The Genus Terminalia (Combretaceae): An Ethnopharmacological, Phytochemical and Pharmacological Review

  • Xiao-Rui Zhang 1,2 ,  
  • Joseph Sakah Kaunda 1,2 ,  
  • Hong-Tao Zhu 1 ,  
  • Dong Wang 1 ,  
  • Chong-Ren Yang 1 ,  
  • Ying-Jun Zhang 1,3
  •     

Abstract

Terminalia Linn, a genus of mostly medium or large trees in the family Combretaceae with about 250 species in the world, is distributed mainly in southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Many species are used widely in many traditional medicinal systems, e.g., traditional Chinese medicine, Tibetan medicine, and Indian Ayurvedic medicine practices. So far, about 39 species have been phytochemically studied, which led to the identification of 368 compounds, including terpenoids, tannins, flavonoids, phenylpropanoids, simple phenolics and so on. Some of the isolates showed various bioactivities, in vitro or in vivo, such as antitumor, anti HIV-1, antifungal, antimicrobial, antimalarial, antioxidant, diarrhea and analgesic. This review covers research articles from 1934 to 2018, retrieved from SciFinder, Wikipedia, Google Scholar, Chinese Knowledge Network and Baidu Scholar by using "Terminalia" as the search term ("all fields") with no specific time frame setting for the search. Thirty-nine important medicinal and edible Terminalia species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.

Keywords

Terminalia    Combretaceae    Ethnomedicine    Traditional uses    Phytochemistry    Hydrolyzable tannins    Pharmacology    

Abbreviations
A. Aspergillus
BCG Bacillus Calmette Guerin
BMMBroth microdilution method
Ca. Candida
Cr. Cryptococcus
CC50Cytotoxic concentration of the extracts to cause death to 50% of host's viable cells
DPPH2, 2-Diphenyl-1-picrylhydrazyl
E. Escherichia
EC50Half maximal effective concentration
FRAPFerric reducing/antioxidant power
GABANeurotransmitter gamma-aminobutyric acid
IC50Minimum inhibition concentration for inhibiting 50% of the pathogen
K. Klebsiella
MICMinimum inhibitory concentration
MTT3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide
Ps. Pseudomonas
Sa. Salmonella
Sta. Staphylococcus
Str. Streptomyces

1 Introduction

Terminalia Linn, comprising about 250 species in the world mostly as medium or large trees, is the second largest genus in the family Combretaceae. The name "Terminalia" is derived from Latin word "terminus", which means the leaves are located at the tip of the branch. The bark of Terminalia plants usually has cracks and branches tucked into layers. Most of the Terminalia plants' leaves are large, leathery with solitary or clustered small green white flowers. Their fruits are yellow, dark red or black; drupe, usually angular or winged. Some fruits are edible, highly nutritious and possess medicinal values.

Terminalia species are widely distributed in the southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Terminalia plants in southern Asia have been intensively studied phytochemically due to their wide usage in Asian (India, Tibetan, and Chinese) traditional medicine systems [1]. For example, the fruits of Terminalia bellirica and Terminalia chebula, together with Phyllanthus emblica (Euphorbiaceae) which form the herbal remedy, Triphala, in Tibetan medicine, have received much attention because of its extensive and remarkable effectiveness in the treatment of anticancer, antifungal, antimicrobial, antimalarial, antioxidant.

So far, 39 Terminalia species have been investigated for their phytochemical constituents, which resulted in the identification of terpenes, tannins, flavonoids, lignans and simple phenols, amongst others. Pharmacological studies suggest that they have exhibited activity on liver and kidney protection, antibacterial, antiinflammatory, anticancer, and have displayed a positive effect on immune regulation, cardiovascular disease and diabetes, and acceleration of wound healing.

This paper features 39 important medicinal and edible Terminalia species and summarizes their traditional usage, geographical distribution, structures of isolated chemical constituents and pharmacological activities.

2 Species' Description, Distribution and Traditional Uses

So far, 50 Terminalia species have been documented, 39 of which have been reported to possess medicinal properties and/or being edible. Among them, eight species and four varieties including T. argyrophylla, T. bellirica, T. catappa, T. chebula, T. franchetii, T. hainanensis, T. myriocarpa, T. intricate, T. chebula var. tomentella, T. franchetii var. membranifolia, T. franchetii var. glabra, and T. myriocarpa var. hirsuta are distributed in China (Yunnan, southeast Tibet, Taiwan, Guangdong, south Guangxi and southwest Sichuan). Their distribution and traditional applications are shown in Table 1.

Table 1

Local names, distributions and traditional uses of Terminalia plants

No.PlantsLocal namesDistributionsTraditional uses
T1T. alataUnknownSouthern Vietnam [2, 3]Anti-diarrhea, ulcer, diuretics, supplements [3]
T2T. amazoniaWhite oliveSouthern Costa Rica [4]Wood
T3T. arboreaJaha KlingIndonesiaCardiovascular disease, myocardial infarction, atherosclerosis, diabetes, cancer, stroke, cataract, shoulder stiffness, cold allergy, hypertension, senile dementia, inflammation, gum disease (e.g. gingivitis, pneumonia), Alzheimer's, skin conditions [5]
T4T. arjunaArjuna, White Marudah, KohaIndia, South Asia, Sri Lanka [6]Cardiotonic, sores, bile infection, poison antidote [6]Coughs, dysentery, fractures, contusions, ulcers, hypertension ischaemic heart diseases [23]
T5T. argyrophyllaSilver leaves Chebula, Xiao Chebula (Yunnan), Manna (Yunnan Dai language)China (Yunnan) [7]Autoimmune diseases [7]
T6T. australisTanimbu, palo amarilloPunta Lara, Argentina (Buenos Aires) [8]Hemostasis
T7T. avicennioideskpayi, Kpace, bausheNigeria [9, 10]Malaria, worms, gastric peptic ulcer [9], scorpion bites [10], tuberculosis, cough [90]
T8T. belliricaBelericChina (southern Yunnan), Vietnam, Laos, Thailand, Cambodia, Myanmar, India (except West), Malaysia, IndonesiaLaxative, edibleEdema, diarrhea, leprosy, bile congestion, indigestion, headache [11]Fever, diarrhea, cough, dysentery, skin diseases [12]Wine, palm sugar [23]Diarrhea [94]
T9T. bentzoeUnknownRodrigues [13]Essential oil [13]
T10T. bialataIndian silver greywoodIndia, South AsiaWood [14]
T11T. brachystemmaKalahari cluster leafSouthern AfricaShistosomiasis, gastrointestinal disorders [15]
T12T. browniikuuku, muvuku (Kamba, Kenya), koloswa (northern region, Kenya), weba (Ethiopia), lbukoi (Samburu, Kenya), orbukoi (Maasai, Tanzania), and mbarao or mwalambe, in KiswahiliSouthern and central AfricaDiarrhea, stomach pain, gastric ulcer, colic, heartburnGenitourinary infection, urethral pain, endometritis, cystitis, leucorrhea, syphilis, gonorrhea, malaria, dysmenorrhea, nervousness, hysteria, epilepsy, athlete's foot, indigestion, stomach pain, gastric ulcer, colitis, cough, vomiting, hepatitis, jaundice, cirrhosis, yellow fever [16]
T13T. bursarinaYellow woodAustralia, South Asia [17]Unknown
T14T. calamansanaiPhillipine almond, AnarepPhilippines, Southeast AsiaLithontriptic [18], horticultural plant [102]
T15T. calcicolaUnknownMadagascar Rain Forest [19]Unknown
T16T. catappaIndian almond, umbrella tree, tropical almondChina (Guangdong, Taiwan, SE Yunnan), Australia and SE Asia, Africa, South America Tropical CoastBlood stasis, liver injury [20]Diarrhea, dysentery, biliary inflammation [23], dermatitis, hepatitis [106]
T17T. chebulaBlack Mytrobalan, Inknut, Chebulic MyrobalanNepal, northern India, Myanmar, Sri Lanka, Thailand, Bangladesh, China (Yunnan), HimalayanDigestion appetizers, vomiting, infertility, asthma, sore throat, vomiting, urticaria, diarrhea, dysentery, bleeding, ulcers, gout, bladder disease [21]
T18T. chebula var. tomentellaWeimaohezi (variant)China (western Yunnan), MyanmarUnknown
T19T. citrinaManahei, Yellow myrobalanIndia, Bangladesh [22]Dysmenorrhea, bleeding, heart disease, dysentery, constipation [22]
T20T. ellipticaIndian laurelSE Asia, India, Bangladesh, Laos, Myanmar, Nepal, Thailand, Cambodia, VietnamWine, palm sugarUlcers, fractures, bleeding, bronchitis, diarrhea [23]
T21T. franchetiiDianlanrenSW China [24]Unknown
T22T. franchetii var. membranifoliaBaoyedianlanren (variant)China [western Guangxi (Longlin), central to SE Yunnan]Unknown
T23T. franchetii var. glabraGuang yedianlanren (variant)China (Sichuan and Yunnan Jinsha River Basin)Unknown
T24T. ferdinandianaGubinge, Bbillygoat plum, Kakadu plum, green plum, salty plum, murunga, madorAustralia [25]Dietary supplements, skin care [25]
T25T. glaucescensUnknownNigeria [26]Amenorrhea, vaginal infections, syphilis, sores, neurological disordersAnti-plasma, antiparasitic, antiviral, antimicrobial [26, 27]
T26T. hainanensisJi zhenmu, Hainan lanrenChina (Hainan)Antioxidant [28]
T27T. intricateCuozhilanrenChina (NW Yunnan and SW Sichuan)Unknown
T28T. ivorensisIdigbo, Black Afara, Shingle Wood, Brimstone Wood, BlackbarkCameroon, West Africa, Ivory Coast, Liberia, Nigeria, Sierra Leone, GhanaRheumatism, gastroenteritis, psychotic analgesics [29]Syphilis, burns and bruises [30]
T29T. kaernbachiiOkari NutSolomon Islands, Papua New Guineaα-Glucosidase inhibitor activity [31]
T30T. kaiseranaUnknownTanzaniaDiarrhea, gonorrhea vomiting [44]
T31T. laxifloraUnknownWest Africa, Sudan SavannahMalaria, cough [32]Fumigant, rheumatic pain, smoothen skin, body relaxation [33]
T32T. macropteraBayankadaTropical (West Africa)Wound, hepatitis, malaria, fever, cough, diarrhea, tuberculosis, skin diseases [34]
T33T. mantalyUnknownAfrica, MadagascarDysentery
T34T. mollisBush willowAfricaDiarrhea, gonorrhea, malaria, AIDS adjuvant therapy [35]
T35T. muelleriKetapang kencanaIndonesia, SE Asia, South AsiaAntibacterial [36], antioxidants [37]
T36T. myriocarpaQianguolanrenChina [Guangxi (Longjin), Yunnan (central to the south), and Tibet (Medog)], northern Vietnam, Thailand, Laos, northern Myanmar, Malaysia, NE India, SikkimAntioxidant, liver protection [38]
T37T. myriocarpa var. hirsutaYingmaoqianguolanren (variant)Yunnan, China; ThailandUnknown
T38T. oblongataRose wood, yellow woodCentral Queensland [39]Unknown [39]
T39T. paniculataVellamaruthIndiaCholera, mumps, menstrual disorders, cough, bronchitis, heart failure, hepatitis, diabetes, obesity [40]
T40T. parvifloraTropical almond, umbrella tree, Indian almondSri Lanka and India [41]Diarrhea [41]
T41T. prunioidesHareri, Sterkbos, Purple pod Terminalia, MwangatiSouthern AfricaPostnatal abdominal pain
T42T. sambesiacaUnknownSouthern AfricaCancer, gastric ulcer, appendicitisBloody diarrhea [45]
T43T. schimperianaIdi odanAfrica, Sierra Leone, Guinea, Uganda, EthiopiaLocal burns, bronchitis, dysentery [42]
T44T. sericeaMonakanakane, Mososo, Mogonono, Amangwe, Vaalboom, Mangwe, Silver clutter-leafNorthern South Africa, Botswana (except central Kalahari), southern Mozambique, Tanzania, Namibia, Zimbabwe, Northern Democratic Republic of Congo, tropical Africa [43]Diarrhea, sexually transmitted infections, rash, tuberculosis [43]Fever, high blood pressure [44]
T45T. spinosaMusosahwai, spiny cluster leaf, KasansaSouthern AfricaMalaria, fever [46]Epilepsy, poisoning [47]
T46T. stenostachyaRosette leaf TerminaliaSouthern AfricaEpilepsy, poisoning [47]
T47T. stuhlmanniiUnknownAcacia [48]Unknown
T48T. superbaLimbaTropical Western AfricaGastroenteritis, diabetes, female infertility, abdominal pain, bacteria/fungi/viral infections [49], diabetes remedies, anesthetic, hepatitis [50]
T49T. trifloraLanza, lanza amarilla, amarillo derío, paloamarilloTropical (South America)Northern and Northwest Argentina [149]Making posts, furniture, weapons, fuel [149]
T50T. tropophyllaUnknownMadagascan [51]Unknown
SE southeastern, NE northeastern, SW southwestern, NW northwestern

Terminalia species are broadly used in many aspects. Some are employed as drugs, while others can provide high quality wood, tannin or dyes. For example, fruits of T. ferdinandiana, a species largely distributed in Australia, are rich in vitamin C, and possess strong antioxidant activity [25]. T. bellirica and T. chebula are not only recorded in every version of Chinese pharmacopoeia, but are also the important and most commonly applied drugs in Han, Tibetan, Mongolian and many other folk medicinal systems in India, Burma, Thailand, Malaysia, Vietnam and other southeast asian countries. T. catappa is a commonly used medicinal plant for liver protection in China [20].

