrenaline systems in rat brains in vivo [43]. This result suggested that the polar compounds, for example asiatic acid present in C. asiatica leaves, may enhance cognitive functions by influencing neurotransmitter systems in the CNS. Further research proved that asiatic acid (triterpenoid) (Fig. 8) from C. asiatica down-regulates β-secretase (BACE1) as well as up-regulates ADAM10 in primary rat cortical neurons [44], inhibits induced neurotoxicity of aged rats [45], attenuates glutamate-induced cognitive deficiencies of mice, and protects SH-SY5Y cells against glutamate-induced apoptosis [46], which are all related to potential routes in Alzheimer's disease treatment. Asiatic acid from C. asiatica effectively offered neuro-protection in chronic Parkinson's disease by activation of dopaminergic neurons [47]. Orhan et al. [48] showed that butyrylcholinesterase inhibitory activity of South Asian C. asiatica is stronger than from Chinese sources.

Curcuma longa, "Halud", is a perennial rhizomatous herb from the Zingiberaceae family and is cultivated all over Bangladesh and used as one of the main spice. Along with the protection of memory loss, it contributes to a wide range of potential medicinal applications because of the presence of curcuminoids (Fig. 13). Curcumin, an extensively studied plant natural product isolated from the rhizome of Curcuma longa has displayed neuro-pharmacological activity against neuro-inflammation, memory impairment, and different biomarkers of Alzheimer's disease and Parkinson's disease in vitro and in vivo [49-51]. More importantly, curcumin has already been clinically evaluated against a few central nervous system disordersseases. Initially, Rainey-Smith et al. [52] reported a low efficacy of curcumin against dementia symptoms. However, recently developed novel curcumin formulations (Longvida® and Theracurmin) ensure a higher bioavailability, combined with good acute and chronic activities for both products, even at low doses (80-180 mg/day) [53]. The study carried out by Burns et al. [54] showed a marked improvement in a patient trial of Déjérine-Sottas disease, where curcumin was administered for twelve months in two escalating doses (1500 and 2500 mg/day). In the curcumin-treated group, it was observed that curcumin decreased IL-1β, TNFα, salivary cortisol levels, and increased plasma BDNF [55]. Lopresti et al. [56] identified a significant increase in urinary molecular markers thromboxane B2, substance P, baseline plasma endothelin-1, and leptin that can all be related to the antidepressant mechanism of action of curcumin.

Cyperus rotundus, "Mutha", a perennial herb as well as an obnoxious weed, is widely distributed in tropical and subtropical regions, including Bangladesh. This species traditionally used in the management of paralysis in Bangladesh, and epilepsy in India [57]. Additionally, experimental evidence showed a potential role in improving memory and cognition. Rhizomes of C. rotundus possess anti-AChE activity [58], anticonvulsant properties [59], inhibits memory loss [60] and pyramidal cell loss. Nóbrega et al. [61] reported that terpinen-4-ol (Fig. 5) (contained in the essential oil of C. rotundus) is effective against convulsion in behavioral and electrophysiological studies. Azimi et al. [62] identified α-cyperone from C. rotundus as capable of interactions with tubulin and as a destabilizing agent of microtubule polymerization. This interaction results in reduction of inflammation, which could be beneficial for the treatment of inflammatory diseases such as Alzheimer's disease.

Morinda citrifolia, "Noni", a small tropical tree of the Rubiaceae family, is native to South Asia and cultivated all over Bangladesh [63]. All parts of the plant are claimed to have various pharmacological properties, in particular, the fruit has a long history of dietary use in tropical regions [64]. In 2002, Noni fruit juice has been recognized as a novel food the European Union [65]. Evidence showed that Noni fruit juice had a preventive effect against cerebral ischemic neuronal damage in a mice model [66]. Muto et al. [67] also reported that Noni juice protected mice brains from stress induced cognitive dysfunction, predominantly reducing the blood vessel density caused by stress. The administration of an ethyl acetate extract of noni fruit increased serotonin, dopamine, and antioxidant-enzyme serum levels in mice model with beta-amyloid induced cognitive dysfunction [68]. The ethanol extract of Noni fruit also improved memory, brain blood flow, and attenuated oxidative stress, acetylcholinesterase activity in a mice model [69]. A behavioral test revealed that the administration of the methanolic extract of Noni fruits decreased the negative effects of heroin and alcohol dependence [70, 71]. Despite a number of experimental evidence related to nervous system disorders, no specific natural product from this species has so far been identified and evaluated against nervous system disorders.

Withania somnifera, "Ashwagandha", is an undershrub commonly used in the traditional medicine of Bangladesh, naturally occurring in the North Bengal region. Among the 23 species of genus Withania, Ashwagandha is the most highly valued medicinal plant in traditional medicine and has been used since more than 3000 years. Various uses of this species including nervous system disorders (tonic, senile debility, nervous tension, loss of memory) reflect the ethno-pharmacological importance. Recent studies also demonstrated its multiple activities on nervous system disorders, particularly neuritic regeneration activity [72], neuroprotective activity [73], anti-anxiety and anti-depression activity [74], anti-Parkinson's activity [75], nootropic and anti-Alzheimer's activity [76], and anti-convulsant effects [77]. Roots are the most frequently used parts and the compounds isolated from these roots are effective against nervous system disorders. For example, withanolide A and withanoside Ⅳ (steroidal lactones) (Fig. 10) attenuated the β-amyloid (25-35) protein with the hope of enabling Alzheimer's disease management [78, 79]. In an in vivo experimental report, it has been demonstrated that bioactive glyco-withanolides (Fig. 10) enhanced the activity levels of various antioxidant enzymes in the frontal cortex and striatum of rats, which may also be relevant for Alzheimer's disease therapy [80].

9 Plants Used Against CNS Disorder: Economical and Botanical Context

Apart from the medicinal benefits, many of the mentioned species are economically important and cultivated or collected as part of Bangladeshi tradition. Many medicinal plant species have also other uses such as foodstuff, in cosmetics and hygiene, as additives in different preparations, as part of rituals, and as medicines for ailments not related to the CNS.

The fruits of many medicinal plant species, including Aegle marmelos, Citrullus lanatus, Citrus grandis, Phoenix sylvestris, Phyllanthus embelica, Solanum torvum, and Terminalia chebula, are predominantly used as foods. The same holds true for various green leaves commonly consumed as vegetables namely, Alpinia nigra, Amaranthus viridis, Bacopa monnieri, Centella asiatica, Coccinia grandis, Ipomoea aquatica, Moringa oleifera, and Nelumbo nucifera. Aloe vera, Curcuma longa, Curcuma aromatica, and Santalum album are natural cosmetics used in Bangladesh since centuries. Spices are substances with pungent and aromatic properties used to flavor foods or beverages. Cissus repens, Curcuma longa, Dillenia indica, Kaempferia galanga, Ocimum americanum, and Ocimum gratissimum are common spices used in different curries and beverages. Species used as ornament (Tabennaemontana divaricata), masticatory substances (Achyranthes aspera, Areca catechu, and Piper betel), aquatic plants (Nelumbo nucifera), and incense plants (Santalum album) are sometimes included in the management of nervous system disorder [37].

10 Future Prospects

Traditional plant-derived medicines are used throughout the world for a range of nervous disorders and may offer leads for drug development. In the past, native people around the world have helped to introduce many plant-derived products currently used to treat nervous disorders. Galanthamine (Fig. 4), a drug used against Alzheimer's disease, is a natural alkaloid and was first isolated from Galanthus nivalis. Evidence-based and safe use of non-expensive plant-derived medications against nervous disorders may offer an enormous public health benefit, particularly for low-income countries. Research showed that fruit juice of noni (Morinda citrifolia, a traditional medicine of Bangladesh) has more inhibitory effects on hydrocephalus-induced degenerative disorders than memantine, a synthetic drug used against Alzheimer's disease [81]. However, most of the pharmacological investigations carried out on the properties of the above-mentioned plants are only on a preliminary level. In addition, plant natural product as well as pharmacological potentials of many species mentioned in this review have not been scientifically examined at all yet.

It is therefore of pronounced interest to perform in-depth phyto-pharmacological assessments of traditionally used species to reveal potential new applications. This will additionally lead to a better understanding of traditional knowledge and clinical observations. For example, acteoside (Fig. 12) previously isolated from Clerodendrum infortunatum [82] and recently has been proved as an efficacious natural product against neurocytotoxicity, cognitive deficit, and neurochemical disturbances [83]. On the other hand, semisynthetic modifications of old and new natural compounds may yield substances for therapy, which are more effective than the genuine natural products they are derived from. One notable example is rivastigmine, which is more active than physostigmine (Fig. 4) (originally isolated from Physostigma venenosum Balf.) in the treatment of Alzheimer's and Parkinson's disease. Moreover, the multifactorial nature of Alzheimer's disease suggests that a multi-targeted therapeutic approach might be more advantageous than single target drugs and combination therapies. This review shows that Bacopa monnieri, Citrus grandis, Piper betel, and Withania somnifera have an interesting activity against different biomarkers of Alzheimer's disease and have distinct mechanism of action (Table 2). A combined therapy of these species or their bioactive natural products may contribute to an all-encompassing treatment strategy for Alzheimer's disease. At the same time, combinatory herbal therapy could be more beneficial for those who are suffering from multiple nervous disorders.

11 Conclusion

In many fields, traditional medicinal knowledge offers interesting leads for pharmacological research. Bangladesh is abundant in medicinal plants with various ethno-medicinal uses. In this review, we have compiled data on a large number of plant species, used as traditional medicine against neurological problems in Bangladesh. Many of these species have also displayed activity in bioassays matching their traditional uses. Based on these observations, future extensive investigations on those particular species can be targeted to identify the compounds responsible for the observed bioactivities as well as to unravel their mechanisms of action. Up to date, only a few of those active natural products and their respective modes of action have been identified (Table 2). We hope that the findings compiled in this review will contribute to the successful usage of ethno-medicinal knowledge of medicinal plants and their bioactive natural products in the treatment of CNS disorders.

Notes

Author contributions

MJU and CZ conceived and designed the review. MJU studied literatures and compiled data. MJU and CZ wrote the manuscript. All authors revised and approved the final version of the manuscript.

Funding

This research did not receive any specific grants.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interest.

References

  1. 1.
    R.K. Upadhyay, Biomed. Res. Int. 1, 37 (2014) PubMed Google Scholar
  2. 2.
    U.P. Kundap, S. Bhuvanendran, Y. Kumari, I. Othman, M.F. Shaikh, Front. Pharmacol. 8, 76 (2017) CrossRef PubMed Google Scholar
  3. 3.
    S. Lakea, UBCMJ. 7, 40-41 (2015) PubMed Google Scholar
  4. 4.
    M.N. Ahmed, K. Azam, M. Nur, Schizophr. Res. Treat. 2014, 679810 (2014) CrossRef PubMed Google Scholar
  5. 5.
    Y.T. Kantati, K.M. Kodjo, K.S. Dogbeavou, D. Vaudry, J. Leprince, M. Gbeassor, J. Ethnopharmacol. 181, 214-220 (2016) CrossRef PubMed Google Scholar
  6. 6.
    H. Kumar, S.V. More, S.D. Han, J.Y. Choi, D.K. Choi, Molecules 17, 10503-10539 (2012) CrossRef PubMed Google Scholar
  7. 7.
    D.J. Newman, G.M. Cragg, J. Nat. Prod. 75, 311-335 (2012) CrossRef PubMed Google Scholar
  8. 8.
    D.S. Fabricant, N.R. Farnsworth, Environ. Health Perspect. 109, 69-75 (2001) CrossRef PubMed Google Scholar
  9. 9.
    M. Adams, F. Gmünder, M. Hamburger, J. Ethnopharmacol. 113, 363-381 (2007) CrossRef PubMed Google Scholar
  10. 10.
    V. Kumar, Phytother. Res. 20, 1023-1035 (2006) CrossRef PubMed Google Scholar
  11. 11.
    M.H. Rahman, Int. Scholarly Res. Not. 2013, 369138 (2013) CrossRef PubMed Google Scholar
  12. 12.
    M.K. Pasha, S.B. Uddin, Dictionary of Plant Names of Bangladesh (Vascular Plants) (Janokalyan Prokashani, Chittagong, 2013), p. 434 PubMed Google Scholar
  13. 13.
    M. Yusuf, J. Begum, M.N. Hoque, J.U. Chowdhury, Medicinal Plants of Bangladesh (Bangladesh Council of Scientific and Industrial Research Laboratories, Chittagong, 2009) PubMed Google Scholar
  14. 14.
    M.A. Khan, M.K. Islam, M.A. Siraj, S. Saha, A.K. Barman, K. Awang, M.M. Rahman, J.A. Shilpi, R. Jahan, E. Islam, M. Rahmatullah, J. Ethnobiol. Ethnomed. 11, 44 (2015) CrossRef PubMed Google Scholar
  15. 15.
    A. Ghorbani, G. Langenberger, L. Feng, J. Sauerborn, J. Ethnopharmacol. 134, 651-667 (2011) CrossRef PubMed Google Scholar
  16. 16.
    H. Singh, T. Husain, P. Agnihotri, P.C. Pande, S. Khatoon, J. Ethnopharmacol. 154, 98-108 (2014) CrossRef PubMed Google Scholar
  17. 17.
    S. Kayani, M. Ahmad, S. Sultana, Z. KhanShinwari, M. Zafar, G. Yaseen, J. Ethnopharmacol. 164, 186-202 (2015) CrossRef PubMed Google Scholar
  18. 18.
    I. Basualdo, E.M. Zardini, M. Ortiz, Econ. Bot. 49, 387-394 (1995) CrossRef PubMed Google Scholar
  19. 19.
    E. Rodrigues, F.R. Mendes, G. Negri, Cent. Nerv. Syst. Agents Med. Chem. 6, 211-244 (2006) CrossRef PubMed Google Scholar
  20. 20.
    J.C. Schultz, Integr. Comp. Biol. 42, 454-462 (2002) CrossRef PubMed Google Scholar
  21. 21.
    D.O. Kennedy, E.L. Wightman, Adv. Nutr. 2, 32-50 (2011) CrossRef PubMed Google Scholar
  22. 22.
    G. Hussain, A. Rasul, H. Anwar, N. Aziz, A. Razzaq, W. Wei, M. Ali, J. Li, X. Li, Int. J. Biol. Sci. 14, 341-357 (2018) CrossRef PubMed Google Scholar
  23. 23.
    A. Ayokun-nun Aja, A.A. Alimi, O.A. Olatunji, F.O. Balogun, S.A. Saheed, Trans. R. Soc. S. Afr. 73, 33-41 (2018) CrossRef PubMed Google Scholar
  24. 24.
    A. Sun, X. Xu, J. Lin, X. Cui, R. Xu, Phytother. Res. 29, 187-200 (2015) CrossRef PubMed Google Scholar
  25. 25.
    A. Manayi, S.M. Nabavi, M. Daglia, S. Jafari, Pharmacol. Rep. 68, 671-679 (2016) CrossRef PubMed Google Scholar
  26. 26.
    D.C. Bergen, D. Silberberg, Arch. Neurol. 59, 1194-1196 (2002) CrossRef PubMed Google Scholar
  27. 27.
    World Health Organization, Bangladesh. https://www.searo.who.int/bangladesh/mental-health/en. Accessed August 16 2019. PubMed Google Scholar
  28. 28.
    Q. Zhang, Tradit. Med. Mod. Med. 1, 11-13 (2018) CrossRef PubMed Google Scholar
  29. 29.
    P.M. Barnes, B. Bloom, R.L. Nahin, Natl. Health Stat. Report. 12, 1-23 (2008) PubMed Google Scholar
  30. 30.
    E. Patridge, P. Gareiss, M.S. Kinch, D. Hoyer, Drug Discov. Today. 21, 204-207 (2015) CrossRef PubMed Google Scholar
  31. 31.
    N. Fullman, J. Yearwood, S.M. Abay, C. Abbafati, F. Abd-Allah, J. Abdela, A. Abdelalim, Z. Abebe, T.A. Abebo, V. Aboyans, H.N. Abraha, The Lancet. 391, 2236-2271 (2018) CrossRef PubMed Google Scholar
  32. 32.
    World Health Organization, 2017. Depression and other common mental disorders: global health estimates (No. WHO/MSD/MER/2017.2). World Health Organization. PubMed Google Scholar
  33. 33.
    World Health Organization, 2014. Preventing suicide: a global imperative. https://www.who.int/mental_health/suicide-prevention/world_report_2014/en/. Accessed August 16 2019 PubMed Google Scholar
  34. 34.
    B.L. Roth, D.J. Sheffler, W.K. Kroeze, Nat. Rev. Drug Discov. 3, 353-359 (2004) CrossRef PubMed Google Scholar
  35. 35.
    World Health Organization, 2013. WHO traditional medicine strategy: 2014-2023. https://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf. Accessed August 19 2019 PubMed Google Scholar
  36. 36.
    L. Braun, M. Cohen, Herbs and Natural Supplements: An Evidence-Based Guide, vol. 2 (Churchill Livingstone Australia, London, 2014), p. 1384 PubMed Google Scholar