3 Chemical Composition

Since 1930s, the chemical compositions of the genus Terminalia have been vastly studied. T. arjuna, T. bellirica, T. catappa and T. chebula, having been frequently used in the Ayurvedic, Chinese and Tibetan medicines, attracted scholars' attention. To date, 368 compounds, largely terpenoids (1–104), tannins (105–196), flavonoids (197–241), lignans (242–265), phenols and glycosides (268–318) were reported from the genus (Tables 2, 3).

Table 2

Chemical constituents isolated from the genus Terminalia and the studied plant organs

No.CompoundsPlantsOrgansReferences
Triterpenes (86)
12α, 3β, 19α-Trihydroxyolean-12-en-20-oic acid 3-O-β-D-galactosyl-(1 → 3)-β-D-glucosideT1R[3]
22α, 3β, 19α-Trihydroxyolean-12-en-28-oic acid methylester 3β-O-rutinosideT1R[53]
32α, 3β, 19β, 23-Tetrahydroxyolean-12-en-28-oic acid 3β-O-β-D-galactosyl-(1 → 3)-β-D-glucoside-28-O-β-D-glucosideT1R[52]
43-Acetylmaslinic acidT1RB[54]
5Arjunic acidT1
T4
T17
T25
T28
T32
T44
B
SB, F
F
SB
B
B
R
[55, 74]
[60, 79, 124]
[146]
[130]
[132]
[145]
[133]
6Arjunoside ⅠT4SB[61]
7Arjunoside ⅡT4SB[61]
8Arjunoside ⅢT4R[62, 63]
9Arjunoside ⅣT4R[62, 63]
10ArjunetinT1
T4
T8, T16, T17, T20, T39
B
B, L, S, R, F
B, L, S, R, F
[55, 74]
[23, 67]
[23]
11Oleanolic acidT1
T9
T4, T16, T20
T8, T17
T39
T28
T36
H
L
B, L, S, R, F
B, L, S, R
L, S, R, F
B
B
[56]
[97]
[23]
[23]
[23]
[132]
[140]
12Ursolic AcidT4, T16, T20
T8, T17
T39
B, L, S, R, F
L, S, R
B, L, S, F
[23]
[23]
[23]
13Maslinic acidT1
T9
T17
T36
H
L
F
B
[56]
[97]
[21, 116]
[140]
142α, 3α, 24-Trihydroxyolean-11, 13(18)-dien-28-oic acidT33SB[158]
15Terminoside AT4B[58]
16ArjungeninT4
T25
T12
T8, T16, T20, T39
T17
T25
T28
T32
T33
T44
SB, L, R, F
R
B
B, L, S, R, F
B, L, S, R, F
R, SB
B
B
SB
RB
[23, 60, 70, 74]
[60]
[99]
[23]
[23, 146]
[69, 130]
[132]
[145]
[158]
[133, 152]
17Hypatic acidT25R[69]
18Arjunglucoside ⅠT4
T17
T50
T32
B, R
F
R
B
[70, 74, 78]
[146]
[72]
[145]
19SericosideT4
T25
T28
T44
T32
T50
B
SB
B
R, L, SB
B
R
[71]
[130]
[76, 131]
[43, 133, 149]
[145]
[72]
20CrataegiosideT4
T17
B
F
[75]
[146]
2123-O-neochebuloylarjungenin 28-O-β-D-glycosyl esterT17F[146]
2223-O-4′-epi-neochebuloylarjungeninT17F[146]
2323-O-galloylarjunic acidT39
T32
B
B
[144]
[145]
T17F[146]
24Quercotriterpenoside ⅠT32B[145]
T17F[146]
25Sericic acidT28
T32
T44
B
B
R
[132]
[145]
[150]
2624-Deoxy-sericosideT32B[138]
27Arjunolic acidT1
T4
T7
T9
T8
T16, T17, T20, T39
T34
T36
B, H
B, H, L, S, R, F
RB
L
B, L, S, RB
, L, S, R, F
L
B
[55, 56, 74]
[23, 77, 78, 91]
[97]
[23]
[23]
[23, 144]
[35]
[140]
28Terminolic acidT1
T17
T7, T16, T31
T25
T32
H
F
H
H, Rl
H, B
[56]
[146]
[128]
[128]
[128, 145]
29Arjunglucoside ⅡT4
T17
B
F
[70, 74]
[146]
3023-O-galloylarjunolic acidT17F[146]
3123-O-galloylarjunolic acid 28-O-β-D-glucosyl esterT17F[146]
3223-O-galloylterminolic acid 28-O-β-D-glucosyl esterT17F[146]
33ArjunolitinT4SB[80]
34TerminolitinT4F[80]
35Arjunglucoside ⅢT4B[74]
36Methyl oleanateT4R, F[80, 124]
37Olean-3α, 22β-diol-12 en-28-oic acid 3-O-β-D-glucosyl-(1 → 4)-β-D-glucosideT4B[81, 84]
38ArjunetosideT4R, SB[82]
39Olean 3β, 6β, 22α-triol-12en-28-oic acid-3-O-β-D-glucosyl-(1 → 4)-β-D-glucosideT4B[84]
402α, 19α, Dihydroxy-3-oxo-olean-12-en-28-oic acid-28-O-β-D-glucosideT4R[85]
41Ivorengenin A (2α, 19α, 24-trihydroxy-3-oxoolean-12-en-28-oic acid)T28B[132]
42Chebuloside ⅠT17F[115]
43Chebuloside ⅡT17
T32
F
B
[115]
[138]
44ArjunglucosideT17
T44
T33
F
R, SB
SB
[115]
[133]
[158]
45Glaucescic acid (2α, 3α, 6α, 23-tetrahydroxyolean-2-en-28-oic acid)T25R[69]
46Glaucinoic acid (2α, 3β, 19α, 24-tetrahydroxyolean-12-en-30-oic acid)T25SB[130]
47Termiarjunoside Ⅰ (olean-1α, 3β, 9α, 22α-tetraol-12-en-28-oic acid-3-β-D-glucoside)T4SB[156]
48Termiarjunoside Ⅱ (olean-3α, 5α, 25-triol-12-en-23, 28-dioic acid-3α-D-glucoside)T4SB[156]
49β-AmyrinT25
T36
SB
B
[129]
[140]
50Ivorenoside AT28B[131]
51Ivorenoside BT28B[131]
52Ivorenoside CT28B[131]
53Ivorengenin B (4-oxo-19α-hydroxy-3, 24-dinor-2, 4-secoolean-12-ene-2, 28-dioic acid)T28B[132]
541α, 3β-Hydroxyimberbic acid 23-O-α-L-4-acetylrhamnosideT47SB[48]
551α, 3β, 3, 23-Trihydroxy-olean-12-en-29-oate-23-O-α-[4-acetoxyrhamnosyl]-29-α-rhamnosideT47SB[48]
562α, 3β-Dihydroxyolean-12-en-28-oic acid 28-O-β-D-glucosideT48SB[49]
572α, 3β, 21β-Trihydroxyolean-12-en-28-oic acid 28-O-β-D-glucosideT48SB[49]
582α, 3β, 29-Trihydroxyolean-12-en-28-oic acid 28-O-β-D-glucosideT48SB[49]
592α, 3β, 23, 27-Tetrahydroxyolean-12-en-28-oic acid 28-O-β-D-glucosideT48SB[49]
60Terminaliaside A ((3β, 21β, 22α)-3-O-(3′-O-angeloylglucosyl)-21, 22-dihydroxy-28-O-sophorosyl-16-oxoolean-12-ene)T50R[72]
612, 3, 23-Trihydroxylolean-12-eneT7RB[91]
622α, 3β, 23-Trihydroxylolean-12-en-28-oic acidT48SB[49]
6323-O-galloylpinfaenoic acid 28-O-β-D-glucosyl esterT17F[146]
64Pinfaenoic acid 28-O-β-D-glucosyl esterT4
T17
B
F
[76]
[146]
652α, 3β-Dihydroxyurs-12, 18-dien-28-oic acid 28-O-β-D-glucosyl esterT4B[76]
66Quadranoside ⅧT4B[76]
67Kajiichigoside F1T4B[76]
682α, 3β, 23
Trihydroxyurs-12, 19-dien-28-oic acid 28-O-β-D-glucosyl ester
T4B[76]
69α-AmyrinT7RB[91]
702α, 3β, 23-Trihydroxy-urs-12-en-28-oic acidT34L[35]
712α-Hydroxyursolic acidT34
T17
L
F
[35]
[115, 116]
72Ursolic acidT11L[35]
732α-Hydroxymicromeric acidT17F[115, 116]
74Betulinic acidT1
T11
T12
T4, T16, T17, T20, T39
T8
T25
T28
T36
B
L
B
B, L, S, R, F
B, L, S, R
SB
B
B
[55]
[35]
[99]
[23]
[23]
[129]
[132]
[140]
75Terminic acidT4R, H[57, 62]
76LupeolT4
T25
T44
SB
SB
SB, R
[80]
[129]
[43]
77Monogynol AT12B[99]
78TriterpenesT25
T44
SB
R, SB
[129]
[133]
79FriedelinT4
T7
T25
T34
F
RB
SB
SB
[83]
[93]
[129, 130]
[35]
80Maslinic lactoneT1H[56]
81Terminalin AT25SB[129]
82Arjunaside AT4B[68]
83Arjunaside BT4B[68]
84Arjunaside CT4B[68]
85Arjunaside DT4B[68]
86Arjunaside ET4B[68]
Mono-(14) and sesqui-(4) terpendoids
87α-PineneT9L[13]
88SabineneT9L[13]
89MyrceneT9L[13]
90β-PineneT9L[13]
911, 8-CineoleT9L[13]
92LinaloolT9L[13]
93MenthoneT9L[13]
94γ-TerpineolT9L[13]
95α-TerpineolT9L[13]
96LimoneneT9L[13]
97NeralT9L[13]
98GeraniolT9L[13]
99ThymolT9L[13]
100IsomenthoneT9L[13]
101β-CopaeneT9L[13]
102β-CaryophylleneT9L[13]
103CaryophylleneT9L[13]
104α-HumuleneT9L[13]
Hydrolysable (89) and condensed tannins (2)
1051, 2, 3, 6-Tetra-O-galloyl-β-D-glucoseT17F[159]
106Gallotannin (1, 2, 3, 4, 6 penta galloyl glucose)T4
T17
T19
T30
T45, T46
SB, L
F
F
R
L
[86]
[21, 118, 119]
[120]
[133]
[133]
1071, 3, 4, 6-Tetra-O-galloyl-β-D-glucoseT17F[159]
1082, 3, 4, 6-Tetra-O-galloyl-D-glucoseT3
T4
F
SB, L
[154]
[86]
1091, 2, 6-Tri-O-galloyl-β-D-glucoseT31R[101]
110Sanguiin H-1T14L[102]
1111, 6-Di-O-galloyl-β-D-glucoseT3
T17
T40
F
F
B
[154]
[21, 119]
[41]
1121, 3, 6-Tri-O-galloyl-β-D-glucoseT3
T40
T19
T17
F
B
F
F
[154]
[41]
[120]
[159]
113Methyl 3, 6-di-O-galloyl-β-D-glucosideT40B[41]
1144, 6 Bis hexahydroxydiphenyl-1-galloyl-glucoseT4SB, L[86]
115Sanguiin H-4T14L[18, 102]
116CorilaginT3
T31
T16
T17
T19
T24
T32
F
R
L, B
F
F
F
L
[154]
[101]
[41, 106, 107]
[21, 118, 119, 159]
[120]
[126]
[135, 136]
117TercatainT16
T17
B, L
F
[41, 106, 107]
[159]
1181, 3-Di-O-galloyl-β-D-glucoseT17F[159]
1192, 3-O-(S)-HHDP-D-glucoseT3
T14
T4
T16
T40
T36
F
L
B
B, L
B
L
[154]
[102]
[104]
[41, 107]
[41]
[38]
1202, 3-(S)-HHDP-6-O-galloyl-D-glucoseT3
T4
T40
T32
F
B
B
B
[154]
[104]
[41]
[137]
1213, 6-Di-O-galloyl-D-glucoseT3
T40
T17
F
B
F
[154]
[41]
[159]
1223, 4-Di-O-galloyl-D-glucoseT3F[154]
1236-O-galloyl-D-glucoseT17F[159]
1243, 4, 6-Tri-O-galloyl-D-glucoseT17F[159]
125Tellimagrandin ⅠT35
T17
L
F
[139]
[159]
126Gemin DT17F[159]
127ArjuninT4
T17
L
F
[65, 86]
[115]
128PunicalinT3
T4
T14
T40
T16
T17
T28
T49
F
L, B
L
B
L
L, F
SB
L
[154]
[65, 86, 104]
[102]
[41]
[106, 107]
[21, 155]
[29]
[149]
129CasuarininT4
T16
T17
L, B
B
F
[88, 104]
[41]
[21, 118, 119]
130CasuariinT4B[90, 104]
131TerchebulinT3
T4
T7
T12
T17
T31
F
B
SB
B
F
W
[154]
[90, 104]
[92]
[100]
[21]
[134]
132CastalaginT4
T16, T40
B
B
[90, 104]
[41]
133GrandininT16, T40B[41]
134CastalinT16, T40B[41]
135α/β-PunicalaginT3
T7
T4
T11
T12
T31
T14
T16
T17
T40
T19
T28
T32
T35
T36
T38
F
SB
B
L
B
R
L
B
L, F
B
F
SB
B
L
L
L
[154]
[92]
[104]
[35]
[100]
[101]
[18, 103]
[41]
[21, 106, 119, 155]
[41]
[120]
[29]
[137]
[139]
[38]
[39]
1361-α-O-galloylpunicalaginT14L[18, 102, 103]
1376′-O-methyl neochebulagateT17F[159]
138Dimethyl neochebulagateT17F[159]
139Neochebulagic acidT17F[159]
140Dimethyl 4′-epi-neochebulagateT17F[159]
141Methyl chebulagateT17F[159]
142Chebulagic acidT3
T4
T8
T17
T16
T39
T20
T19
T32
T35
F
B, L, S
F, B, L, S
F, B, L, S, R
F, B, L, S, R
F, B, L, S, R
F, B, L, R
F
L
L
[154]
[23]
[23]
[23, 96]
[3, 4, 9, 21, 110]
[23]
[23]
[120]
[135, 136]
[139]
143Chebulinic acidT3
T4, T8, T16, T20, T39
T17
T32
T35
F
F, B, L, S, R
F, B, L, S, R
L
L
[154]
[23]
[3, 4, 21, 110, 119, 155]
[23]
[110, 135, 139]
144ChebulaninT34, T11
T17
L
F
[35]
[21, 119, 155, 159]
1451, 3-Di-O-galloyl-2, 4-chebuloyl-β-D-glucoseT3F[154]
1461, 6-Di-O-galloyl-2, 4-chebuloyl-β-D-glucoseT17F[155, 159]
1472-O-galloylpunicalinT14
T40
T32
T49
L
B
B
L
[18]
[41]
[137]
[149]
1481-DesgalloyleugeniinT14
T16
L
L
[102]
[107]
149EugeniinT14L[102]
150Rugosin AT14L[102]
1511(α)-O-galloylpedunculaginT14L[102]
152Praecoxin AT14L[102]
153CalamansaninT14L[102]
154Calamanin AT14L[102]
155Calamanin BT14L[102]
156Calamanin CT14L[102]
157Terflavin CT4
T14
T17
B
L
L
[104]
[103]
[21]
158Terflavin AT16
T17
T32
L
F
B
[106, 107]
[21]
[137]
159Terflavin BT16
T17
T32
L
L, F
B
[106, 107]
[21, 155]
[137]
1603-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloyl)-glucosideT16B[41]
1613, 5-Di-methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloyl)-glucosideT16B[41]
162Acutissimin AT16B[41]
163Eugenigrandin AT16B[41]
164Catappanin AT16B[41]
165CastamollininT40B[41]
166TergallaginT16L[106, 107]
167GeraniinT16L[107]
168Granatin BT16L[107]
169Gallotannic (tannic acid)T17, T8
T38
F
L
[113]
[141]
170ChebulinT17F[113, 114]
171TerchebinT17F[113, 119]
172Neochebulinic acidT3
T17
F
F
[154]
[21, 119, 155]
173Chebumeinin AT17F[118]
174Chebumeinin BT17F[118]
175IsoterchebulinT32B[137]
176Punicacortein CT3
T32
T17
F
B
F
[154]
[137]
[159]
177Punicacortein DT17F[159]
1784, 6-O-Isoterchebuloyl-D-glucoseT32B[137]
179Trigalloyl-β-D-glucoseT35L[139]
180Tetragalloyl-β-D-glucoseT35L[139]
181Pentagalloyl-β-D-glucoseT35L[139]
1821, 2, 3-Tri-O-galloyl-6-O-cinnamoyl-β-D-glucoseT17F[159]
1831, 2, 3, 6-Tetra-O-galloyl-4-O-cinnamoyl-β-D-glucoseT17F[159]
1841, 6-Di-O-galloyl-2-O-cinnamoyl-β-D-glucoseT17F[159]
1851, 2-Di-O-galloyl-6-O-cinnamoyl-β-D-glucoseT17F[159]
1864-O-(2′′, 4′′-di-O-galloyl-α-L-rhamnosyl) ellagic acidT17F[159]
1874-O-(4′′-O-galloyl-α-L-rhamnosyl) ellagic acidT17F[159]
1884-O-(3′′, 4′′-di-O-galloyl-α-L-rhamnosyl) ellagic acidT17F[159]
1891′-O-methyl neochebulaninT17F[159]
190Dimethyl neochebulinateT17F[159]
191Phyllanemblinin ET17F[159]
1921′-O-methyl neochebulinateT17F[159]
193Phyllanemblinin FT17F[159]
194Procyanidin B-1T16B[41]
1953′-O-galloyl procyanidin B-2T16B[41]
Flavonoids (45)
1965, 7, 2′-Tri-O-methylflavanone4′-O-α-l-rhamnosyl-(1 → 4)-β-D-glucosideT1R[52]
197ArjunoneT4B, F[83, 89]
1988-Methyl-5, 7, 2′, 4′-tetramethoxy-flavanoneT1
T39
R
B
[53]
[144]
199NaringinT4
T8
T17
T39
T20
L, S, F
B, F
L, R, F
R, F
B, L, S, R
[23]
[23]
[23]
[23]
[23]
200EriodictyolT4, T8, T17, T20, T39
T16
B, L, S, R, F
L, S, R, F
[23]
[23]
201HesperitinT24F[122]
202FlavanoneT24F[122]
203Arjunolone (6, 4-dihydroxy-7-methoxy flavone)T4SB[64]
204Bicalein (5, 6, 7-trihydroxy flavone)T4SB[64]
205ScutellareinT4
T8, T17, T20
T16
T39
B, R
B, L, S, R, F
L, F
B, L, R, F
[23]
[23]
[23]
[23]
206LuteolinT4
T8, T20
T17
T16
T39
T24
B, L
L, S
R, L
L
L, S, F
F
[23, 65]
[23]
[23]
[23]
[23]
[122]
207ApigeninT4
T8, T16, T17, T20, T39
B, L, S, R, F
B, L, S, R, F
[23, 66]
[23]
208IsoorientinT11
T4, T8, T17, T16, T20, T39
T35
T36
L
B, L, S, R, F
L
L
[35]
[23]
[139]
[38]
209OrientinT11
T4
T8
T17
T16
T39
T20
T35
T36
L
L, F
B, S
B, L, S, R, F
L, R, F
B, S, F
L, S, F, R
L
L
[35]
[23]
[23]
[23]
[23]
[23]
[23]
[139]
[38]
210IsovitexinT11
T4
T17
T16
T39
T20
T35
T36
L
L, F
L, R, F
L
S, F
L, S, F
L
L
[35]
[23]
[23]
[23, 105]
[23]
[23]
[139]
[38]
211Apigenin-6-C-(2″-O-galloyl)-β-D-glucosideT16L[105]
212Apigenin-8-C-(2″-O-galloyl)-β-D-glucosideT16
T34
L
L
[105]
[35]
213VitexinT4, T17, T20
T8
T16
T39
T35
T36
B, L, S, R, F
B, L, S, R
L, S, R, F
B, L, S, F
L
L
[23]
[23]
[23]
[23]
[139]
[38]
214AmentoflavoneT8
T17
T20
L, S
L, R, F
L
[23]
[23]
[23]
215NeosaponarinT36L[38]
216(-)-EpicatechinT4B[76]
217EpicatechinT4, T8, T17, T20, T39
T16
T34
B, L, S, R, F
L, S, R, F
SB
[23]
[23]
[35]
218CatechinT34
T11
T4, T8, T16, T17, T20, T39
T44
SB
L
B, L, S, R, F
R
[35]
[35]
[23]
[133]
219Catechin–epicatechinT44R[43]
220Catechin–epigallocatechinT44R[43]
221EpigallocatechinT34SB[35]
222(-)-Epicatechin-3-O-gallateT16B[41]
223(-)-Epigallocatechin-3-O-gallateT16B[41]
224FlavanolT24F[122]
225GallocatechinT34
T24
SB
F
[35]
[126]
226QuercetinT4
T8
T17
T16
T39
T20
T24
T49
B, L, R
R
S, R, F
L, S, F
L, B
F
F
L
[23]
[23]
[23]
[23]
[23, 142]
[23]
[124]
[124]
227KaempferolT4
T8
T16, T17
T20, T39
T24
B, L, S, R, F
B, L, S, F
B, L, S, R, F
L, S, R, F
F
[23, 66]
[23]
[23]
[23]
[122]
228Kaempferol-3-O-β-D-rutinosideT4, T8, T17
T16
T39
T20
T36
B, L, S, R, F
L, S, F
L, R, F
L, S, R
L
[23]
[23]
[23]
[23]
[38]
229Afzelin (kaempferol 3-O-rhamnoside)T49L[124]
230RutinT4, T16
T8
T17, T39
T20
T32
T36
B, L, S, F
L, S
B, L, S, R, F
L, S, F
L
L
[23]
[23]
[23]
[23]
[135, 136]
[38]
231NarcissinT32L[135, 136]
232Quercetin-3, 4′-di-O-glucosideT4
T8
T16, T17, T20, T39
B, L, S, F
B, S, F
B, L, S, R, F
[23]
[23]
[23]
233Quercetin-7-O-rhamnosideT4F[80]
2342-O-β-glucosyloxy-4, 6, 2′, 4′-tetramethoxychalconeT1R[53]
235CerasidinT4F[80]
236GenisteinT4
T8, T16, T17, T20, T39
B, L, S, R, F
B, L, S, R, F
[23, 80]
[23]
237CyanidingT4B[66]
238PelargonidinT4B[66]
239LeucocyanidinT4B[80]
2407-Hydroxy-3′, 4-(methylenedioxy)flavanT8FR[12]
Lignan (27)
241TermilignanT8
T39
FR
B
[12]
[144]
242Anolignan BT8
T44
FR
R
[12]
[43, 151]
243ThannilignanT8FR[12]
244Termilignan BT44R[133]
245Ferulic acid dehydrodimerT24F[125]
246(7S, 8R, 7′R, 8′S)-4′-hydroxy-4-methoxy-7, 7′-epoxylignanT48SB[50]
247Meso-(rel7S, 8R, 7′R, 8′S)-4, 4′-dimethoxy-7, 7′-epoxylignanT48SB[50]
2484′-O-cinnamoyl cleomiscosin AT50R[72]
249Diethylstilbestrol monosulphateT24F[126]
250Terminaloside AT19L[22]
251Terminaloside BT19L[22]
252Terminaloside CT19L[22]
253Terminaloside DT19L[22]
254Terminaloside ET19L[22]
255Terminaloside FT19L[22]
256Terminaloside GT19L[22]
257Terminaloside HT19L[22]
258Terminaloside IT19L[22]
259Terminaloside JT19L[22]
260Terminaloside KT19L[22]
2612-Epiterminaloside DT19L[22]
2626-Epiterminaloside KT19L[22]
263Terminaloside LT19L[121]
264Terminaloside MT19L[121]
265Terminaloside NT19L[121]
266Terminaloside OT19L[121]
267Terminaloside PT19L[121]
Phenols and glycosides (52)
268Ellagic acidT1
T7
T10, TM, TT T12
T40
T4, T8, T20
T17
T16
T39
T24
T25
T31
T28, T32
T35
T42
T30, T44
T36, T45, T46
T48
T49
B
SB
SB
B
B
B, L, S, R, F
L, S
B, R F
SB, L, R, F
B, L, S, R, F, H
F
B, R, Rl
B
H
L, F
R, SB
R
L
SB
L
[55]
[92, 127]
[14]
[100]
[41]
[23, 80, 83, 86]
[3, 9, 21, 23, 111, 119]
[14, 23, 41, 108, 144]
[23, 142]
[123]
[70, 127, 128]
[127, 134]
[128]
[37, 38]
[133]
[133]
[133]
[50]
[124]
269Methyl ellagic acidT4B[90]
2703-O-methylellagic acidT33SB[158]
2713, 3′-Di-O-methylellagic acidT28
T39
T48
SB
H, B
SB
[29]
[8, 9, 143, 144]
[50]
2723, 3′-Di-O-methylellagic acid 4-mono glucosideT39H[147, 148]
273Tetra-O-methyl ellagic acidT39H[148]
2743, 3′-Di-O-methylellagic acid 4-O-β-D-glucosyl-(1 → 4)-β-D-glucosyl-(1 → 2)-α-L-arabinosideT1R[52]
2753, 4, 3′-Tri-O-methylflavellagic acidT7
T12
T24
T25
T31
T28
T32
T39
B
B
F
L, B, R, Rl
B
SB, H
H, B
H
[126]
[100]
[126]
[26, 70, 127, 128]
[127]
[29, 128]
[128, 138]
[143, 148]
2763, 3′, 4-O-trimethyl-4′-O-β-D-glucosylellagic acidT28SB[29]
2773, 3′-Di-O-methyl ellagic acid 4′-O-β-D-xylosideT48SB[50]
2783, 4′-Di-O-methylellagic acid 3′-O-β-D-xylosideT48SB[153]
2794′-O-galloy-3, 3′-di-O-methylellagic acid 4-O-β-D-xylosideT48SB[153]
280Flavogallonic acidT7
T40
T31
T12
T36
SB
B
W
R
L
[92]
[41]
[134]
[101]
[38]
281Methyl (S)-flavogallonateT36L[38]
282Vanillic acid 4-O-β-D-(6′-O-galloyl) glucosideT32B[138]
2833-O-methylellagic acid 4′-O-α-L-rhamnosideT4
T34
T33
B
SB
SB
[76]
[35]
[158]
284Eschweilenol C (ellagic acid 4-O-α-L-rhamnoside)T12
T17
B
F
[100]
[164]
2853-O-methylellagic acid 4′-O-xylosideT31R[101]
286Brevifolincarboxylic acidT35L[139]
T17F[159]
287Terflavin DT17L[21]
288Gallic acidT3
T4, T8, T20, T39
T10, TM, TT T17
T16
T34
T12
T31
T40
T24
T30
T35
T36
T38
T42
T44
T45, T46
T48
T49
F
B, L, S, R, F
SB
SB, F, R, L
SB, F, R, L
L
B
R, W
B
F
R
L
L
L
R, S
B
R
L
SB
L
[154]
[23, 80, 83, 86]
[14]
[14, 21, 23, 118, 119]
[14, 23, 41, 108]
[35]
[100]
[101, 134]
[41]
[123, 125]
[133]
[139]
[38]
[141]
[133]
[133]
[133]
[50]
[124]
289Phyllemblin (ethyl gallate isomers1 progallin A)T4
T8
T24
T28
T36
B
F
F
SB
L
[86]
[96, 113]
[126]
[29]
[38]
290Monogalloyl glucoseT3
T8
T17
T31
F
F
F
R
[154]
[113]
[21]
[101]
291Methyl gallateT14
T8
T32
T36
T48
T49
L
F
L
L
SB
L
[18]
[113]
[135, 136]
[38]
[50]
[124]
292Shikimic acidT32L[135, 136]
2935-O-galloyl-(-)-shikimic acidT3
T17
F
F
[118]
[154, 159]
2944-O-galloyl-(-)-shikimic acidT17F[159]
2953, 5-Di-O-galloyl-(-)-shikimic acidT3F[154]
296Digallic acidT17F[159]
297Ethyl gallate isomers2T24F[126]
298Ethyl gallate isomers3T24F[126]
299Dimethyl gallic acidT35L[139]
300Chebulic acidT3
T17
T24
T35
F
F
F
L
[154]
[4, 9, 112, 119, 159]
[125, 126]
[139]
3016′-O-methyl chebulateT17F[159]
3027′-O-methyl chebulateT17F[159]
303Chebulic acid trimethyl esterT32L[135, 136]
304TerminalinT38L[39]
305Decarboxyellagic acidT3F[154]
3063-O-galloyl-D-glucoseT3F[154]
3076-O-galloyl-D-glucoseT3
T17
F
F
[154]
[159]
308Vanillic acidT4, T8, T20, T39
T17
T16
T44
B, L, S, R, F
B
S, R, B, F
R
[23]
[23, 117]
[23]
[43]
309Benzoic acidT44
T24
R
F
[43]
[122]
310Hydrocinnamic acidT44R[43]
311Gentisic acidT16L[108]
312Protocatechuic acidT4, T8, T16, T17, T20, T39B, L, S, R, F[23]
3132, 3-Di-hydroxyphenyl β-D-glucosiduronic acidT24F[125]
314Quinic acidT4, T8, T16, T17, T20, T39
T24
B, L, S, R, F[23]
[125]
315p-Coumaric acidT17
T44
WP
R
[117]
[43]
316Caffeic acidT4, T8
T17
T16
T39
T20
T44
L, S
L, S, R
L
B, L, S, R, F
B
R
[23]
[23]
[23]
[23]
[23]
[43]
317Chlorogenic acidT4
T17
T16, T39
T20
L, S
S, R, F, L
L
B
[23]
[23]
[23]
[23]
318Ferulic acidT4
T8, T17, T20, T39
T16
B, L, S, F
B, L, S, R, F
L, S, R
[23]
[23]
[23]
319Sinapic acidT4, T16, T20, T39
T8
T17
B, L, S, R, F
S, R, F
B, S, R, F
[23]
[23]
[23]
Steroids (8), polyols (9) and esters (6)
320β-SitosterolT1
T4
T8
T12
T16
T48
T25
T36
T39
T44
B, H
S, F
F
F
B, SB
H
H
SB
B
H, SB, R
[55, 56]
[57, 83]
[96, 113]
[99]
[128]
[128]
[129]
[140]
[147, 148]
[43, 133, 152]
321β-Sitosterol-3-acetateT44SB, R[43]
322β-Sitosteryl palmitateT16
T25, T31
SB, H
L, F
[128]
[128]
323Stigmasterol 3-O-β-D-glucosideT4
T33
F
SB
[80]
[158]
324StigmasterolT12
T25
T33
T44
B
SB
SB
RB
[99]
[129]
[158]
[133, 152]
325Stigma-4-ene-3-oneT44RB[43]
32616, 17-Dihydroneridienone 3O-β-D-glucosyl-(1 → 6)-O-β-D-galactosideT4R[59]
327Cannogenol 3-O-β-D-galactosyl-(1 → 4)-O-α-L-rhamno-sideT8Se[94]
3282-HexanolT9L[13]
329OctanolT9L[13]
330Methoxycarbonyloxymethyl methylcarbonateT24F[125]
331RibonolactoneT24F[125]
332Apionic acidT24F[125]
333Ascorbic acidT24F[125]
334GluconolactoneT24F[125]
335Glucohepatonic acid-1, 4-lactoneT24F[125]
336Galacturonic acidT44R[43]
337Geranyl formateT9L[13]
338Citronellyl acetateT9L[13]
339Geranyl acetateT9L[13]
340Geranyl tiglateT9L[13]
341LaxiflorinT31RB[127]
342(1S, 5R)-4-oxo-6, 8-dioxabicyclo[3.2.1]oct-2-ene-2-carboxylic acidT24F[125]
Others (26)
343Glucuronic acidT24F[125]
344CoumarinT45L[133]
345Eujavonic acidT24F[125]
346PurineT24F[125]
3475-(4-Hydroxy-2, 5-dimethylphenoxy)-2, 2-dimethylpentanoic acid (gemfibrozil M1)T24F[125]
348p-Hydroxytiaprofenic acidT24F[125]
349Cis-polyisopreneT32L[135]
350Arachidic acidT17F[113]
351Behenic acidT8, T17F[113]
352ArjunaphthanolosideT4SB[87]
353Resveratrol (3′, 4, 5′-trihydroxystilbene)T24
T44
F
R
[126]
[43]
354Resveratrol glucoside (piceid)T24
T44
F
RB
[126]
[152]
355Resveratrol-β-D-glucosideT44RB[152]
356CombretastatinT24F[126]
357Combretastatin A1T24F[126]
358(Z)-StilbeneT44R[133]
359(E)-StilbeneT44R[133]
3603′5′-Dihydroxy-4-(2-hydroxyethoxy) resveratrol-3-O-β-rutinosideT44R, RB[43, 152]
361Resveratrol-3-β-rutinoside glycosideT44R, RB[43, 152]
3621, 4-CineoleT9L[13]
363Terpinen-4-olT9L[13]
364TerminalianoneT12B[98]
365Termicalcicolanone AT15WP[19]
366Termicalcicolanone BT15WP[19]
367MangiferinT4
T8
T17
T16
T39
T20
B, S, F
B, R, F
B, L, S, R, F
L, R, F
B, L, S, F
L, S, R
[23]
[23]
[23]
[23]
[23]
[23]
368Benzoyl-β-D-(4′ → 10″geranilanoxy)-pyranosideT8F[160]
R root, SB stem bark, B bark, F fruit, S stem, H heartwood, RB root bark, Rl rootlet, Se seed, FR fruit rind, WP whole plant, T1T50 plants from Table 1, TM T. manii, TT T. tomentosa