  37. 37.
    S.B. Uddin, Medicinal plants database of Bangladesh (www.mpbd.info). Accessed February 26 2019 PubMed Google Scholar
  38. 38.
    N.P. Sukumaran, A. Amalraj, S. Gopi, Complement. Ther. Med. 44, 68-82 (2019) CrossRef PubMed Google Scholar
  39. 39.
    M. Deepak, G.K. Sangli, P.C. Arun, A. Amit, Phytochem. Anal. 16, 24-29 (2005) CrossRef PubMed Google Scholar
  40. 40.
    J. Mathew, S. Soman, J. Sadanandan, C.S. Paulose, J. Ethnopharmacol. 130, 255-261 (2010) CrossRef PubMed Google Scholar
  41. 41.
    R. Malishev, S. Shaham-Niv, S. Nandi, S. Kolusheva, E. Gazit, R. Jelinek, A.C.S. Chem, Neuroscience 8, 884-891 (2017) PubMed Google Scholar
  42. 42.
    C. Neale, D. Camfield, J. Reay, C. Stough, A. Scholey, Br. J. Clin. Pharmacol. 75, 728-737 (2013) CrossRef PubMed Google Scholar
  43. 43.
    K. Nalini, A.R. Aroor, A. Rao, K.S. Karanth, Fitoterapia 63, 231-238 (1992) PubMed Google Scholar
  44. 44.
    S.P. Patil, S. Maki, S.A. Khedkar, A.C. Rigby, C. Chan, J. Nat. Prod. 73, 1196-1202 (2010) CrossRef PubMed Google Scholar
  45. 45.
    N. Haleagrahara, K. Ponnusamy, J. Toxicol. Sci. 35, 41-47 (2010) CrossRef PubMed Google Scholar
  46. 46.
    M.F. Xu, Y.Y. Xiong, J.K. Liu, J.J. Qian, L. Zhu, J. Gao, Acta Pharmacol. Sin. 33, 578-587 (2012) CrossRef PubMed Google Scholar
  47. 47.
    J. Nataraj, T. Manivasagam, A.J. Thenmozhi, M.M. Essa, Neurochem. Res. 42, 1354-1365 (2017) CrossRef PubMed Google Scholar
  48. 48.
    I.E. Orhan, E. Atasu, F.S. Senol, N. Ozturk, B. Demirci, K. Das, N. Sekeroglu, Ind. Crops Prod. 47, 316-322 (2013) CrossRef PubMed Google Scholar
  49. 49.
    F.S. Yang, G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P.P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, G.M. Cole, J. Biol. Chem. 280, 5892-5901 (2005) CrossRef PubMed Google Scholar
  50. 50.
    C. Van der Merwe, H.C. van Dyk, L. Engelbrecht, F.H. van der Westhuizen, C. Kinnear, B. Loos, S. Bardien, Mol. Neurobiol. 54, 2752-2762 (2017) CrossRef PubMed Google Scholar
  51. 51.
    V. Sorrenti, G. Contarini, S. Sut, S. DallAcqua, F. Confortin, A. Pagetta, P. Giusti, M. Zusso, Front. Pharmacol. 9, 183 (2018) CrossRef PubMed Google Scholar
  52. 52.
    S.R. Rainey-Smith, B.M. Brown, H.R. Sohrabi, T. Shah, K.G. Goozee, V.B. Gupta, R.N. Martins, Br. J. Nutr. 115, 2106-2113 (2016) CrossRef PubMed Google Scholar
  53. 53.
    G.W. Small, P. Siddarth, Z. Li, K.J. Miller, L. Ercoli, N.D. Emerson, J. Martinez, K.P. Wong, J. Liu, D.A. Merrill, S.T. Chen, Am. J. Geriatr. Psychiatry. 26, 266-277 (2018) CrossRef PubMed Google Scholar
  54. 54.
    J. Burns, P.D. Joseph, K.J. Rose, M.M. Ryan, R.A. Ouvrier, Pediatr. Neurol. 41, 305-308 (2009) CrossRef PubMed Google Scholar
  55. 55.
    J.J. Yu, L.B. Pei, Y. Zhang, Z.Y. Wen, J.L. Yang, J. Clin. Psychopharmacol. 35, 406-410 (2015) CrossRef PubMed Google Scholar
  56. 56.
    A.L. Lopresti, M. Maes, M.J. Meddens, G.L. Maker, E. Arnoldussen, P.D. Drummond, Eur. Neuropsychopharmacol. 25, 38-50 (2015) CrossRef PubMed Google Scholar
  57. 57.
    D. Panda, S. Pradhan, S.K. Palita, J.K. Nayak, Ecol. Environ. Conserv. 20, 35-38 (2014) PubMed Google Scholar
  58. 58.
    R. Sharma, R. Gupta, Life Sci. 80, 2389-2392 (2007) CrossRef PubMed Google Scholar
  59. 59.
    M.M. Sonwa, W.A. König, Phytochemistry 58, 799-810 (2001) CrossRef PubMed Google Scholar
  60. 60.
    M. Rabbani, A. Ghannadi, N. Malekian, Adv. Biomed. Res. 3, 217-221 (2014) PubMed Google Scholar
  61. 61.
    F.F. Nóbrega, M.G. Salvadori, C.J. Masson, C.F. Mello, T.S. Nascimento, J.H. Leal-Cardoso, D.P. de Sousa, R.N. Almeida, Oxid. Med. Cell. Longev. 2014, 1-9 (2014) CrossRef PubMed Google Scholar
  62. 62.
    A. Azimi, S.M. Ghaffari, G.H. Riazi, S.S. Arab, M.M. Tavakol, S. Pooyan, J. Ethnopharmacol. 194, 219-227 (2016) CrossRef PubMed Google Scholar
  63. 63.
    S.C. Das, M.A. Rahman, Bangladesh J. Bot. 40, 113-120 (2011) CrossRef PubMed Google Scholar
  64. 64.
    M.Y. Wang, B.J. West, C.J. Jensen, D. Nowicki, C. Su, A.K. Palu, G. Anderson, Acta Pharmacol. Sin. 23, 1127-1141 (2002) PubMed Google Scholar
  65. 65.
    E. Dussossoy, P. Brat, E. Bony, F. Boudard, P. Poucheret, C. Mertz, J. Giaimis, A. Michel, J. Ethnopharmacol. 133, 108-115 (2011) CrossRef PubMed Google Scholar
  66. 66.
    S. Harada, W. Hamabe, K. Kamiya, T. Satake, S. Tokuyama, J. Pharm. Soc. Jpn. 129, 203-207 (2009) CrossRef PubMed Google Scholar
  67. 67.
    J. Muto, L. Hosung, A. Uwaya, F. Isami, M. Ohno, T. Mikami, Physiol. Behav. 101, 211-217 (2010) CrossRef PubMed Google Scholar
  68. 68.
    P. Muralidharan, V.R. Kumar, G. Balamurugan, Phytother. Res. 24, 252-258 (2010) CrossRef PubMed Google Scholar
  69. 69.
    S.D. Pachauri, S. Tota, K. Khandelwal, P.R.P. Verma, C. Nath, K. Hanif, R. Shukla, J.K. Saxena, A.K. Dwivedi, J. Ethnopharmacol. 139, 34-41 (2012) CrossRef PubMed Google Scholar
  70. 70.
    M. Narasingam, V. Pandy, Z. Mohamed, Exp. Anim. 65, 157-164 (2016) CrossRef PubMed Google Scholar
  71. 71.
    V. Pandy, Y. Khan, Exp. Anim. 65, 437-445 (2016) CrossRef PubMed Google Scholar
  72. 72.
    B. Jayaprakasam, M.G. Nair, Tetrahedron 59, 841-849 (2003) CrossRef PubMed Google Scholar
  73. 73.
    A. Konar, N. Shah, R. Singh, N. Saxena, S.C. Kaul, PLoS ONE 6, e27265 (2011) CrossRef PubMed Google Scholar
  74. 74.
    S.K. Bhattacharya, A. Bhattacharya, K. Sairam, Phytomedicine 6, 463-469 (2000) PubMed Google Scholar
  75. 75.
    S. RajaSankar, T. Manivasagam, S. Surendran, Neurosci. Lett. 454, 11-15 (2009) CrossRef PubMed Google Scholar
  76. 76.
    S.K. Bhattacharya, A. Kumar, S. Ghosal, Phytother. Res. 9, 110-113 (1995) CrossRef PubMed Google Scholar
  77. 77.
    S.K. Kulkarni, K.K. Akula, A. Dhir, Ind. J. Experim. Biol. 46, 465-469 (2008) PubMed Google Scholar
  78. 78.
    T. Kuboyama, C. Tohda, K. Komatsu, Eur. J. Neurosci. 23, 1417-1426 (2006) CrossRef PubMed Google Scholar
  79. 79.
    N. Sehgal, A. Gupta, R.K. Valli, S.D. Joshi, J.T. Mills, E. Hamel, P. Khanna, S.C. Jain, S.S. Thakur, V. Ravindranath, Proc. Natl. Acad. Sci. 109, 3510-3515 (2012) CrossRef PubMed Google Scholar
  80. 80.
    S.K. Bhattacharya, K.S. Satyan, S. Ghosal, Indian J. Exp. Biol. 35, 236-239 (1997) PubMed Google Scholar
  81. 81.