Table 3

The numbers and main types of compounds reported from different Terminalia species

No.PlantPlant organsNumbersMain types
T1T. alataRoots, barks18Triterpenes
T3T. arboreaFruits24Hydrolysable tannin
T4T. arjunaWhole plants93Triterpenes, tannins, flavonoids
T7T. avicennioidesBarks10Triterpenes, tannins
T8T. belliricaFruits, barks45Triterpenes, flavonoids, lignin, simple phenols
T9T. bentzoeLeaves29Monoterpenoids, sesquiterpenoid
T11T. brachystemmaLeaves8Flavonoids
T12T. browniiLeaves13Triterpenes
T14T. calamansanaiLeaves18Hydrolysable tannin
T16T. catappaWhole plants64Triterpenes, tannins, flavonoids, simple phenols
T17T. chebulaWhole plants120Triterpenes, tannins, flavonoids, simple phenols
T19T. citrinaFruits, leaves23Lignan
T20T. ellipticaWhole plants36Flavonoids
T24T. ferdinandianaFruits35Flavonoids, simple phenols, polyols
T25T. glaucescensBarks19Triterpenes
T28T. ivorensisBarks18Triterpenes
T31T. laxifloraRoots13Tannins
T32T. macropteraWhole plants28Triterpenes, tannins, simple phenols
T33T. mantalyStem barks7Triterpenes, simple phenols
T34T. mollisBarks12Triterpenes, flavonoids
T35T. muelleriLeaves16Hydrolysable tannin, flavonoids, simple phenols
T36T. myriocarpaLeaves, barks21Triterpenes, flavonoids, simple phenols
T39T. paniculataBarks43Triterpenes, flavonoids, simple phenols
T40T. parvifloraBarks16Tannins
T44T. sericeaRoots32Triterpenes, simple phenols, other compounds
T48T. superbaBarks15Triterpenes, simple phenols
Chemical components identified from the other 12 species, including T. bialata (T10), T. calcicola (T15), T. kaiserana (T30), T. manii (TM), T. macroptera (T32), T. oblongata (T38), T. sambesiaca (T42), T. spinosa (T45), T. stenostachya (T46), T. stuhlmannii (T47), T. triflora (T49), T. tropophylla (T50) were less than 6 compounds

3.1 Terpenoids

So far, 104 terpenoids (Fig. 1) including 86 triterpenes (1–86), 14 monoterpenes (87–100), 4 sesquiterpenes (101–104) have been reported from the genus Terminalia. The triterpenoids are mainly oleanane, ursane and lupine types, and their glycosides. Particularly, Atta-ur-Rahman et al. isolated a new seco-triterpene terminalin A (81) possessing a novel rearranged seco-glutinane structure with a pyran ring-A and an isopropanol moiety from the stem barks of T. glaucescens [129]. Ponou et al. found two dimeric triterpenoid glucosides, ivorenosides A and B (49–50) possessing an unusual skeleton [131], and two new oleanane type triterpenes, 3-oxo-type ivorengenin A (41) and 3, 24-dinor-2, 4-secooleanane-type ivorengenin B (53) from the barks of T. ivorensis [132]. Compounds 41, 49 and 53 showed significant anticancer activities. Wang et al. isolated five new 18, 19-secooleanane type triterpene glycosyl esters, namely arjunasides A–E (82–86) from the MeOH extract of T. arjuna's barks, TaBs [68]. Moreover, five ursane type triterpene glucosyl esters (64–68) were also obtained for the first time [76]. From the fruits of T. chebula, 23-O-neochebuloylarjungenin 28-O-β-D-glycosyl ester (21) and 23-O-4′-epi-neochebuloylarjungenin (22) with novel substituents at C-23 were reported, in addition to compounds 23–24, 30–32 and 63, whose C-23 substituents were gallate. Compounds 30 and 31 had strong hypoglycemic effect [146]. Furthermore, compound 40 was obtained from the barks of T. arjuna [85], while friedelin (79) with 3-oxo moiety was reported from the fruits of T. arjuna [83], the root barks of T. avicennioides [93], and the stem barks of T. glaucescens [130] and T. mollis [35].

Fig. 1

The structures of terpenoids 1–104

3.2 Tannins

As the main secondary metabolites, 91 tannins (105–195) were reported from the genus Terminalia (Fig. 2), including ellagitannins, gallotannins, dimeric, and trimeric tannins. Four cinnamoyl-containing gallotannins (182–185) were discovered firstly from the fruits of T. chebula, and 1, 2, 3, 6-tetra-O-galloyl-4-O-cinnamoyl-β-D-glucose (183) and 4-O-(2″, 4″-di-O-galloyl-α-L-rhamnosyl) ellagic acid (186) showed significant inhibitory activity on α-glucosidase with IC50 values of 2.9 and 6.4 μM, respectively [159].

Fig. 2

The structures of tannins 105–195

Tannins possess not only liver and kidney protection properties, but also anti-diarrhea, anticancer, antibacterial and hypoglycemic activities [133]. However, a condensed tannin terminalin (186) from T. oblongata was reported to have severe hepatorenal toxicity and even caused renal necrosis [39].

3.3 Flavonoids

The Terminalia genus are rich in flavonoids (Fig. 3) comprising of flavanones (196–202), flavones (203–215), flavan-3-ols (216–225), and flavonols (226–233). Among them, cerasidin (235) of chalcone, genistein (236) of isoflavone, and leucocyanidin (239) of flavan-3, 4-diol from T. arjuna [80] were described as rare structural types in the Terminalia genus. Moreover, a new chalcone glycoside 2-O-β-glucosyloxy-4, 6, 2′, 4′-tetramethoxychalchone (234) was reported from the roots of T. alata [53]. In addition, anthocyanidin cyanidin (237) and pelargonidin (238), flavanoid 7-hydroxy-3′, 4-(methylenedioxy)flavan (240) and other structure were reported [12, 23, 66]. Compounds 209–213, 215 were C-glycosides at C-6 or C-8 of ring A.

Fig. 3

The structures of flavonoids 197–240

3.4 Lignans

Twenty-seven lignans (241–267) were reported from the genus Terminalia (Fig. 4). A new lignan 4′-O-cinnamoyl cleomiscosin A (248) was reported from the ethanol extract of T. tropophylla roots [72]. Moreover, 13 new furofuran lignan glucosides, terminalosides A–K (250–260), 2-epiterminaloside D (261), 6-epiterminaloside K (262) and 5 new polyalkoxylated furofuranone lignan glucosides, terminalosides L–P (263–267) were obtained from the leaves of T. citrina. All of them were tested for their estrogenic and/or antiestrogenic activities using estrogen responsive breast cancer cell lines T47D and MCF-7, and showed varying degrees of inhibitory activity. Among them, terminalosides B (251), G (256), L (263) and M (264) inhibited cell growth by up to 90% at a minimum concentration of 10 nM [22, 121].

Fig. 4

The structures of lignans 241–267

3.5 Phenols and Glycosides

There are 52 phenols and glycosides reported in the Terminalia genus (Fig. 5), in which ellagic acid (268) and gallic acid (289) are present in almost all species. Studies have shown that most of the simple phenolic compounds have antioxidant, antibacterial, hypoglycemic, liver and kidney protection [23].

Fig. 5

The structures of phenols and glycosides (268–319)

3.6 Sterols and Cardiac Glycosides

Only 6 sterols (320–325) and 2 cardiac glycosides (326-327) were isolated from the genus Terminalia before 2001 (Fig. 6).

Fig. 6

The structures of steroids (320–325) and cardiac glycosides (326–327)

3.7 Polyols and Esters

Polyols and lipids were reported to be abundant in the genus Terminalia and concentrated mainly in fruits and leaves [125]. So far, 9 polyol (328–336) and 6 esters (337–342) have been documented (Fig. 7).

Fig. 7

The structures of polyols and esters (328–342)

3.8 Other Compounds

Other compounds featured in the Terminalia genus are shown in Fig. 8 and are mostly styrenes. Cao et al. isolated two new cytotoxic xanthones - termicalcicolanone A (365), termicalcicolanone B (366) in T. calcicola, and found an inhibitory effect on ovarian cancer [19]. Hiroko Negishi et al. obtained a new chromone derivative - terminalianone (364) from the barks of Terminalia brownii [98]. Ansari et al. isolated the novel compound, 4′-substituted benzoyl-β-D glycoside (368), from the fruits of T. bellirica and illustrated its potential for anticoagulation [160].

Fig. 8

The structures of other compounds (343–368)

Moreover, chlorophyll and various vitamins were reported from the genus Terminalia.

4 Pharmacological Activities

The pharmacological activities of the genus Terminalia, mainly including antimicrobial, antioxidant, cytotoxicity, anti-inflammatory, hypoglycemic, cardiovascular, mosquitocidal and antiviral, have been extensively studied.

4.1 Antimicrobial

Extracts of several Terminalia species exhibit antimicrobial activity against various microbes. For example, methanol and aqueous extracts of T. australis were demonstrated antimicrobial activity against Ca. albicans (MIC = 180 and 250 µg/mL, resp.) and Ca. kruzzei (MIC = 250 and 300 µg/mL, resp.) [8]. Aqueous extracts of the stem barks, woods and whole roots of T. brownii showed antibacterial activity against standard strains of Sta. aureus (14.0 ± 1.1 µg/mL), Escherichia coli, Ps. aeruginosa (12.0 ± 1.1 µg/mL), Klebsiella pneumonia (6.0 ± 1.0 µg/mL), Sa. typhi and Bacillus anthracis (13.0 ± 1.0 µg/mL), as well as fungi Ca. albicans (12.3 ± 1.5 µg/mL) and Cr. neoformans (9.7 ± 1.1 µg/mL) [16]. Ethanol extracts of the root barks and leaves of T. schimperiana were against Sta. aureus, Ps. aeruginosa and Sa. typhi (MIC = 0.058–2.089 mg/mL), with inhibition zone diameters (IZDs) of 17.2 to 10.0 mm, compared to gentamicin (IZD = 21.8–10 mm). The results supported the efficacy of the extracts in the folkloric treatment of burns wounds, bronchitis and dysentery, respectively [42]. Antibacterial tests on Mycobacterium smegmatis ATCC 14468 showed that methanol extract of T. sambesiaca roots and stem barks had promising effects (MIC = 1.25 mg/mL, both) [133].

Ellagitannin punicalagin (133) obtained from the stem barks of T. mollis demonstrated crucial activity against Ca. parapsilosis and Ca. krusei (MIC = 6.25 μg/mL), as well as Ca. albicans (MIC = 12.5 μg/mL) [35]. 7-Hydroxy-3′, 4′-(methylenedioxy) flavan (240), termilignan (241), anolignan B (242) and thannilignan (243) isolated from the fruit rinds of T. bellirica displayed significant antifungal activity against Penicillium expansum (MIC = 1.0, 2.0, 3.0 and 4.0 µg/mL, resp.), also with 240 and 241 against Ca. albicans at 10 and 6 µg/mL, resp. [12]. The antimycobacterial activity of friedelin (79) furnished from the root barks of T. avicennioides was 4.9 μg/mL in terms of MIC value [93]. β-Arjungenin (16), betulinic acid (74), sitosterol (319) and stigmasterol (323) from T. brownii were proved to possess antibacterial activity, with 74 the most active against A. niger and S. ipomoea (MIC = 50 μg/ml) [99].

4.2 Antioxidant

Terminalia species have also illustrated some interesting antioxidant properties [161]. By a 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, relatively high anti-oxidant activities of the methanol extracts of T. alata, T. bellirica and T. corticosa trunk-barks were found (IC50 = 0.24, 1.02 and 0.25 mg/mL, resp.), compared to the positive control, l -ascorbic acid (IC50 = 0.24 mg/mL) [2].

Flavonoid glycosides, apigenin-6-C-(211) and apigenin-8-C-(212) (2″-O-galloy1)-β-D-glucoside, isolated from dried fallen leaves of T. catappa, showed significant antioxidative effects (IC50 = 2.1 and 4.5 µM, resp.) on Cu2+/02-induced low density lipoprotein lipid peroxidation, with probucol (IC50 = 4.0 µM) as positive control [105].

Arjunaphthanoloside (351), isolated from the stem barks of T. arjuna showed potent antioxidant activity and inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages [87], while ivorenosides B (51) and C (52), two triterpenoid saponins from T. ivorensis, exhibited scavenging activities against DPPH and ABTS+ radicals [131].

The antioxidant potential of T. paniculata (TPW) was investigated by DPPH, ABTS2-, NO, superoxide (O2-), Fe2+ chelating and ferric reducing/antioxidant power (FRAP) assays. TPW showed maximum superoxide, ABTS2-, NO, DPPH inhibition, and Fe2+-chelating property at 400 µg/mL, resp. FRAP value was 4.5 ± 0.25 µg Fe(Ⅱ)/g, which demonstrated the efficacy of aqueous barks extract of T. paniculata as a potential antioxidant and analgesic agent [142].

TaB contains various natural antioxidants and has been used to protect animal cells against oxidative stress. The alleviating effect of TaB aqueous extract against Ni toxicity in rice (Oryza sativa L.) suggested that TaB extract considerably alleviated Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings [162]. Behavioral paradigms and PCR studies of TaB extract against picrotoxin-induced anxiety showed that TaB supplementation increased locomotion towards open arm (EPM), illuminated area (light–dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, alcoholic extract of TaB showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes [174].

4.3 Cytotoxicity

70% Acetone extracts of T. calamansanai leaves inhibited the viability of human promyelocytic leukemia HL-60 cells. Sanguiin H-4 (115), 1-α-O-galloylpunicalagin (136), punicalagin (135), 2-O-galloylpunicalin (147) and methyl gallate (290) were the main components isolated from T. calamansanai with the IC50 values of 65.2, 74.8, 42.2, 38.0 and > 100 µM, respectively, for HL-60 cells. Apoptosis of HL-60 cells treated with 1-α-O-galloylpunicalagin, 115, 135, and 147 was noted by the appearance of a sub-G1 peak in flow cytometric analysis and DNA fragmentation by gel electrophoresis. 115 and 147 induced a decrease of the human poly (ADP-ribose) polymerase (PARP) cleavage-related procaspase-3 and elevated activity of caspase-3 in HL-60 cells, but not normal human peripheral blood mononuclear cells, PBMCs [18].

Terminaliaside A (60), an oleanane-type triterpenoid saponin isolated from the roots of T. tropophylla showed antiproliferative activity against the A2780 human ovarian cancer cell line with an IC50 value of 1.2 µM [72]. The 70% methanolic extract of T. chebula fruits was found to decrease cell viability, inhibit cell proliferation, and induce cell death of human (MCF-7) and mouse (S115) breast cancer, human osteosarcoma (HOS-1), human prostate cancer (PC-3) and a non-tumorigenic, immortalized human prostate (PNT1A) cell lines. Flow cytometry and other analyses showed that some apoptosis was induced by the extract at lower concentrations, but at higher concentrations, necrosis was the major mechanism of cell death. Chebulinic acid (143) and ellagic acid (186) were tested by ATP assay on HOS-1 cell line in comparison with three known antigrowth phenolics of Terminalia, gallic acid (287), methyl gallate (290), luteolin (206), and tannic acid (169). Results showed that the most growth inhibitory phenolics in T. chebula fruits were chebulinic acid (IC50 = 53.2 µM ±/0.16) > /tannic acid (IC50 = 59.0 mg/mL ±/0.19) > ellagic acid (IC50 = 78.5 µM ±/0.24) [111].

Aqueous and ethanolic extracts of T. citrina fruits were revealed to exhibit significant mutagenicity in tested strains of baby hamster kidney cell line (BHK-21). Ethanolic extract showed higher mutagenicity in TA 100 strain, whereas aqueous extract exhibited higher mutagenicity in TA 102 strain than TA 100. Both extracts showed dose-dependent mutagenicity. Fifty percent cell viability was exhibited by 260 and 545 μg/mL of ethanolic and aqueous extracts respectively [169]. Moreover, ivorenoside A (50) showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC50 values of 3.96 and 3.43 µM, respectively [131].

4.4 Anti-inflammatory

Inflammation has been considered as a major risk factor for various kinds of human diseases. Macrophages play substantial roles in host defense against infection. It can be activated by LPS, the major component of the outer membrane of Gram-negative bacteria. An investigation was carried out to determine anti-inflammatory potential of ethyl acetate fraction isolated from T. bellirica (EFTB) in LPS stimulated RAW 264.7 macrophage cell lines. EFTB (100 μg/mL) inhibited all inflammatory markers in dose dependent manner. Moreover, EFTB down regulated the mRNA expression of TNF-α, IL-6, COX-2 and NF-κB against LPS stimulation. These results demonstrated that EFTB is able to attenuate inflammatory response possibly via suppression of ROS and NO species, inhibiting the production of arachidonic acid metabolites, proinflammatory mediators and cytokines release [165].

Anolignan B (242) isolated from roots of T. sericea was tested for anti-inflammatory activity using the cyclooxygenase enzyme assays (COX-1 and COX-2) It showed activity against both COX-1 (IC50 = 1.5 mM) and COX-2 (IC50 = 7.5 mM) enzymes [151]. Termiarjunosides Ⅰ (47) and Ⅱ (48) isolated from stem barks of T. arjuna inhibited aggregation of platelets and suppressed the release of NO and superoxide from macrophages [156].

The anti-inflammatory activities of a polyphenol-rich fraction (TMEF) obtained from T. muelleri was assessed using carrageenan-induced paw edema model by measuring PGE2, TNF-α, IL-1b, and IL-6 plasma levels as well as the paw thickness. The group treated with 400 mg/kg of TMEF showed a greater inhibition in the number of writhes (by 63%) than the standard treated group (61%). TMEF pretreatment reduced the edema thickness by 48, 53, and 62% at the tested doses, respectively. TMEF administration inhibited the carrageenan-induced elevations in PGE2 (by 34, 43, and 47%), TNF-α (18, 28, and 41%), IL-1β (14, 22, and 29%), and IL-6 (26, 31, and 46%) [166].

4.5 Hypoglycemic

Some species and isolates from Terminalia have indicated possession of α-glucosidase inhibitory capabilities. Gallic acid (287) and methyl gallate (290), from stem barks of T. superba, showed significant activity (IC50 = 5.2 ± 0.2 and 11.5 ± 0.1 μM, resp.). Arjunic acid (5) and glaucinoic acid (46) from stem barks of T. glaucescens showed significant β-glucuronidase inhibitory activity with IC50 value 80.1 and 500 μM, resp., against β-glucuronidase [130].

In a study to investigate α-glucosidase inhibition of extracts and isolated compounds from T. macroptera leaves, chebulagic acid (142) showed an IC50 value of 0.05 µM towards α-glucosidase and 24.9 ± 0.4 µM towards 15-lipoxygenase (15-LO), in contrast to positive controls (acarbose: IC50 = 201 ± 28 µM towards α-glucosidase, quercetin: IC50 = 93 ± 3 µM towards 15-LO). Corilagin (116) and narcissin (231) were good 15-LO and α-glucosidase inhibitors. Rutin (230) was a good α-glucosidase inhibitor (IC50 ca. 3 µM), but less active towards 15-LO [136].

From the fruits of T. chebula, 23-O-galloylarjunolic acid (30) and 23-O-galloylarjunolic acid 28-O-β-D -glucosyl ester (31) were afforded and showed potent inhibitory activities with IC50 values of 21.7 (30) and 64.2 (31) µM, resp., against Baker's yeast α-glucosidase, compared to the positive control, acarbose (IC50 174.0 µM) [146].

Hydrolyzable tannins, 1, 2, 3, 6-tetra-O-galloyl-4-O-cinnamoyl-β-D-glucose (183) and 4-O-(2″, 4″-di-O-galloyl-α-L-rhamnosyl) ellagic acid (186) from the fruits of T. chebula, showed significant α-glucosidase inhibitory activities with IC50 values of 2.9 and 6.4 µM, resp. In addition, inhibition kinetic studies showed that both compounds have mixed-type inhibitory activities with the inhibition constants (Ki) of 1.9 and 4.0 µM, respectively [159].

4.6 Cardiovascular

A few species of Terminalia have demonstrated cardiovascular activities. It was reported that the barks of T. arjuna possessed significant inotropic and hypotensive effect, mild diuretic, antithrombotic, prostaglandin E2 enhancing and hypolipidaemic activities [66].