    S. Köktürk, S. Ceylan, V. Etus, N. Yasa, S. Ceylan, Neural. Regen. Res. 8, 773-782 (2013) PubMed Google Scholar
  82. 82.
    N.K. Sinha, V.B. Pandey, B. Dasgupta, R. Higuchi, T. Kawasaki, Indian J. Chem. B. 22, 97-98 (1982) PubMed Google Scholar
  83. 83.
    Y.J. Shiao, M.H. Su, H.C. Lin, C.R. Wu, Int. J. Mol. Sci. 18, 895 (2017) CrossRef PubMed Google Scholar
  84. 84.
    P. Ramaprasasd, C.S. Basha, Santosh, Tirupati, Srikanth. Indian J. Pharmacol. 40, 86-86 (2008) PubMed Google Scholar
  85. 85.
    C. Blázquez, A. Chiarlone, O. Sagredo, T. Aguado, M.R. Pazos, E. Resel, J. Palazuelos, B. Julien, M. Salazar, C. Börner, C. Benito, Brain 134, 119-136 (2011) CrossRef PubMed Google Scholar
  86. 86.
    R. Bhowmik, M.R. Saha, M.A. Rahman, M.A.U. Islam, Bangladesh Pharm. J. 17, 205-214 (2015) CrossRef PubMed Google Scholar
  87. 87.
    A.K. Thakur, G. Rai, S.S. Chatterjee, V. Kumar, Pharm. Biol. 54, 1528-1538 (2016) CrossRef PubMed Google Scholar
  88. 88.
    M.H. Kabir, N. Hasan, M.M. Rahman, M.A. Rahman, J.A. Khan, N.T. Hoque, M.R.Q. Bhuiyan, S.M. Mou, R. Jahan, M. Rahmatullah, J. Ethnobiol. Ethnomed. 10, 19 (2014) CrossRef PubMed Google Scholar
  89. 89.
    S.N. Uddin, Traditional uses of Ethnomedicinal plants of the Chittagong Hill Tracts (Bangladesh National Herbarium, Dhaka, 2006), p. 992 PubMed Google Scholar
  90. 90.
    M. Yusuf, M.A. Wahab, J.U. Chowdhury, J. Begum, Bangladesh J. Plant Taxon 13, 55-61 (2006) CrossRef PubMed Google Scholar
  91. 91.
    A.H. Mollik, Alzheimer's Dement. 6, S43 (2010) PubMed Google Scholar
  92. 92.
    S. Reddy, G. Rao, B. Shetty, G. Hn, Turk. Neurosurg. 25, 425-431 (2015) PubMed Google Scholar
  93. 93.
    M.A.H. Mollik, Epilepsia. 53, 1-245 (2012) PubMed Google Scholar
  94. 94.
    O. Dulla, F.I. Jahan, J. Intercult. Ethnopharmacol. 6, 316-325 (2017) PubMed Google Scholar
  95. 95.
    G.L. Viswanatha, M.V. Venkataranganna, N.B.L. Prasad, A. Godavarthi, Metab. Brain Dis. 32, 867-879 (2017) CrossRef PubMed Google Scholar
  96. 96.
    Y. Dinesh, R. Chand, R. Kumar, J. Ethnopharmacol. 202, 97-102 (2017) CrossRef PubMed Google Scholar
  97. 97.
    A.H.M.M. Rahman, Wudpecker J. Med. Plants. 2, 44-52 (2013) PubMed Google Scholar
  98. 98.
    R. Walid, K.F.A. Suvro, M. Harun-or-Rashid, M. Mukti, S. Rahman, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 7, 61-74 (2013) PubMed Google Scholar
  99. 99.
    M.A. Motaleb, M.K. Hossain, M.K. Alam, M.M.A.A. Mamun, M. Sultana, Commonly used medicinal herbs and shrubs by traditional herbal practitioners: glimpses from Thanchi upazila of Bandarban. (International Union for Conservation of Nature and Natural Resources, Bolipara Nari Kalyan Somity, and Keidanren Nature Conservation Fund, 2013), p. 294. PubMed Google Scholar
  100. 100.
    B. Ibrahim, A. Sowemimo, A. van Rooyen, M. Van de Venter, J. Ethnopharmacol. 141, 282-289 (2012) CrossRef PubMed Google Scholar
  101. 101.
    S. Rudra, K.N. Islam, M.M. Rahman, S.B. Uddin, J. Herbs Spices Med. Plants. (in press): https://doi.org/10.1080/10496475.2020.1786874 PubMed Google Scholar
  102. 102.
    M. Bhatnagar, S.D. Shukla, R. Bhatnagar, J. Herb. Pharmacother. 5, 21-30 (2005) CrossRef PubMed Google Scholar
  103. 103.
    M. Faysal, Ethnobot. Leaflets. 12, 231-1235 (2008) PubMed Google Scholar
  104. 104.
    N.A. Khan, A.M. Rashid, Afr. J. Tradit. Complement. Altern. Med. 3, 37-47 (2006) CrossRef PubMed Google Scholar
  105. 105.
    M.R. Ahmad, A.T. Justin, T. Manivasagam, J. Nataraj, M.E. Mohamed, S.B. Chidambaram, Front. Biosci. Elite Ed. 10, 287-299 (2018) CrossRef PubMed Google Scholar
  106. 106.
    F.M.S. Azam, A. Biswas, A. Mannan, N.A. Afsana, R. Jahan, M. Rahmatullah, J. Evid. Based Complement. Altern. Med. 2014, 1-28 (2014) CrossRef PubMed Google Scholar
  107. 107.
    M. Akber, S. Seraj, F. Islam, D. Ferdausi, R. Ahmed, D. Nasrin, N. Nahar, S. Ahsan, F. Jamal, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 5, 177-195 (2011) PubMed Google Scholar
  108. 108.
    A.H. Mollik, A.I. Hassan, T.K. Paul, M. Sintaha, H.N. Khaleque, F.A. Noor, A. Nahar, S. Seraj, R. Jahan, M.H. Chowdhury, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 1, 349-357 (2010) PubMed Google Scholar
  109. 109.
    H. Joshi, M. Parle, J. Med. Food. 9, 413-417 (2006) CrossRef PubMed Google Scholar
  110. 110.
    R. Jash, K.A. Chowdary, Pharmacogn. Res. 6, 46-51 (2014) CrossRef PubMed Google Scholar
  111. 111.
    M.N.K. Azam, M.N. Ahmed, M.M. Rahman, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 7, 391-402 (2013) PubMed Google Scholar
  112. 112.
    T. Yoneyama, M.A. Arai, R. Akamine, K. Koryudzu, A. Tsuchiya, S.K. Sadhu, F. Ahmed, M. Itoh, R. Okamoto, M. Ishibashi, J. Nat. Prod. 80, 2453-2461 (2017) CrossRef PubMed Google Scholar
  113. 113.
    M.A.H. Mollik, M.S. Hossan, A.K. Paul, M. Taufiq-Ur-Rahman, R. Jahan, M. Rahmatullah, Ethnobot. Res. Appl. 8, 195-218 (2010) CrossRef PubMed Google Scholar
  114. 114.
    M. Rahmatullah, A. Noman, M.S. Hossan, M.H. Rashid, T. Rahman, M.H. Chowdhury, R. Jahan, Am. Eur. J. Sustain. Agric. 3, 862-876 (2009) PubMed Google Scholar
  115. 115.
    K. Hegde, S.P. Thakker, A.B. Joshi, C.S. Shastry, K.S. Chandrashekhar, Trop. J. Pharm. Res. 8, 117-125 (2009) PubMed Google Scholar
  116. 116.
    A. Kundu, A. Mitra, Plant Foods Hum. Nutr. 68, 247-253 (2013) CrossRef PubMed Google Scholar
  117. 117.
    M. Mathew, S. Subramanian, PLoS ONE 9, e86804 (2014) CrossRef PubMed Google Scholar
  118. 118.
    M.F. Kadir, M.S.B. Sayeed, N.I. Setu, A. Mostafa, M.M.K. Mia, J. Ethnopharmacol. 155, 495-508 (2014) CrossRef PubMed Google Scholar
  119. 119.
    A. Ghani, Medicinal plants of Bangladesh: chemical constituents and uses, 2nd edn. (Asiatic Society of Bangladesh, Dhaka, 2003), p. 603 PubMed Google Scholar
  120. 120.
    A.P. Benthall, Trees of Calcutta and its neighborhood, 1st edn. (Thacker, Spink & Co, Calcutta, 1946), p. 613 PubMed Google Scholar
  121. 121.
    W. Nakdook, O. Khongsombat, P. Taepavarapruk, N. Taepavarapruk, K. Ingkaninan, J. Ethnopharmacol. 130, 122-126 (2010) CrossRef PubMed Google Scholar
  122. 122.
    S. Chattipakorn, A. Pongpanparadorn, W. Pratchayasakul, A. Pongchaidacha, K. Ingkaninan, N. Chattipakorn, J. Ethnopharmacol. 110, 61-68 (2007) CrossRef PubMed Google Scholar
  123. 123.
    D. Singh, A. Singh, Chemosphere 60, 135-140 (2005) CrossRef PubMed Google Scholar