Ethanolic extract of T. pallida fruits (TpFE) were studied to determine their cardioprotection against isoproterenol (ISO)-administered rats. The supplementation of TpFE dose-dependently exerts notable protection on myocardium by virtue of its strong antioxidant activity. It could be used as a medicinal food for the treatment of cardiovascular ailments [163].

4.7 Mosquitocidal

Insect-borne diseases remain to this day a major source of illness and can cause death worldwide. The resistance to chemical insecticides among mosquito species has been a major problem in vector control. The larvicidal and ovicidal activities of crude benzene, hexane, ethyl acetate, chloroform and methanol extracts of T. chebula were tested for their toxicity against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. All extracts showed moderate larvicidal effects, the highest larval mortality was found in the methanol extract of T. chebula against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with the LC50 values of 87.13, 93.24 and 111.98 ppm, respectively. Mean percent hatchability of the ovicidal activity was observed 48 h post treatment. All the five solvent extracts showed moderate ovicidal activity. The maximum egg mortality (zero hatchability) was observed in the methanol extract of T. chebula at 200 and 250 ppm against A. stephensi, while A. aegypti and C. quinquefasciatus showed 100% mortality at 300 ppm. No mortality was observed in the control group. The finding of the investigation revealed that the leaf extract of T. chebula possesses remarkable larvicidal and ovicidal activity against medically important vector mosquitoes [167, 168].

4.8 Antiviral

Termilignan (241) and anolignan B (242), obtained from T. bellirica exhibited antimalarial activity against the chloroquine-susceptible strain 3D7 of Plasmodium falciparum (IC50 = 9.6 ± 1.2 μM)[12]. Casuarinin (129), chebulagic acid (142) from the fruits of T. chebula possessed hepatitis C virus inhibition activities (IC50 = 9.6 and 5.2 μM, resp.) [118]. Punicalin (128) and 2-O-galloylpunicalin (147), isolated from aqueous extract of T. triflora leaves, showed inhibitory activity on HIV-1 reverse transcriptase with IC50 of 0.11 μg/mL (0.14 μM) and 0.10 μg/mL (0.11 μM), resp. [149].

In vitro anti-HIV-1 activity of acetone and methanol extracts of T. paniculata fruits was studied by Durge A. et al. Cytotoxicity tests were conducted on TZM-bl cells and PBMCs, the CC50 values of both extracts were ≥ 260 μg/mL. By using TZM-bl cells, the extracts were tested for their ability to inhibit replication of two primary isolates HIV-1 (X4, Subtype D) and HIV-1 (R5, Subtype C). The activity against HIV-1 primary isolate (R5, Subtype C) was confirmed by using activated PBMC and quantification of HIV-1 p24 antigen. Both the extracts showed anti-HIV-1 activity in a dose-dependent manner. The EC50 values of the acetone and methanol extracts of T. paniculata were ≤ 10.3 μg/mL. Furthermore, the enzymatic assays were performed to determine the mechanism of action which indicated that the anti-HIV-1 activity might be due to inhibition of reverse transcriptase (≥ 77.7% inhibition) and protease (≥ 69.9% inhibition) enzymes [172].

Kesharwani A. et al. investigated anti-HSV-2 activity of T. chebula extract and its constituents, chebulagic acid (142) and chebulinic acid (143). Cytotoxicity assay using Vero cells revealed CC50 = 409.71 ± 47.70 μg/mL for the extract whereas 142 and 143 showed more than 95% cell viability up to 200 μg/mL. The extract from T. chebula (IC50 = 0.01 ± 0.0002 μg/mL), chebulagic (IC50 = 1.41 ± 0.51 μg/mL) and chebulinic acids (IC50 = 0.06 ± 0.002 μg/mL) showed dose dependent in vitro anti-viral activity against HSV-2, which can also effectively prevent the attachment and penetration of the HSV-2 to Vero cells. In comparison, acyclovir showed poor direct anti-viral activity and failed to significantly (p > 0.05) prevent the attachment as well as penetration of HSV-2 to Vero cells when tested up to 50 μg/mL. Besides, in post-infection plaque reduction assay, T. chebula extract, chebulagic and chebulinic acids showed IC50 values of 50.06 ± 6.12, 31.84 ± 2.64, and 8.69 ± 2.09 μg/mL, resp., which were much lower than acyclovir (71.80 ± 19.95 μg/mL) [173].

4.9 Others

Terminalia species were also reported to be used in the treatment of diarrhea [95], Alzheimer's disease [112], psoriasis [164], liver disease [170], kidney disease [171], etc. Terminalosides A–K (249–259) from the leaves of the Bangladeshi medicinal plant T. citrina possess estrogen-inhibitory properties. Among them, Terminaloside E (253) showed inhibitory activity against the T47D cell line, such terminalosides C (252), F (255), and Ⅰ (258). Besides, 6-epiterminaloside K (262) displayed antiestrogenic activity against MCF-7 cells [22].

5 Conclusion and Future Prospects

The genus Terminalia contains not only a large number of tannins, simple phenolics, but also a lot of terpenoids, flavonoids, lignans and other compounds. Most tannins, simple phenolics and flavonoids have antioxidation, antibacterial, antiinflammatory and anticancer activities. The plants of the genus Terminalia have exhibited positive effect on immune regulation, cardiovascular disease and diabetes, and can accelerate wound healing [157]. Therefore, the Terminalia genus has great medicinal potential. However, most of the chemical composition of species is still unknown, we should use modern advanced technology such as LC–MS to continue to isolate its compounds, and determine their pharmacological activities and mechanism of action, to explore other possible greater medicinal value.

Notes

Acknowledgements

This work was supported by the Key Projects of Yunnan Science and Technology, and Yunnan Key Laboratory of Natural Medicinal Chemistry (S2017-ZZ14).

Conflict of interest

All authors declare no conflict of interest.

References

  1. 1.
    L.J. McGaw, T. Rabe, S.G. Sparg, A.K. Jäger, J.N. Eloff, J. van Staden, J. Ethnopharmacol. 75, 45-50 (2001) CrossRef PubMed Google Scholar
  2. 2.
    Q. Nguyen, V.B. Nguyen, J. Eun, S. Wang, D.H. Nguyen, T.N. Tran, A.D. Ngugen, Res. Chem. Intermed. 42, 5859-5871 (2016) CrossRef PubMed Google Scholar
  3. 3.
    S.K. Srivastava, B.K. Chouksey, S.D. Srivastava, Fitoterapia 72, 191-193 (2001) CrossRef PubMed Google Scholar
  4. 4.
    D. Arias, J. Calvo-Alvarado, D.B. de Richter, A. Dohrenbusch, Biomass Bioenergy 35, 1779-1788 (2011) CrossRef PubMed Google Scholar
  5. 5.
    Y. Noboru, I. Ayako, K. Chika, S. Keisuke, JP2001098264 A 20010410 (2001) PubMed Google Scholar
  6. 6.
    R.N. Yadav, K. Rathore, Phytochem. Commun. 72, 459-461 (2001) PubMed Google Scholar
  7. 7.
    S. Fangwen, P. Raoji, CN105232959 A 20160113 (2016) PubMed Google Scholar
  8. 8.
    S.M. Carpano, E.D. Spegazzini, J.S. Rossi, M.T. Castro, S.L. Debenedetti, Fitoterapia 74, 294-297 (2003) CrossRef PubMed Google Scholar
  9. 9.
    A.A. Omonkhua, M.C. Cyril-Olutayo, O.M. Akanbi, O.A. Adebayo, Parasitol. Res. 112, 3497-3503 (2013) CrossRef PubMed Google Scholar
  10. 10.
    H. Zanna, S. Ahmad, B. Abdulmalik, M Tasi'u, GO Abel, Musa HM. Adv. Biochem. 2, 55-59 (2014) CrossRef PubMed Google Scholar
  11. 11.
    R.N. Chopra, S.L. Nayar, I.C. Chopra, Glossary of Indian Medicinal Plants (CSIR, New Delhi, 1956), p. 241 PubMed Google Scholar
  12. 12.
    R. Valsaraj, P. Pushpangadan, U.W. Smitt, A. Adsersen, S.B. Christensen, A. Sittie, U. Nyman, C. Nielsen, C.E. Olsen, J. Nat. Prod. 60, 739-742 (1997) CrossRef PubMed Google Scholar
  13. 13.
    A. Gurib-Fakim, J. Essent. Oil Res. 6, 533-534 (1994) CrossRef PubMed Google Scholar
  14. 14.
    S. Khatoon, N. Singh, N. Srivastava, A. Rawat, S. Mehrotra, J. Planar Chromatogr. 21, 167-171 (2008) CrossRef PubMed Google Scholar
  15. 15.
    M. Gelfand, The Traditional Medical Practitioner in Zimbabwe, His Principles of Practice and Pharmacopoeia (Mambo Press, Gweru, 1985), pp. 58–61 PubMed Google Scholar
  16. 16.
    Z.H. Mbwambo, M.J. Moshi, P.J. Masimba, M.C. Kapingu, R.S. Nondo, BMC Complement. Altern. Med. 7, 9 (2007) PubMed Google Scholar
  17. 17.
    K.S. McIntosh, Qld Agric. J. 42, 727-729 (1934) PubMed Google Scholar
  18. 18.
    L.G. Chen, W.T. Huang, L.T. Lee, C.C. Wang, Toxicol. Vitro 23, 603-609 (2009) CrossRef PubMed Google Scholar
  19. 19.
    S. Cao, P.J. Brodie, J.S. Miller, R. Randrianaivo, F. Ratovoson, C. Birkinshaw, R. Andriantsiferana, V.E. Rasamison, D.G.I. Kingston, J. Nat. Prod. 70, 679-681 (2007) CrossRef PubMed Google Scholar
  20. 20.
    Y. Lin, Y. Kuo, M. Shiao, C. Chen, J. Ou, J. Chin. Chem. Soc. 47, 253-256 (2000) CrossRef PubMed Google Scholar
  21. 21.
    A. Bag, S.K. Bhattacharyya, R.R. Chattopadhyay, Asian Pac. J. Trop. Biomed. 3, 244-252 (2013) CrossRef PubMed Google Scholar
  22. 22.
    M.A. Muhit, K. Umehara, K. Moriyasumoto, H. Noguchi, J. Nat. Prod. 79, 1298-1307 (2016) CrossRef PubMed Google Scholar
  23. 23.
    A. Singh, V. Bajpai, S. Kumar, B. Kumar, M. Srivastava, K.B. Rameshkumar, Ind. Crop Prod. 87, 236-246 (2016) CrossRef PubMed Google Scholar
  24. 24.
    T. Zhang, H. Sun, J. Plant. Res. 124, 63-73 (2011) CrossRef PubMed Google Scholar
  25. 25.
    I. Konczak, F. Maillot, A. Dalar, Food Chem. 151, 248-256 (2014) CrossRef PubMed Google Scholar
  26. 26.
    J. Koudou, G. Roblot, R. Wylde, Planta Med. 61, 490-491 (1995) PubMed Google Scholar
  27. 27.
    T. Okpekon, S. Yolou, C. Gleye, F. Roblot, P. Loiseau, C. Bories, P. Grellier, F. Frappier, A. Laurens, R. Hocquemiller, J. Ethnopharmcol. 90, 91-97 (2004) CrossRef PubMed Google Scholar
  28. 28.
    O. Nobuhiko, S. Shizu, C. Nuan, JP2007099733 A 20070419 (2007) PubMed Google Scholar
  29. 29.
    V.A. Adiko, B.K. Attioua, F.Z. Tonzibo, K.M. Assi, C. Siomenan, L.A. Djakouré, Afr. J. Biotechnol. 12, 4393-4398 (2013) CrossRef PubMed Google Scholar
  30. 30.
    J. Hutchinson, J.M. Dalziel, Appendix to the Flora of West Tropical Africa (Published on behalf of the Governments of Nigeria, Ghana, Sierra Leone and the Gambia by the Crown Agents for Oversea Governments and Administrations, London, 1936), p. 81 PubMed Google Scholar
  31. 31.
    K. Anam, R.M. Widharna, D. Kusrini, Int. J. Pharmacol. 5, 277-280 (2009) CrossRef PubMed Google Scholar
  32. 32.
    M.S. Musa, F.E. Abdelrasool, E.A. Elsheikh, L.A. Ahmed, A.L.E. Mahmoud, S.M. Yagi, J. Med. Plants Res. 5, 4287-4297 (2011) PubMed Google Scholar
  33. 33.
    W. Ogbazghi, E. Bein, Drylands Coord. Group Rep. 40, 26-27 (2006) PubMed Google Scholar
  34. 34.
    Y. Zou, G.T.T. Ho, K.E. Malterud, N.H.T. Le, K.T. Inngjerdingen, H. Barsett, D. Diallo, T.E. Michaelsen, B.S. Paulsen, J. Ethnopharmacol. 155, 1219-1226 (2014) CrossRef PubMed Google Scholar
  35. 35.
    M. Liu, D.R. Katerere, A.I. Gray, V. Seidel, Fitoterapia 80, 369-373 (2009) CrossRef PubMed Google Scholar
  36. 36.
    K. Anam, A.G. Suganda, E.Y. Sukandar, L.B.S. Kardono, Res. J. Med. Plant 4, 197-205 (2010) CrossRef PubMed Google Scholar
  37. 37.
    M. Bajpai, A. Pande, S.K. Tewari, D. Prakash, Int. J. Food Sci. Nutr. 56, 287-291 (2005) CrossRef PubMed Google Scholar
  38. 38.
    M.S.A. Marzouk, S.A.A. El-Toumy, F.A. Moharram, Planta Med. 68, 523-527 (2002) CrossRef PubMed Google Scholar
  39. 39.
    P.B. Oelrichs, C.M. Pearce, J. Zhu, L.J. Filippich, Nat. Toxins 2, 144-150 (1994) CrossRef PubMed Google Scholar
  40. 40.
    F. Malekzadeh, H. Ehsanifar, M. Shahamat, Int. J. Antimicrob. Agents 18, 85-88 (2001) CrossRef PubMed Google Scholar
  41. 41.
    T.C. Lin, F.L. Hsu, J. Chin. Chem. Soc. 46, 613-618 (1999) CrossRef PubMed Google Scholar
  42. 42.
    E.E. Nmema, E.N. Anaele, J. Appl. Sci. Environ. Manag. 17, 595 (2013) PubMed Google Scholar
  43. 43.
    N.I. Mongalo, L.J. McGaw, T.V. Segapelo, J.F. Finnie, J. Van Staden, J. Ethnopharmacol. 194, 789-802 (2016) CrossRef PubMed Google Scholar
  44. 44.
    P. Fyhrquist, L. Mwasumbi, C.A. Haeggstrom, H. Vuorela, R. Hiltunen, P. Vuorela, J. Ethnopharmacol. 79, 169-177 (2002) CrossRef PubMed Google Scholar
  45. 45.
    S.C. Chhabra, R.L.A. Mahunnah, E.N. Mshiu, J. Ethnopharmacol. 25, 339-359 (1989) CrossRef PubMed Google Scholar
  46. 46.
    B. Heine, M. Brenzinger, Plants of the Borana (Ethiopia and Kenya), Plant Concepts and Plant Use: An Ethno-botanical Survey of the Semi-arid and Arid Lands of East Africa: Part 4 (Verlag Brentenbach, 1988), p. 23 PubMed Google Scholar
  47. 47.
    J. Ndamba, E. Lemmich, P. Mølgaard, Phytochemistry 35, 95-98 (1994) PubMed Google Scholar
  48. 48.
    D.R. Katerere, A.I. Gray, R.J. Nash, R.D. Waigh, Phytochemistry 63, 81-88 (2003) CrossRef PubMed Google Scholar
  49. 49.
    T.K. Tabopda, J. Ngoupayo, S.A.K. Tanoli, A.C. Mitaine-Offer, B.T. Ngadjui, M.S. Ali, B. Luu, M.A. Lacaille-Dubois, Planta Med. 75, 522-527 (2009) CrossRef PubMed Google Scholar
  50. 50.
    J.D. Wansi, M.C. Lallemand, D.D. Chiozem, F.A.A. Toze, L.M.A. Mbaze, S. Naharkhan, M.C. Iqbal, Z.T. Fomum, Phytochemistry 68, 2096-2100 (2007) CrossRef PubMed Google Scholar
  51. 51.
    T. Jono, Curr. Herpetol. 34, 85-88 (2015) CrossRef PubMed Google Scholar
  52. 52.
    S.K. Srivastava, S.D. Srivastava, B.K. Chouksey, Fitoterapia 72, 106-112 (2001) CrossRef PubMed Google Scholar
  53. 53.
    S.K. Srivastava, S.D. Srivastava, B.K. Chouksey, Fitoterapia 70, 390-394 (1999) CrossRef PubMed Google Scholar
  54. 54.
    A.S.R. Anjaneyulu, A.V.R. Reddy, R.G. Mallavarapu, R.S. Chandrasekhara, Phytochemistry 25, 2670-2671 (1986) CrossRef PubMed Google Scholar
  55. 55.
    G.R. Mallavarapu, S.B. Rao, K.V. Syamasundar, J. Nat. Prod. 49, 549-550 (1986) PubMed Google Scholar
  56. 56.
    G.R. Mallavarapu, E. Muralikrishna, J. Nat. Prod. 46, 930-931 (1983) CrossRef PubMed Google Scholar
  57. 57.
    A.S.R. Anjaneyulu, A.V.R. Prasad, Phytochemistry 22, 993-998 (1983) CrossRef PubMed Google Scholar
  58. 58.
    A. Ali, G. Kaur, H. Hamid, T. Abdullah, M. Ali, M. Niwa, M.S. Alam, J. Asian Nat. Prod. Res. 5, 137-142 (2003) CrossRef PubMed Google Scholar
  59. 59.
    R.N. Yadav, K. Rathore, Fitoterapia 72, 459-461 (2001) CrossRef PubMed Google Scholar
  60. 60.
    T. Honda, T. Murae, T. Tsuyuki, Chem. Pharm. Bull. 24, 178-180 (1976) CrossRef PubMed Google Scholar
  61. 61.
    T. Honda, T. Murae, T. Tsuyuki, T. Takahashi, M. Sawai, Bull. Chem. Soc. Jpn 49, 3213-3218 (1976) CrossRef PubMed Google Scholar
  62. 62.
    A.S.R. Anjaneyulu, A.S.R. Prasad, J. Chem. 21B, 530-533 (1982) PubMed Google Scholar
  63. 63.
    A.S.R. Anjaneyulu, A.V.R. Prasad, Phytochemistry 21, 2057-2060 (1982) CrossRef PubMed Google Scholar
  64. 64.
    P.N. Sharma, P.N. Shoeb, R.S. Kapil, Indian J. Chem. 21, 263-264 (1982) PubMed Google Scholar
  65. 65.
    G.R. Pettit, M.S. Hoard, D.L. Doubek, J.M. Schmidt, R.K. Pettit, L.P. Tackett, J.C. Chapuis, J. Ethnopharmacol. 53, 57-63 (1996) CrossRef PubMed Google Scholar
  66. 66.
    S. Dwivedi, J. Ethnopharmacol. 114, 114-129 (2007) CrossRef PubMed Google Scholar
  67. 67.
    L.R. Row, P.S. Murty, G.S. Rao, C.P. Sastry, K.V.J. Rao, Indian J. Chem. 8, 772-775 (1970) PubMed Google Scholar
  68. 68.
    W. Wang, Z. Ali, X.C. Li, Y. Shen, I.A. Khan, Planta Med. 76, 903-908 (2010) CrossRef PubMed Google Scholar
  69. 69.
    O. Aiyelaagbe, O. Olaoluwa, I. Oladosu, S. Gibbons, Rec. Nat. Prod. 8, 7-11 (2014) PubMed Google Scholar
  70. 70.
    J. Kalola, M. Rajani, Chromatographia 63, 475-481 (2006) CrossRef PubMed Google Scholar
  71. 71.
    E. Bombardelli, E.M. Martinelli, G. Mustich, Phytochemistry 13, 2559-2562 (1974) CrossRef PubMed Google Scholar
  72. 72.
    S. Cao, P.J. Brodie, M. Callmander, R. Randrianaivo, E. Rakotobe, V.E. Rasamison, D.G. Kingston, Phytochemistry 71, 95-99 (2010) CrossRef PubMed Google Scholar
  73. 73.
    A.K. Nandy, G. Podder, N.P. Sahu, S.B. Mahato, Phytochemistry 28, 2769-2772 (1989) CrossRef PubMed Google Scholar
  74. 74.
    T. Tsuyuki, Y. Hamada, T. Honda, T. Takahashi, K. Matsushita, Bull. Chem. Soc. Jpn 52, 3127-3128 (1979) CrossRef PubMed Google Scholar
  75. 75.
    S.W. Jung, M.H. Shin, J.H. Jung, N.D. Kim, K.S. Im, Arch. Pharmacal Res. 24, 412-415 (2001) CrossRef PubMed Google Scholar
  76. 76.
    W. Wang, Z. Ali, Y. Shen, X.C. Li, I.A. Khan, Fitoterapia 81, 480-484 (2010) CrossRef PubMed Google Scholar
  77. 77.
    F.E. King, T.J. King, J.M. Ross, J. Chem. Soc. 85, 3995 (1954) PubMed Google Scholar
  78. 78.
    L.R. Row, P.S. Murty, G.S.R.S. Rao, C.S.P. Sastry, K.V.J. Rao, Indian J. Chem. 8, 716-721 (1970) PubMed Google Scholar
  79. 79.
    R.R. Aggarwal, S. Dutt, Proc. Natl. Acad. Sci. U.S.A. 6, 305 (1936) PubMed Google Scholar
  80. 80.
    V.K. Tripathi, B. Singh, R.C. Tripathi, R.K. Upadhyay, V.B. Pandey, Orient. J. Chem. 12, 1-16 (1996) PubMed Google Scholar
  81. 81.
    R.K. Upadhyay, M.B. Pandey, R.N. Jha, V.P. Singh, V.B. Pandey, J. Asian Nat. Prod. Res. 3, 207-212 (2001) CrossRef PubMed Google Scholar
  82. 82.
    R.S. Pawar, K.K. Bhutani, Phytomedicine 12, 391-393 (2005) CrossRef PubMed Google Scholar
  83. 83.
    A. Nagar, V.K. Gujral, S.R. Gupta, Planta Med. 37, 183-185 (1979) CrossRef PubMed Google Scholar
  84. 84.
    A. Ali, S.T. Abdullah, H. Hamid, M. Ali, M.S. Alam, Indian J. Chem. 42, 2905-2909 (2003) PubMed Google Scholar
  85. 85.
    B.K. Chouksey, S.K. Srivastava, Indian J. Chem. 40, 354-356 (2001) PubMed Google Scholar
  86. 86.
    F.E. Kandil, N.I. Narsar, Phytochemistry 47, 1567-1568 (1998) CrossRef PubMed Google Scholar
  87. 87.
    A. Ali, G. Kaur, K. Hayat, M. Ali, M. Ather, Pharmazie 58, 932-934 (2003) PubMed Google Scholar
  88. 88.
    H.Y. Link, L. Chang, Planta Med. 71, 237-243 (2005) CrossRef PubMed Google Scholar
  89. 89.
    S. Nair, R. Nagar, South Asian J. Prev. Cardiol. 1, 33-35 (1997) PubMed Google Scholar
  90. 90.
    T.C. Lin, S.C. Chien, H.F. Chen, F.L. Hsu, Chin. Pharm. J. 52, 1-26 (2000) CrossRef PubMed Google Scholar
  91. 91.