  124. 124.
    M.Z. Uddin, M.G. Kibria, M.A. Hassan, J. Asiat. Soc. Bangladesh Sci. 41, 203-223 (2015) CrossRef PubMed Google Scholar
  125. 125.
    R. Prajapati, M. Kalariya, R. Umbarkar, S. Parmar, N. Sheth, Int. J. Nutr. Pharmacol. Neurol. Dis. 1, 90-96 (2011) CrossRef PubMed Google Scholar
  126. 126.
    A.K. Paul, H. Al Arif, S. Seraj, A. Nahar, D. Nasrin, M.H. Chowdhury, F. Islam, R. Jahan, A.A. Bashar, R. Freedma, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 5, 132-145 (2011) PubMed Google Scholar
  127. 127.
    M. Yeasmin, S. Karmaker, M.S. Hossain, S. Ahmed, A. Tabassum, I. Malek, M. Rahmatullah, World J. Pharm. Pharmaceut. Sci. 4, 70-78 (2015) PubMed Google Scholar
  128. 128.
    M. Faisal, A.I. Hossain, S. Rahman, R. Jahan, M. Rahmatullah, B.M.C. Complement, Altern. Med. 14, 335 (2014) CrossRef PubMed Google Scholar
  129. 129.
    M.A. Rahman, S.B. Uddin, C.C. Wilcock, Indian J. Tradit. Knowl. 6, 508-517 (2007) PubMed Google Scholar
  130. 130.
    A. Dar, S. Khatoon, Pharmacol. Biochem. Behav. 65, 1-6 (2000) CrossRef PubMed Google Scholar
  131. 131.
    M. Rahmatullah, A.H. Mollik, S. Rahman, N. Hasan, B. Agarwal, R. Jahan, Alter. Complement. Med. 16, 419-425 (2010) CrossRef PubMed Google Scholar
  132. 132.
    C.N. Chu, J.W. Kim, S.Y. Chung, J.H. Park, J. Oriental Neuropsychiatry. 21, 43-57 (2010) PubMed Google Scholar
  133. 133.
    M.S. Shajib, S. Akter, T. Ahmed, M.Z. Imam, Front Pharmacol. 6, 212 (2015) PubMed Google Scholar
  134. 134.
    H. Joshi, M. Parle, Cognition improving and antioxidant effects of Asparagus racemosus willd in mice. Paper presented at 28th CINP world congress of neuropsychopharmacology, Stockholm, Sweden, 3-7 June 2012 PubMed Google Scholar
  135. 135.
    R. Ojha, A.N. Sahu, A.V. Muruganandam, G.K. Singh, S. Krishnamurthy, Brain Cogn. 74, 1-9 (2010) CrossRef PubMed Google Scholar
  136. 136.
    S. Jabbar, M.T. Khan, M.S. Choudhuri, Pharmazie 56, 506-508 (2001) CrossRef PubMed Google Scholar
  137. 137.
    V.D. Thakur, S.A. Mengi, J. Ethnopharmacol. 102, 23-31 (2005) CrossRef PubMed Google Scholar
  138. 138.
    S.K. Roy, U.K. Mazumder, A. Islam, Pharmacologyonline. 1, 632-643 (2011) PubMed Google Scholar
  139. 139.
    P. Amoateng, S. Adjei, D. Osei-Safo, K.K. Kukuia, E.O. Bekoe, T.K. Karikari, S.B. Kombian, B.M.C. Complement, Altern. Med. 17, 389 (2017) CrossRef PubMed Google Scholar
  140. 140.
    S. Roy, S. Dutta, T.K. Chaudhuri, J. Basic Clin. Physiol. 26, 395-401 (2015) PubMed Google Scholar
  141. 141.
    A. Khatun, M.A.A. Khan, M.A. Rahman, M.S. Akter, A. Hasan, W. Parvin, R.J. Ripa, M. Moniruzzaman, M.J. Mahal, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 7, 319-339 (2013) PubMed Google Scholar
  142. 142.
    A.O. Aderibigbe, T. Olufunmilayo, O.I. Agboola, Planta Med. 79, PE4 (2013) PubMed Google Scholar
  143. 143.
    S.H. Sohn, M. Yoon, J. Kim, H.L. Choi, M. Shin, M. Hong, H. Bae, Mol. Cell. Toxicol. 8, 343-348 (2012) CrossRef PubMed Google Scholar
  144. 144.
    R.G. Fuentes, M.A. Arai, S.K. Sadhu, F. Ahmed, M. Ishibashi, J. Nat. Med. 69, 589-594 (2015) CrossRef PubMed Google Scholar
  145. 145.
    G. Oboh, T.L. Akomolafe, S.A. Adefegha, A.O. Adetuyi, Exp. Toxicol. Pathol. 63, 257-262 (2011) CrossRef PubMed Google Scholar
  146. 146.
    R. Afroz, N. Islam, K.R. Biswas, T. Ishika, M. Rahman, A. Swarna, T. Khan, M.N. Monalisa, S. Seraj, M.A. Rahman, S.M. Mou, Am. Eur. J. Sustain. Agric. 5, 226-232 (2011) PubMed Google Scholar
  147. 147.
    M. Rahmatullah, M.A.H. Mollik, M.A. Khatun, R. Jahan, A.R. Chowdhury, S. Seraj, M.S. Hossain, D. Nasrin, Z. Khatun, Adv. Nat. Appl. Sci. 4, 39-44 (2010) PubMed Google Scholar
  148. 148.
    X. Huang, Q. Li, H. Li, L. Guo, Cell. Mol. Neurobiol. 29, 1211-1221 (2009) CrossRef PubMed Google Scholar
  149. 149.
    M. Rahmatullah, M.A. Rahman, M.S. Hossan, M. Taufiq-Ur-Rahman, R. Jahan, M.A.H. Mollik, J. Altern. Complement. Med. 16, 769-785 (2010) CrossRef PubMed Google Scholar
  150. 150.
    M.A. Holgado, L. Martín-Banderas, J. Álvarez-Fuentes, M. Fernández-Arévalo, J. Drug Delivery Sci. Technol. 42, 84-93 (2017) CrossRef PubMed Google Scholar
  151. 151.
    A. Vallée, Y. Lecarpentier, R. Guillevin, J.N. Vallée, Acta Biochim. Biophys. Sin. 49, 853-866 (2017) CrossRef PubMed Google Scholar
  152. 152.
    G. Gnahoué, J.D. N'guessan, E. Koffi, F. Traoré, F. Guédé-Guina, Trop. J. Pharm. Res. 8, 11-17 (2009) PubMed Google Scholar
  153. 153.
    L.H. Martini, F. Jung, F.A. Soares, L.N. Rotta, D.A. Vendite, M.E. dos Santos Frizzo, R.A. Yunes, J.B. Calixto, S. Wofchuk, D.O. Souza, Neurochem. Res. 32, 1950-1956 (2007) CrossRef PubMed Google Scholar
  154. 154.
    L. Yaidikar, S. Thakur, Pharmacol. Rep. 67, 890-895 (2015) CrossRef PubMed Google Scholar
  155. 155.
    S. Mubassara, S.J. Hossain, F. Ahmed, M. Yamamoto, N. Tan, H. Aoshima, Food Sci Technol. Res. 15, 315-324 (2009) CrossRef PubMed Google Scholar
  156. 156.
    J.H. Park, H.S. Joo, K.Y. Yoo, B.N. Shin, I.H. Kim, C.H. Lee, J.H. Choi, K. Byun, B. Lee, S.S. Lim, M.H. Won, Neurochem. Res. 36, 2043-2050 (2011) CrossRef PubMed Google Scholar
  157. 157.
    J.H. Sampson, J.D. Phillipson, N.G. Bowery, M.J. Oneill, J.G. Houston, J.A. Lewis, Phytother. Res. 14, 24-29 (2000) CrossRef PubMed Google Scholar
  158. 158.
    J. Ma, Q. Ren, B. Dong, Z. Shi, J. Zhang, D.Q. Jin, J. Xu, Y. Ohizumi, D. Lee, Y. Guo, Bioorg. Chem. 76, 449-457 (2018) CrossRef PubMed Google Scholar
  159. 159.
    A.B.M.A. Hossain, Blumea balsamifera DC, in Encyclopedia of flora and fauna of Bangladesh. Angiosperms: Dicotyledons (Acanthaceae-Asteraceae), vol. 6, ed. by Z.U. Ahmed, Z.N.T. Begum, M.A. Hassan, M. Khondker, S.M.H. Kabir, M. Ahmed, A.T.A. Ahmed, A.K.A. Rahman, E.U. Haque (Asiatic Society of Bangladesh, Dhaka, 2008), pp. 272-273 PubMed Google Scholar
  160. 160.
    M. Yusuf, M.A. Wahab, M.D. Yousuf, J.U. Chowdhury, J. Begum, Bangladesh J. Plant Taxon 14, 117-128 (2007) PubMed Google Scholar
  161. 161.
    V.M. Couto, F.C. Vilela, D.F. Dias, M.H. dos Santos, R. Soncini, C.G.O. Nascimento, A. Giusti-Paiva, J. Ethnopharmacol. 134, 348-353 (2011) CrossRef PubMed Google Scholar
  162. 162.
    A.S. Melo, M.C. Monteiro, J.B. da Silva, F.R. de Oliveira, J.L.F. Vieira, M.A. de Andrade, A.C. Baetas, J.T. Sakai, F.A. Ferreira, P.J. da Cunha Sousa, C.D.S.F. Maia, J. Ethnopharmacol. 147, 293-301 (2013) CrossRef PubMed Google Scholar