    A. Mann, K. Ibrahim, A.O. Oyewale, J.O. Amupitan, M.O. Fatope, J.I. Okogun, Am. J. Org. Chem. 2, 14-20 (2012) PubMed Google Scholar
  92. 92.
    M.N. Shuaibu, P.T. Wuyep, T. Yanagi, K. Hirayama, A. Ichinose, T. Tanaka, I. Kouno, Parasitol. Res. 102, 697-703 (2008) CrossRef PubMed Google Scholar
  93. 93.
    A. Mann, K. Ibrahim, A.O. Oyewale, J.O. Amupitan, M.O. Fatope, J.I. Okogun, Am. J. Chem. 1, 52-55 (2011) PubMed Google Scholar
  94. 94.
    R.N. Yadava, K. Rathore, Fitoterapia 72, 310-312 (2001) CrossRef PubMed Google Scholar
  95. 95.
    G. Pandey, S.S. Gupta, A. Bhatia, O.P. Sidhu, A.K.S. Rawat, C.V. Rao, J. Ethnopharmacol. 202, 63-66 (2017) CrossRef PubMed Google Scholar
  96. 96.
    J.R. Row, P.S. Murty, Indian J. Chem. 8, 1047-1048 (1970) PubMed Google Scholar
  97. 97.
    H.E. Elsayed, M.R. Akl, H.Y. Ebrahim, A.A. Sallam, E.G. Haggag, A.M. Kamal, K.A. El Sayed, Chem. Biol. Drug Des. 85, 231-243 (2015) CrossRef PubMed Google Scholar
  98. 98.
    H. Negishi, T. Maoka, M. Njelekela, N. Yasui, S. Juman, J. Mtabaji, T. Miki, Y. Nara, Y. Yamori, K. Ikeda, J. Asian Nat. Prod. Res. 13, 281-283 (2011) CrossRef PubMed Google Scholar
  99. 99.
    S.A. Opiyo, L.O.A. Manguro, P.O. Owuor, C.O. Ochieng, E.M. Ateka, P. Lemmen, Nat. Prod. J. 1, 116-120 (2011) PubMed Google Scholar
  100. 100.
    K. Yamauchi, T. Mitsunaga, A.M. Muddathir, J. Wood Sci. 62, 285-293 (2016) CrossRef PubMed Google Scholar
  101. 101.
    E.Y.A. Salih, M. Kanninen, M. Sipi, O. Luukkanen, R. Hiltunen, H. Vuorela, R. Julkunen-Tiitto, P. Fyhrquist, S. Afr. J. Bot. 108, 370-386 (2017) CrossRef PubMed Google Scholar
  102. 102.
    T. Tanaka, A. Morita, G.I. Nonaka, T.C. Lin, I. Nishioka, F.C. Ho, Chem. Pharm. Bull. 39, 60-63 (1991) CrossRef PubMed Google Scholar
  103. 103.
    L.G. Chen, C.C. Wang, L.L. Yang, Abstr. Pap. Am. Chem. Soc. 228, 61 (2004) PubMed Google Scholar
  104. 104.
    T.C. Lin, Y.T. Ma, F.L. Hsu, Chin. Pharm. J. (Taipei) 48, 25-35 (1996) PubMed Google Scholar
  105. 105.
    P.S. Chen, J.H. Li, T.Y. Liu, T.C. Lin, Cancer Lett. 152, 115-122 (2000) CrossRef PubMed Google Scholar
  106. 106.
    Y. Chandrasekhar, E.M. Ramya, K. Navya, G.P. Kumar, K.R. Anilakumar, Biomed. Pharmacother. 86, 414-425 (2017) PubMed Google Scholar
  107. 107.
    T. Tanaka, G.I. Nonaka, I. Nishioka, Chem. Pharm. Bull. 34, 1039-1049 (1986) CrossRef PubMed Google Scholar
  108. 108.
    Dukes Phytochemical and Ethnobotanical Database (2008), p. 11 PubMed Google Scholar
  109. 109.
    S. Mandloi, R. Mishra, R. Varma, B. Varughese, J. Tripathi, Int. J. Pharm. Bio Sci. 4, 1385-1393 (2013) PubMed Google Scholar
  110. 110.
    Q. Han, J. Song, C. Qiao, L. Wong, H. Xu, J. Sep. Sci. 29, 1653-1657 (2006) CrossRef PubMed Google Scholar
  111. 111.
    A. Saleem, M. Husheem, P. Härkönen, K. Pihlaja, J. Ethnopharmacol. 81, 327-336 (2002) CrossRef PubMed Google Scholar
  112. 112.
    A.R. Afshari, H.R. Sadeghnia, H. Mollazadeh, Adv. Pharmacol. Sci. (2016). https://doi.org/10.1155/2016/8964849 PubMed Google Scholar
  113. 113.
    M.S. Baliga, J. Altern. Complement. Med. 16, 1301-1308 (2010) CrossRef PubMed Google Scholar
  114. 114.
    T. Sornwatana, K. Bangphoomi, S. Roytrakul, N. Wetprasit, K. Choowongkomon, S. Ratanapo, Biotechnol. Appl. Biochem. 62, 746-753 (2015) CrossRef PubMed Google Scholar
  115. 115.
    D. Mammen, S. Bapat, R. Sane, Int. J. Pharm. Bio Sci. 3, 416-419 (2012) PubMed Google Scholar
  116. 116.
    S. Chandan, Phytochemistry 29, 2348-2350 (1990) CrossRef PubMed Google Scholar
  117. 117.
    C.P. Khare, Botany, Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage (Springer, New York, 2004), pp. 451–452 PubMed Google Scholar
  118. 118.
    O.S. Ajala, A. Jukov, C.M. Ma, Fitoterapia 99, 117-123 (2014) CrossRef PubMed Google Scholar
  119. 119.
    L.J. Juang, S.J. Sheu, T.C. Lin, J. Sep. Sci. 27, 718-724 (2004) CrossRef PubMed Google Scholar
  120. 120.
    S. Burapadaja, A. Bunchoo, Planta Med. 61, 365-366 (1995) CrossRef PubMed Google Scholar
  121. 121.
    M.A. Muhit, K. Umehara, H. Noguchi, Fitoterapia 113, 74-79 (2016) CrossRef PubMed Google Scholar
  122. 122.
    I. Konczak, D. Zabaras, M. Dunstan, P. Aguas, Food Chem. 123, 1048-1054 (2010) CrossRef PubMed Google Scholar
  123. 123.
    A.B. Cunningham, S. Garnett, J. Gorman, K. Courtenay, D. Boehme, Econ. Bot. 63, 16-28 (2009) CrossRef PubMed Google Scholar
  124. 124.
    V.S. Martino, M.N. Graziano, O. Hnatyszyn, J.D. Coussio, Planta Med. 27, 226-230 (1975) CrossRef PubMed Google Scholar
  125. 125.
    P. Rayan, B. Matthews, P.A. McDonnell, I.E. Cock, Parasitol. Res. 114, 2611-2620 (2015) CrossRef PubMed Google Scholar
  126. 126.
    J. Sirdaarta, B. Matthews, I.E. Cock, J. Funct. Food 17, 610-620 (2015) CrossRef PubMed Google Scholar
  127. 127.
    D.E.U. Ekong, O.G. Idemudia, J. Chem. Soc. C (1967). https://doi.org/10.1039/J39670000863 PubMed Google Scholar
  128. 128.
    O.G. Idemudia, Phytochemistry 9, 2401-2402 (1970) CrossRef PubMed Google Scholar
  129. 129.
    S. Zareen, M.I. Choudhary, F.N. Ngounou, A. Yasin, M. Parvez, Tetrahedron Lett. 43, 6233-6236 (2002) CrossRef PubMed Google Scholar
  130. 130.
    A.U. Rahman, S. Zareen, M.I. Choudhary, M.N. Akhtar, F.N. Ngounou, Z. Nat. B 60, 347-350 (2005) PubMed Google Scholar
  131. 131.
    B.K. Ponou, R.B. Teponno, M. Ricciutelli, L. Quassinti, M. Bramucci, G. Lupidi, L. Barboni, L.A. Tapondjou, Phytochemistry 71, 2108-2115 (2010) CrossRef PubMed Google Scholar
  132. 132.
    B.K. Ponou, R.B. Teponno, M. Ricciutelli, T.B. Nguelefack, L. Quassinti, M. Bramucci, G. Lupidi, L. Barboni, L.A. Tapondjou, Chem. Biodivers. 8, 1301-1309 (2011) PubMed Google Scholar
  133. 133.
    P. Fyhrquist, I. Laakso, S.G. Marco, R. Julkunen-Tiitto, R. Hiltunen, S. Afr. J. Bot. 90, 1-16 (2014) CrossRef PubMed Google Scholar
  134. 134.
    A.M. Muddathir, K. Yamauchi, T. Mitsunaga, J. Wood Sci. 59, 426-431 (2013) CrossRef PubMed Google Scholar
  135. 135.
    A.T. Pham, K.E. Malterud, B.S. Paulsen, D. Diallo, H. Wangensteen, Nat. Prod. Commun. 6, 1125-1128 (2011) PubMed Google Scholar
  136. 136.
    A.T. Pham, K.E. Malterud, B.S. Paulsen, D. Diallo, H. Wangensteen, Pharm. Biol. 52, 1166-1169 (2014) CrossRef PubMed Google Scholar
  137. 137.
    J. Conrad, B. Vogler, S. Reeb, I. Klaiber, S. Papajewski, G. Roos, E. Vasquez, M.C. Setzer, W. Kraus, J. Nat. Prod. 64, 294-299 (2001) CrossRef PubMed Google Scholar
  138. 138.
    J. Conrad, B. Vogler, I. Klaiber, S. Reeb, J.H. Guse, G. Roos, W. Kraus, Nat. Prod. Lett. 15, 35-42 (2001) CrossRef PubMed Google Scholar
  139. 139.
    N.M. Fahmy, E. Al-Sayed, M.M. Abdel-Daim, M. Karonen, A.N. Ingab, Pharm. Biol. 54, 303-313 (2016) CrossRef PubMed Google Scholar
  140. 140.
    K. Majumdar, M.B. Sinha, U.K. Som, S. Das, J. Indian Chem. Soc. 82, 673-674 (2005) PubMed Google Scholar
  141. 141.
    T.B. Murdiati, C.S. McSweeney, J.B. Lowry, Aust. J. Agric. Res. 43, 1307-1319 (1992) CrossRef PubMed Google Scholar
  142. 142.
    S. Talwar, P.G. Nayak, J. Mudgal, P. Paul, P. Bansal, K. Nandakumar, J. Med. Food 16, 1153-1161 (2013) CrossRef PubMed Google Scholar
  143. 143.
    L.R. Row, R.R. Raju, Tetrahedron 23, 879-884 (1967) CrossRef PubMed Google Scholar
  144. 144.
    R. Mopuri, M. Ganjayi, K.S. Banavathy, B.N. Parim, B. Meriga, BMC Complement. Altern. Med. 15, 76 (2015) CrossRef PubMed Google Scholar
  145. 145.
    J. Conrad, B. Vogler, I. Klaiber, G. Roos, U. Walter, W. Kraus, Phytochemistry 48, 647-650 (1998) CrossRef PubMed Google Scholar
  146. 146.
    D.Y. Lee, K.H. Woo, H.J. Yang, S.S. Hyun, Bioorg. Med. Chem. Lett. 27, 34-39 (2017) CrossRef PubMed Google Scholar
  147. 147.
    R.L. Ramachandra, R.R. Ramkrishnam, Curr. Sci. 34, 177 (1965) PubMed Google Scholar
  148. 148.
    L.R. Row, G.S. Rao, Tetrahedron 18, 357-360 (1962) CrossRef PubMed Google Scholar
  149. 149.
    V. Martino, J. Morales, J.J. Martínez-Irujo, M. Font, A. Monge, J. Coussio, Phytother. Res. 18, 667-669 (2004) CrossRef PubMed Google Scholar
  150. 150.
    M.J. Moshi, Z.H. Mbwambo, J. Ethnopharmacol. 97, 43-47 (2005) CrossRef PubMed Google Scholar
  151. 151.
    I.M. Eldeen, E.E. Elgorashi, D.A. Mulholland, J. van Staden, J. Ethnopharmacol. 103, 135-138 (2006) CrossRef PubMed Google Scholar
  152. 152.
    C.C. Joseph, M.J. Moshi, E. Innocent, M.H.H. Nkunya, Afr. J. Tradit. Complement. Altern. Med. 4, 383-386 (2007) PubMed Google Scholar
  153. 153.
    V. Kuete, T.K. Tabopda, B. Ngameni, F. Nana, T.E. Tshikalange, B.T. Ngadjui, S. Afr. J. Bot. 76, 125-131 (2010) CrossRef PubMed Google Scholar
  154. 154.
    T.C. Li, F.L. Hsu, Chin. Pharm. J. 48, 167-175 (1996) PubMed Google Scholar
  155. 155.
    L.F. Wu, Y.B. Yuan, K.F. Wang, S.Q. Li, J. Liu, L.Z. Zhang, G.M. She, Chin. Tradit. Herb. Drugs 45, 290-299 (2014) PubMed Google Scholar
  156. 156.
    M.S. Alam, G. Kaur, A. Ali, H. Hamid, M. Ali, M. Athar, Nat. Prod. Res. 22, 1279-1288 (2008) CrossRef PubMed Google Scholar
  157. 157.
    I.E. Cock, Inflammopharmacology 23, 203-229 (2015) CrossRef PubMed Google Scholar
  158. 158.
    M.T. Tchuenmogne, T. Kammalac, S. Gohlke, R. Kouipou, A. Aslan, M. Kuzu, N. Sewald, Medicines (Basel) 4, 6 (2017) PubMed Google Scholar
  159. 159.
    D.Y. Lee, H.W. Kim, H. Yang, S.H. Sung, Phytochemistry 137, 109-116 (2017) PubMed Google Scholar
  160. 160.
    V.A. Ansari, M. Arif, M.S. Hussain, H.H. Siddiqui, R.K. Dixit, Integr. Med. Res. 5, 317-323 (2016) CrossRef PubMed Google Scholar
  161. 161.
    C. Rice-Evans, N. Miller, G. Paganga, Trends Plant Sci. 2, 152-159 (1997) CrossRef PubMed Google Scholar
  162. 162.
    R. Rajpoot, A. Rani, R.K. Srivastava, P. Pandey, R.S. Dubey, Protoplasma 253, 1449-1462 (2016) CrossRef PubMed Google Scholar
  163. 163.
    S.A. Hussain, M.A. Kareem, S.N. Rasoo, S.Y. Al Omar, A. Saleh, M.A. Al-Fwuaires, K.L. Devi, Biol. Trace Elem. Res. 181, 112-121 (2018) CrossRef PubMed Google Scholar
  164. 164.
    J. An, T. Li, Y. Dong, Z. Li, J. Huo, Cell. Physiol. Biochem. 39, 531-543 (2017) PubMed Google Scholar
  165. 165.
    K. Jayesh, L.R. Helen, A. Vysakh, E. Binil, M.S. Latha, Biomed. Pharmacother. 95, 1654-1660 (2017) CrossRef PubMed Google Scholar
  166. 166.
    N.M. Fahmy, E. Al-Sayed, M.M. Abdel-Daim, A.N. Singab, Drug Dev. Res. 78, 146-154 (2017) CrossRef PubMed Google Scholar
  167. 167.
    T. Veni, T. Pushpanathan, J. Mohanraj, J. Parasit. Dis. 41, 693-702 (2017) CrossRef PubMed Google Scholar
  168. 168.
    A. Thanigaivel, P. Vasantha-Srinivasan, S. Senthil-Nathan, E.S. Edwin, A. Ponsankar, M. Chellappandian, K. Kalaivani, Ecotoxicol. Environ. Saf. 137, 210-217 (2017) CrossRef PubMed Google Scholar
  169. 169.
    M.F. Akhtar, A. Saleem, A. Sharif, B. Akhtar, M.B. Nasim, S. Peerzada, S. Ali, EXCLI J. 15, 589 (2016) PubMed Google Scholar
  170. 170.
    J. Kuriakose, H.L. Raisa, A. Vysakh, B. Eldhose, M.S. Latha, Biomed. Pharmacother. 93, 327-333 (2017) CrossRef PubMed Google Scholar
  171. 171.
    A. Mittal, S. Tandon, S.K. Singla, C. Tandon, Cytotechnology 69, 349-358 (2017) CrossRef PubMed Google Scholar
  172. 172.
    A. Durge, P. Jadaun, A. Wadhwani, A.A. Chinchansure, M. Said, H.V. Thulasiram, S.S. Kulkarni, Nat. Prod. Res. 31, 1468-1471 (2017) CrossRef PubMed Google Scholar
  173. 173.
    A. Kesharwani, S.K. Polachira, R. Nair, A. Agarwal, N.N. Mishra, S.K. Gupta, BMC Complement. Altern. Med. 17, 110 (2017) CrossRef PubMed Google Scholar
  174. 174.
    Y.C. Sekhar, G.P. Kumar, K.R. Anilakumar, Chin. J. Nat. Med. 15, 584-596 (2017) PubMed Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xiao-Rui Zhang
    • 1,2
  • Joseph Sakah Kaunda
    • 1,2
  • Hong-Tao Zhu
    • 1
  • Dong Wang
    • 1
  • Chong-Ren Yang
    • 1
  • Ying-Jun Zhang
    • 1,3
  •     
  1. 1. State Key Laboratory of Phytochemistry and Plant Resources in West China. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
  2. 2. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
  3. 3. Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China