  163. 163.
    S.W. Bihaqi, M. Sharma, A.P. Singh, M. Tiwari, J. Ethnopharmacol. 124, 409-415 (2009) CrossRef PubMed Google Scholar
  164. 164.
    M. Manvar, T. Desai, Indian J. Med. Sci. 67, 49-60 (2013) CrossRef PubMed Google Scholar
  165. 165.
    M.K. Islam, S. Saha, I. Mahmud, K. Mohamad, K. Awang, S.J. Uddin, M.M. Rahman, J.A. Shilpi, J. Ethnopharmacol. 151, 921-930 (2014) CrossRef PubMed Google Scholar
  166. 166.
    D. Sivaraman, P. Panneerselvam, P. Muralidharan, Int. J. Pharmacol. 12, 52-65 (2016) CrossRef PubMed Google Scholar
  167. 167.
    N.A. Rayan, N. Baby, D. Pitchai, F. Indraswari, E.A. Ling, J. Lu, T. Dheen, Front. Biosci. Elite Ed. 3, 1079-1091 (2011) PubMed Google Scholar
  168. 168.
    O.K. Yemitan, H.M. Salahdeen, Fitoterapia 76, 187-193 (2005) CrossRef PubMed Google Scholar
  169. 169.
    S. Pal, T. Sen, A.N. Chaudhuri, J. Pharm. Pharmacol. 5, 1313-1318 (1999) PubMed Google Scholar
  170. 170.
    M.D.D. Sohel, M.D.H. Kawsar, M.D.H.U. Sumon, T. Sultana, Altern. Integr. Med. 5, 1-9 (2016) PubMed Google Scholar
  171. 171.
    A.H.M.M. Rahman, Am. J. Life Sci. 1, 77-81 (2010) PubMed Google Scholar
  172. 172.
    A.O. Ademosun, G. Oboh, Orient. Pharm. Exp. Med. 17, 269-276 (2017) CrossRef PubMed Google Scholar
  173. 173.
    A.H.M.M. Nawaz, M. Hossain, M. Karim, M. Khan, R. Jahan, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 3, 143-150 (2009) PubMed Google Scholar
  174. 174.
    R.K. Nitharwal, H. Patel, M.S. Karchuli, R.R. Ugale, Indian J. Pharmacol. 45, 502-507 (2013) CrossRef PubMed Google Scholar
  175. 175.
    H.K. Kandikattu, S.N. Deep, S. Razack, N. Amruta, D. Prasad, F. Khanum, Physiol. Behav. 175, 56-65 (2017) CrossRef PubMed Google Scholar
  176. 176.
    M.Z. Uddin, M.A. Hassan, M. Sultana, Bangladesh J. Plant Taxon 13, 63-68 (2006) CrossRef PubMed Google Scholar
  177. 177.
    M. Rahmatullah, M.A. Khatun, N. Morshed, P.K. Neogi, S.U.A. Khan, M.S. Hossan, M.J. Mahal, R. Jahan, Adv. Nat. Appl. Sci. 4, 52-62 (2010) PubMed Google Scholar
  178. 178.
    N. Kaur, L. Kishore, R. Singh, J. Ethnopharmacol. 206, 19-30 (2017) CrossRef PubMed Google Scholar
  179. 179.
    A. Biswas, M.A. Bari, M. Roy, S.K. Bhadra, Indian J. Tradit. Know. 9, 77-89 (2010) PubMed Google Scholar
  180. 180.
    P. Bigoniya, A.C. Rana, Indian J. Exp. Biol. 43, 859-862 (2005) PubMed Google Scholar
  181. 181.
    C.D. Rafael, B.S.S. Kathryn Ana, F.B. Allisson, M. Rodrigo, F.P. Ana, C.M. Flavia, Neuropharmacol. 63, 593-605 (2012) CrossRef PubMed Google Scholar
  182. 182.
    P.R. Das, M.T. Islam, M.N. Mostafa, M. Rahmatullah, Anc. Sci. life. 32, 144-149 (2013) CrossRef PubMed Google Scholar
  183. 183.
    S. Cabrera, F. Núñez, Rev. Cubana Plant Med. 15, 96-104 (2010) PubMed Google Scholar
  184. 184.
    S. Roy, M.Z. Uddin, M.A. Hassan, M.M. Rahman, Bangladesh J. Plant Taxon 15, 67-72 (2008) PubMed Google Scholar
  185. 185.
    S.N. Rai, H. Birla, W. Zahra, S.S. Singh, S.P. Singh, J. Chem. Neuroanat. 85, 27-35 (2017) CrossRef PubMed Google Scholar
  186. 186.
    P. Shetty, M. Krishnamoorthy, K. Vijayanarayana, D.S. Satyanarayana, Asian J. Chem. 20, 1075-1180 (2008) PubMed Google Scholar
  187. 187.
    M. Rahmatullah, D. Ferdausi, A. Mollik, R. Jahan, M.H. Chowdhury, W.M. Haque, Afr. J. Tradit. Complement. Altern. Med. 7, 91-97 (2010) PubMed Google Scholar
  188. 188.
    F. Ahmed, I.Z. Shahid, U.K. Biswas, B.A. Roy, A.K. Das, M.S.K. Pharma, Biology 45, 587-593 (2007) CrossRef PubMed Google Scholar
  189. 189.
    M.A. Farag, S.M. Ezzat, M.M. Salama, M.G. Tadros, J. Pharm. Biomed. Anal. 125, 292-302 (2016) CrossRef PubMed Google Scholar
  190. 190.
    O.I. Olayinka, H.A. Nta, A. Ganiyat, J. Med. Plants Res. 5, 2743-2747 (2011) PubMed Google Scholar
  191. 191.
    M. Karthikeyan, K. Deepa, J. Basic Clin. Physiol. Pharmacol. 21, 347-356 (2010) CrossRef PubMed Google Scholar
  192. 192.
    N.A. Siddique, M.A. Bari, A.T.M. Naderuzzaman, N. Khatun, M.H. Rahman, R.S. Sultana, M.N. Matin, S. Shahnewaz, M.M. Rahman, J. Biol. Sci. 4, 72-80 (2004) PubMed Google Scholar
  193. 193.
    M. Rahmatullah, A.A.B.T. Kabir, M.M. Rahman, M.S. Hossan, Z. Khatun, M.A. Khatun, R. Jahan, Adv. Nat. Appl. Sci. 4, 45-51 (2010) CrossRef PubMed Google Scholar
  194. 194.
    M. Umamaheswari, K. Asokkumar, N. Umamageswari, T. Sivashanmugam, V. Subhadradevi, Protective effect of the leaves of Vitex negundo against ethanol-induced cerebral oxidative stress in rats. Tanzan. J. Health Res. 14, 21-28 (2012) CrossRef PubMed Google Scholar
  195. 195.
    B.N. Sinha, D. Sasmal, Asian J. Chem. 23, 315-318 (2011) PubMed Google Scholar
  196. 196.
    N.N. Biswas, A.K. Acharzo, S. Anamika, S. Khushi, B. Bokshi, Evid. Based Complement. Alternat. Med. 2017, 1-11 (2014) PubMed Google Scholar
  197. 197.
    Y.H. Jeong, J.S. Park, D.H. Kim, J.L. Kang, H.S. Kim, Pharmacol. Res. 119, 431-442 (2017) CrossRef PubMed Google Scholar
  198. 198.
    L. Leal, R. Silva, T. Araujo, V. Silva, A. Barbosa, J. Medeiros, J. Oliveira, C. Ventura, Rev. Bras. Plant Med. 18, 38-47 (2016) CrossRef PubMed Google Scholar
  199. 199.
    M. Rahmatullah, A. Hasan, W. Parvin, M. Moniruzzaman, A. Khatun, Z. Khatun, F.I. Jahan, R. Jahan, Afr. J. Tradit. Complement. Altern. Med. 9, 350-359 (2012) PubMed Google Scholar
  200. 200.
    B.N. Ramesh, S.S. Indi, K.S.J. Rao, Neurosci. Lett. 475, 110-114 (2010) CrossRef PubMed Google Scholar
  201. 201.
    W.H. Yoon, K.H. Lee, Nat. Prod. Sci. 23, 108-112 (2017) PubMed Google Scholar
  202. 202.
    K.S. Rai, K.D. Murthy, K.S. Karantha, M.S. Rao, Indian J. Physiol. Pharmacol. 45, 305-313 (2001) PubMed Google Scholar
  203. 203.
    M. Rahmatullah, M.A.H. Mollik, M.K. Islam, M.R. Islam, F.I. Jahan, Z. Khatun, S. Seraj, M.H. Chowdhury, F. Islam, Z.U.M. Miajee, R. Jahan, Am. Eur. J. Sustain. Agric. 4, 363-373 (2010) PubMed Google Scholar
  204. 204.
    J. Mehla, M. Pahuja, P. Gupta, S. Dethe, A. Agarwal, Y.K. Gupta, Psychopharmacol. 230, 589-605 (2013) PubMed Google Scholar
  205. 205.
    H.H. Ko, J.R. Weng, L.T. Tsao, M.H. Yen, J.P. Wang, C.N. Lin, Bioorg. Med. Chem. Lett. 14, 1011-1014 (2004) PubMed Google Scholar
  206. 206.
    M.R. Ayissi, S. Gartside, E. Ngo Bum, N. Njikam, E. Okello, R. McQuade, J. Psychopharmacol. 26, 575-583 (2012) CrossRef PubMed Google Scholar
  207. 207.
    G. Patro, S.K. Bhattamisra, B.K. Mohanty, Avicenna J. Phytomed. 6, 696-710 (2016) PubMed Google Scholar
  208. 208.
    J.H. Yi, H.J. Park, S. Lee, J.W. Jung, B.C. Kim, Y.C. Lee, J.H. Ryu, D.H. Kim, J. Ethnopharmacol. 178, 50-57 (2016) CrossRef PubMed Google Scholar
  209. 209.
    H.A. Jung, M.Y. Ali, H.J. Jung, H.O. Jeong, H.Y. Chung, J.S. Choi, J. Ethnopharmacol. 191, 152-160 (2016) PubMed Google Scholar
  210. 210.
    T. Ramesh, C. Sureka, S. Bhuvana, V.H. Begum, Metab. Brain Dis. 30, 573-582 (2015) CrossRef PubMed Google Scholar
  211. 211.
    V. Rajesh, T. Riju, S. Venkatesh, G. Babu, Orient. Pharm. Exp. Med. 17, 127-142 (2017) PubMed Google Scholar
  212. 212.
    M.S. Hossan, P. Roy, S. Seraj, S.M. Mou, M.N. Monalisa, S. Jahan, T. Khan, A. Swarna, R. Jahan, M. Rahmatullah, Am. Eur. J. Sustain. Agric. 6, 349-359 (2012) PubMed Google Scholar
  213. 213.
    A.H.M. Zulfiker, M.A. Hoque, T. Akter, A. Afroz, A.M. Momin, Trop. J. Pharm. Res. 13, 1925-1931 (2014) PubMed Google Scholar
  214. 214.
    M.S. Bansod, D.T. Rajgure, U.N. Harle, N.S. Vyawahare, S.R. Yende, Indian J. Pharmacol. 40, 126-127 (2008) PubMed Google Scholar
  215. 215.
    A.H.M.M. Rahman, R. Gondha, Open J. Bot. 1, 19-24 (2014) PubMed Google Scholar
  216. 216.
    N. Khurana, A. Gajbhiye, Neurotoxicol. 39, 57-64 (2013) PubMed Google Scholar
  217. 217.
    S.I. Tumpa, M.I. Hossain, J. Pharmacogn. Phytochem. 3, 23-33 (2014) PubMed Google Scholar
  218. 218.
    S.K. Bhattamisra, P.N. Singh, S.K. Singh, Pharm. Biol. 50, 766-772 (2012) CrossRef PubMed Google Scholar
  219. 219.
    U. Hossain, M.O. Rahman, Bangladesh J. Plant Taxon 25, 241-255 (2018) PubMed Google Scholar
  220. 220.
    M. Moniruzzaman, M.S. Hossain, P.S. Bhattacharjee, J. Ethnopharmacol. 186, 205-208 (2016) PubMed Google Scholar
  221. 221.
    N. Izzati, L.E. Fitri, M. Dalhar, Univ. Med. 35, 222-228 (2016) PubMed Google Scholar
  222. 222.
    M.S.I. Howlader, M.A. Siraj, S.K. Dey, A. Hira, A. Ahmed, M.H. Hossain, Evid. Based Complement. Alternat. Med. 2017, 7390359 (2017) PubMed Google Scholar
  223. 223.
    D. Varija, K.P. Kumar, K.P. Reddy, J. Appl. Anim. Res. 39, 49-52 (2001) PubMed Google Scholar
  224. 224.
    D. Singh, A. Mishra, R.K. Goel, Epilepsy Behav. 27, 206-211 (2013) PubMed Google Scholar
  225. 225.
    J.O. Bhangale, S.R. Acharya, Adv. Pharmacol. Sci. 2016, 1-9 (2016) PubMed Google Scholar
  226. 226.
    C. Sutalangka, J. Wattanathorn, S. Muchimapura, W. Thukham-mee, Oxid. Med. Cell. Longev. 2013, 1-9 (2013) CrossRef PubMed Google Scholar
  227. 227.
    M.B. Ekong, M.M. Ekpo, E.O. Akpanyung, D.U. Nwaokonko, Metab. Brain. Dis. 32, 1437-1447 (2017) PubMed Google Scholar
  228. 228.
    I.O. Ayoola, B. Gueye, M.A. Sonibare, M.T. Abberton, J. Food Meas. Charact. 11, 488-499 (2017) CrossRef PubMed Google Scholar
  229. 229.
    T. Prabsattroo, J. Wattanathorn, P. Somsapt, O. Sritragool, Oxid. Med. Cell Longev. 2016, 1-11 (2016) CrossRef PubMed Google Scholar
  230. 230.
    Z.U. Ahmed, M.A. Hassan, Z.N.T. Begum, M. Khondker, S.M.H. Kabir, M. Ahmed, A.T.A. Ahmed, A.K.A. Rahman, E.U. Haque, Encyclopedia of flora and fauna of Bangladesh. Angiosperms: Dicotyledons (Fabaceae-Lythraceae), vol. 8 (Asiatic Society of Bangladesh, Dhaka, 2009), pp. 40-41 PubMed Google Scholar
  231. 231.
    T. Hongratanaworakit, Nat. Prod. Commun. 5, 157-162 (2010) PubMed Google Scholar
  232. 232.
    H.L. Hsieh, S.H. Yang, T.H. Lee, J.Y. Fang, C.F. Lin, Mol. Neurobiol. 53, 5995-6005 (2016) CrossRef PubMed Google Scholar
  233. 233.
    M.A. Howlader, M. Alam, K. Ahmed, F. Khatun, A.S. Apu, Pak. J. Biol. Sci. 14, 909-911 (2011) CrossRef PubMed Google Scholar
  234. 234.
    M.M. Hossain, Med. Aromat. Plant Sci. Biotechnol. 42, 101-106 (2009) PubMed Google Scholar
  235. 235.
    S.M. Khasim, P.R.M. Rao, The Botanica. 49, 86-91 (1999) PubMed Google Scholar
  236. 236.
    M.N. Uddin, R. Afrin, M.J. Uddin, M.J. Uddin, A.H.M.K. Alam, A.A. Rahman, G. Sadik, B.M.C. Complement, Altern. Med. 15, 195 (2015) PubMed Google Scholar
  237. 237.
    S.J. Uddin, J.A. Shilpi, M.T. Rahman, M. Ferdous, R. Rouf, S.D. Sarker, Die Pharmazi. 61, 362-364 (2006) CrossRef PubMed Google Scholar
  238. 238.
    A. Ferdoushi, S. Mahmud, M.M. Rana, M.S. Islam, A.B.A. Salauddin, M.F. Hossain, Eur. J. Med. Plants. 11, 1-22 (2016) PubMed Google Scholar
  239. 239.
    B. Shalini, J.D. Sharma, Toxicol. Int. 22, 35-39 (2015) PubMed Google Scholar
  240. 240.
    A.J. Thenmozhi, M. Dhivyabharathi, William Raja T.R., T. Manivasagam, M.M. Essa, Nutr. Neurosci. 19, 269-278 (2016) PubMed Google Scholar
  241. 241.
    M.R. Khatun, A.M. Rahman, Bangladesh J. Plant Taxon 26, 117-126 (2019) PubMed Google Scholar
  242. 242.
    M.S. Uddin, A. Al Mamun, M.A. Iqbal, A. Islam, M.F. Hossain, S. Khanum, M. Rashid, Adv. Alzheimer's Dis. 5, 87-102 (2016) CrossRef PubMed Google Scholar
  243. 243.
    A. Pandey, S. Bani, J. Neuroimmunol. 226, 48-58 (2010) PubMed Google Scholar
  244. 244.
    G.S. Somani, M.S. Nahire, A.D. Parikh, M.B. Mulik, P.J. Ghumatkar, K.S. Laddha, S. Sathaye, Indian J. Med. Res. 146, 255-159 (2017) PubMed Google Scholar
  245. 245.
    U. Subramanian, S. Poongavanam, A.J. Vanisree, Invest. New Drugs. 28, 615-623 (2010) CrossRef PubMed Google Scholar
  246. 246.
    Y. Bi, P.C. Qu, Q.S. Wang, L. Zheng, H.L. Liu, R. Luo, X.Q. Chen, Y.Y. Ba, X. Wu, H. Yang, Pharm. Biol. 53, 1516-1524 (2015) CrossRef PubMed Google Scholar
  247. 247.
    M. Kubo, R. Ishii, Y. Ishino, K. Harada, N. Matsui, M. Akagi, E. Kato, S. Hosoda, Y. Fukuyama, J. Nat. Prod. 76, 769-773 (2013) CrossRef PubMed Google Scholar
  248. 248.
    N. Saini, D. Singh, R. Sandhir, Neurochem. Res. 37, 1928-1937 (2012) PubMed Google Scholar
  249. 249.
    C. Promsuban, S. Limsuvan, P. Akarasereenont, K. Tilokskulchai, S. Tapechum, N. Pakaprot, Neuro. Rep. 28, 1031-1035 (2017) CrossRef PubMed Google Scholar
  250. 250.
    S. Loganathan, S. Rathinasamy, Pharmacogn. Mag. 12, S7-S13 (2016) PubMed Google Scholar
  251. 251.
    V.A. Da-Silva, J.C. De-Freitas, A.P. Mattos, W. Paiva-Gouvea, O.A. Presgrave, F.F. Fingola, M.A. Menezes, F.J. Paumgartten, Braz. J. Med. Biol. Res. 24, 827-831 (1991) PubMed Google Scholar
  252. 252.
    S.N. Uddin, M.Z. Uddin, M.A. Hassan, M.M. Rahman, Bangladesh J. Plant Taxon 11, 39-48 (2004) CrossRef PubMed Google Scholar
  253. 253.
    G.S. Tayeboon, F. Tavakoli, S. Hassani, M. Khanavi, O. Sabzevari, S.N. Ostad, Vitro Cell. Dev. Biol. Anim. 49, 706-715 (2013) CrossRef PubMed Google Scholar
  254. 254.
    Y. Miyazaki, Biosci. Microbiota. Food. Health. 35, 69-75 (2016) PubMed Google Scholar
  255. 255.
    G.I. Anuja, P. Latha, S.R. Suja, S. Shyamal, V.J. Shine, S. Sini, S. Pradeep, P. Shikha, S. Rajasekharan, J. Ethnopharmacol. 132, 456-460 (2010) CrossRef PubMed Google Scholar
  256. 256.
    N. Ismail, M. Ismail, N.H. Azmi, M.F.A. Bakar, Z. Yida, M.A. Abdullah, H. Basri, Biomed. Pharmacother. 95, 780-788 (2017) CrossRef PubMed Google Scholar
  257. 257.
    K. Radad, R. Moldzio, M. Taha, W.D. Rausch, Phytother. Res. 23, 696-700 (2009) PubMed Google Scholar
  258. 258.
    A.H.M.M. Rahman, M.C. Biswas, A.K.M.R. Islam, A.T.M.N. Zaman, Wudpecker J. Med. Plants. 2, 99-109 (2013) PubMed Google Scholar
  259. 259.
    H.J. Heo, Y.J. Park, Y.M. Suh, S.J. Choi, Biosci. Biotechnol. Biochem. 67, 284-1291 (2003) PubMed Google Scholar
  260. 260.
    J.X. Cao, Q.Y. Zhang, S.Y. Cui, X.Y. Cui, J. Ethnopharmacol. 130, 163-166 (2010) CrossRef PubMed Google Scholar
  261. 261.
    M.Z. Uddin, M.K. Arefin, M.F. Alam, G. Kibria, S.L. Podder, M.A. Hassan, J. Asiat. Soc. Bangladesh Sci. 43, 101-123 (2017) PubMed Google Scholar
  262. 262.
    G. Thamizhoviya, P.P. Kirjayini, A.J. Vanisree, Curr. Sci. 112, 295-303 (2017) PubMed Google Scholar
  263. 263.
    M. Asaduzzaman, M.J. Uddin, M.A. Kader, A.H.M.K. Alam, A.A. Rahman, M. Rashid, K. Kato, T. Tanaka, M. Takeda, G. Sadik, Psychogeriatrics. 14, 1-10 (2014) PubMed Google Scholar
  264. 264.
    Y. Furukawa, S. Okuyama, Y. Amakura, S. Watanabe, T. Fukata, M. Nakajima, M. Yoshimura, T. Yoshida, Int. J. Mol. Sci. 13, 1832-1845 (2012) PubMed Google Scholar
  265. 265.
    T. Satou, Y. Ogawa, K. Koike, Phytother. Res. 29, 1246-1250 (2015) PubMed Google Scholar
  266. 266.
    Y. Fu, Z. Si, P. Li, M. Li, H. Zhao, L. Jiang, Y. Xing, W. Hong, L. Ruan, J.S. Wang, Metab. Brain Dis. 32, 1295-1309 (2017) PubMed Google Scholar
  267. 267.
    R.L. VanGilder, K.A. Kelly, M.D. Chua, R.L. Ptachcinski, J.D. Huber, Exp. Brain Res. 197, 23-34 (2009) PubMed Google Scholar
  268. 268.
    M. Mohan, D. Attarde, R. Momin, S. Kasture, Nat. Prod. Res. 27, 2140-2143 (2013) PubMed Google Scholar
  269. 269.
    S. Challal, O.E. Buenafe, E.F. Queiroz, S. Maljevic, L. Marcourt, M. Bock, W. Kloeti, F.M. Dayrit, A.L. Harvey, H. Lerche, C.V. Esguerra, A.C.S. Chem, Neurosci. 5, 993-1004 (2014) PubMed Google Scholar
  270. 270.
    De Rose F., R. Marotta, S. Poddighe, G. Talani, T. Catelani, M.D. Setzu, P. Solla, F. Marrosu, E. Sanna, S. Kasture, E. Acquas, PLoS ONE 11, e0146140 (2016) PubMed Google Scholar
  271. 271.
    A.A. Reza, M.S. Hossain, S. Akhter, M.R. Rahman, M.S. Nasrin, M.J. Uddin, G. Sadik, A.H.M.K. Alam, B.M.C. Complement, Altern. Med. 18, 123 (2018) PubMed Google Scholar
  272. 272.
    I. Kazmi, M. Afzal, B. Ali, Z.A. Damanhouri, A. Ahmaol, F. Anwar, Asian Pac. J Trop. Med. 6, 433-437 (2013) PubMed Google Scholar
  273. 273.
    M. Rahmatullah, R. Jahan, F.S. Azam, S. Hossan, M.A.H. Mollik, T. Rahman, Afr. J. Tradit. Complement. Altern. Med. 8, 53-65 (2011) CrossRef PubMed Google Scholar
  274. 274.
    M. Shoibe, M.N.U. Chy, M. Alam, M. Adnan, M.Z. Islam, S.W. Nihar, N. Rahman, E. Suez, Biomedicines. 5, 63 (2017) PubMed Google Scholar
  275. 275.
    C.W. Chang, W.T. Chang, J.C. Liao, Y.J. Chiu, M.T. Hsieh, W.H. Peng, Y.C. Lin, Evid. Based Complement. Alternat. Med. (2012). https://doi.org/10.1155/2012/135379 PubMed Google Scholar
  276. 276.
    M.O. Raihan, M.R. Habib, A. Brishti, M.M. Rahman, M.M. Saleheen, M. Manna, Drug Discov. Ther. 5, 185-189 (2011) PubMed Google Scholar
  277. 277.
    L. Kumar, S.A. Ali, Biosci. Biotech. Res. Comm. 8, 197-203 (2015) PubMed Google Scholar
  278. 278.
    M.R. Sulaiman, Z.A. Zakaria, A.S. Mohamad, M. Ismail, M.T. Hidayat, D.A. Israf, M. Adilius, Pharm. Biol. 48, 861-868 (2010) PubMed Google Scholar
  279. 279.
    F. Sharmen, A. Mannan, M.M. Rahman, M.A.U. Chowdhury, M.E. Uddin, A.A. Ahmed, Asian Pac. J Trop. Biomed. 4, 137-142 (2014) CrossRef PubMed Google Scholar
  280. 280.
    Q.Q. Mao, Z. Huang, X.M. Zhong, C.R. Feng, A.J. Pan, Z.Y. Li, S.P. Ip, C.T. Che, J. Ethnopharmacol. 128, 336-341 (2010) PubMed Google Scholar
  281. 281.
    M. Chen, Y.Y. Chang, S. Huang, L.H. Xiao, W. Zhou, L.Y. Zhang, C. Li, R.P. Zhou, J. Tang, L. Lin, Z.Y. Du, Mol. Nutr. Food Res. 62, 1700281 (2018) CrossRef PubMed Google Scholar
  282. 282.
    X.S. Wang, Z.R. Zhang, M.M. Zhang, M.X. Sun, W.W. Wang, C.L. Xie, B.M.C. Complement, Altern. Med. 17, 412 (2017) PubMed Google Scholar
  283. 283.
    M.S. Ali, P.R. Dash, M. Nasrin, BMC Complement. Altern. Med. 15, 158 (2015) CrossRef PubMed Google Scholar
  284. 284.
    P.K. Mukherjee, V. Kumar, M. Mac, P.J. Houghton, Planta Med. 73, 283-285 (2007) CrossRef PubMed Google Scholar
  285. 285.
    L.M. Eubanks, C.J. Rogers, A.E. Beuscher, G.F. Koob, A.J. Olson, T.J. Dickerson, K.D. Janda, Mol. Pharm. 3, 773-777 (2006) PubMed Google Scholar
  286. 286.
    I. Lastres-Becker, F. Molina-Holgado, J.A. Ramos, R. Mechoulam, J. Fernández-Ruiz, Neurobiol. Dis. 19, 96-107 (2005) CrossRef PubMed Google Scholar
  287. 287.
    G. Esposito, C. Scuderi, C. Savan, L. Steardo Jr., D. De Filippis, P. Cottone, T. Iuvone, V. Cuomo, L. Steardo, Br. J. Pharmacol. 151, 1272-1279 (2007) PubMed Google Scholar
  288. 288.
    A. Alhebshi, M. Gotoh, I. Suzuki, Biochem. Biophys. Res. Commun. 433, 362-367 (2013) CrossRef PubMed Google Scholar
  289. 289.
    H. Okugawa, R. Ueda, K. Matsumoto, K. Kawanishi, A. Kato, Phytomedicine 2, 119-126 (1995) PubMed Google Scholar
  290. 290.
    T. Kuboyama, C. Tohda, K. Komatsu, Br. J. Pharmacol. 144, 961-971 (2005) CrossRef PubMed Google Scholar
  291. 291.
    Y. Zhang, L. Qiao, M. Song, L. Wang, Pharmacogn. Mag. 10, 509-516 (2014) CrossRef PubMed Google Scholar

Copyright information

© The Author(s) 2020

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  1. 1. Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
  2. 2. Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh