The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review

  • Joseph Sakah Kaunda 1,2,  
  • Ying-Jun Zhang 1,3
  •     

Abstract

Over the past 30 years, the genus Solanum has received considerable attention in chemical and biological studies.Solanum is the largest genus in the family Solanaceae, comprising of about 2000 species distributed in the subtropical and tropical regions of Africa, Australia, and parts of Asia, e.g., China, India and Japan.Many of them are economically significant species.Previous phytochemical investigations on Solanum species led to the identification of steroidal saponins, steroidal alkaloids, terpenes, flavonoids, lignans, sterols, phenolic comopunds, coumarins, amongst other compounds.Many species belonging to this genus present huge range of pharmacological activities such as cytotoxicity to different tumors as breast cancer (4T1 and EMT), colorectal cancer (HCT116, HT29, and SW480), and prostate cancer (DU145) cell lines.The biological activities have been attributed to a number of steroidal saponins, steroidal alkaloids and phenols.This review features 65 phytochemically studied species of Solanum between 1990 and 2018, fetched from SciFinder, Pubmed, ScienceDirect, Wikipedia and Baidu, using "Solanum" and the species'names as search terms ("all fields").

Keywords

Solanum    Solanaceae    Phytochemistry    Steroidal saponins and alkaloids    Ethnopharmacology    

Abbreviations

Table

ABTS 2, 2′-Azino-bis(3-ethylbenzthiazoline-6-sulph nic acid)
CC50 Cytotoxic concentration of the extracts to cause death to 50% of host's viable cells
CDDP cis-Diamminedichloroplatinum
DPPH 2, 2-Diphenyl-1-picrylhydrazyl
EC50 Half maximal effective concentration
GABA Neurotransmitter gamma-aminobutyric acid
HBV Hepatitis B Virus
HSV-1 Herpes simplex virus type 1
IC50 Minimum inhibition concentration for inhibiting 50% of the pathogen
LD50 Dose required to kill half the members of a tested population after test duration
MIC Minimum inhibitory concentration
MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
SAG Superoxide anion generation

1 Introduction

The genus Solanum is considered to be one of the largest and most complex genera among the Angiosperms [1], and the most representative and largest genus of the family Solanaceae [1-4]. It is comprised of about 2000 species distributed across subtropical and tropical regions of Asia [3-9], tropical Africa [10-29], non-arid Africa [30-43], Americas [44-87], Australia [71-74, 81-84] and India [71]. The genus is well represented in Brazil with about 350 species widely distributed from north to south in diverse phytogeographic regions [70, 80]. In Brazil (Ceará, Bahia, Mato Grosso do Sul, Paraná and north-central coast of Santa Catarina State), many Solanum species, usually known as 'yubeba', the word that refers to the prickles found on the stems of several of the species, are widely used in traditional medicine [66, 80, 87]. In the northeast of Brazil, 80 Solanum species are distributed throughout the region and used in folk medicine. One of such species is S. capsicoides, commonly known as "Gogoia" [87]. In East Africa, several Solanum species such as S. arundo and S. incanum are known to be poisonous and are reportedly used to induce miscarriages [64].

Solanum genus is rich in economically significant species; the food crops include S. aethiopicum [20, 21], S. anguivi [30, 31] S. lycopersicum, S. melongena, S. muricatum, S. torvum and S. tuberosum [1]. Ornamental species include S. aviculare, S. capsicastrum, S. crispum, S. laciniatum, S. laxum, S. pseudocapsicum, S. rantonnetii, S. seaforthianum and S. wendlandii [1].

A series of pharmacological studies have been carried out to verify and validate the traditional medicinal applications of many plants in this genus. The studied pharmacological activities include analgesic, anthelminthic, antiallergic, anti-anemic, anti-asthmatic, antibacterial, anti- cancer, anti-convulsant, anti-depressant, anti-diabetic, anti-fungal, antihistaminic, antihyperten- sive, anti-inflammatory, anti-leishmanial, antimelanogenetic, anti-molluscicidal, anti-nociceptive, anti-psoriatic, antiplasmodial, antiprotozoa, anti-trypanosomal, antiurolithiatic, antiviral, cardio- vascular, diuretic, hepatoprotective, hypolipidemic, mosquito larvicidal, nephrotoxic, spasmolytic, schistosomicidal and vasorelaxant activities.

In the past, several reviews on Solanum genus have been documented [88-101], however, mostly with singular focus on particular species. The present review is multi faceted, and features 66 medicinal species of Solanum in their geographical distribution, traditional uses, and 670 isolated chemical constituents, including 134 steroidal saponins, 63 steroidal alkaloids, 13 pregnane glycosides, 128 terpenes, 75 flavonoids, 31 lignans, 31 other types of alkaloids, 66 sterols, 52 phenolic compounds, 20 coumarins and coumestans, 4 coumarinolignoids, 23 fatty acids and esters and 30 other compounds. Where applicable, the biological activities of compounds isolated from various species are noted.

2 Distribution and Ethnopharmacological Uses

Sixty-six species commonly used as important folk medicine, ornamental plants, or wild food sources were selected in this review, and their local names, distribution and ethnopharmacologi- cal uses were summarized in Table 1. Local names are given in different languages with which the inhabitants of a particular region use to identify a specific species. Each species' natural habitat and/or places of cultivation are mentioned. Traditional as well as modern day applications are presented.

Table 1

Distribution and ethnopharmalogical uses of Solanum species

No. Species Local names Distribution Uses
1 S. abutiloides Dwarf tamarillo Argentina, Bolivia [2, 3] Ornamental, fruits edible, anti-fungal [2-4]
2 S. aculeastrum Goat bitter/poison/gifa/bok-bitter -apple, thola, murulwa, umthuma, itunga, mtuma Kenya, South Africa, Swaziland [10] Toothache, ringworm [10], jigger wounds, gonorrhea, anti-molluscicidal [11, 12], anticancer [13-15], antifungal [16], antimicrobial [12, 17], anti-leishmanial [18]
3 S. aethiopicum African scarlet/Ethiopian/Chinese scarlet/tomato-fruit eggplant, azoko, garden egg, gilo, golden/love apple, impwa, kumba, losuke, mock/bitter/ruffed tomato, nakasuga, nakati, ngogwe, osun, tokalu, african aubergine, aubergine amère, Ethiopian nightshade, gilo, granadillo, jilo, kumba, meloncillo de olor, meloncillo del campo, pocotillo, quillo, revienta caballo, röd aubergin, shum, silverleaf nightshade, tutía enano China, India, Japan, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central Africa, Chad, Comoros, Congo DR, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Sudan, Togo, Zambia, Zimbabwe, Australia, Brazil, Italy, France [20, 21] Fruits/leaves eaten, ornamental [20, 21], anti-ulcer, anticancer [23-26], anti-inflammatory [27]
4 S. agrarium Gogóia (Brazil) Brazil, Guyana, Venezuela [44] Mycosis, diarrhea, gonorrhea, prostatic, inflammation, abortion [44, 45]
5 S. americanum American black/white/small flower/glossy nightshade, maria pretinha (Brazil), quilete (Guatemala), popolo (Hawaii) Tropical Pacific, Indian Ocean, Hawaii, Indochina, Brazil, Madagascar, Africa Ripe fruit makes jams, preservative, shoots eaten, antiviral, antimicrobial [46, 47], antidiabetic [48, 49], bladder spasm, joint pains, cooling, cough, gastric ulcer, protozoal infections, vermifuge [49], anticancer [47, 50-52], asthma [53]
6 S. amygdalifolium Uruguay, Argentina, Brazil Decoration [56]
7 S. anguivi Forest bitterberry, African eggplant Non-arid Africa: Nigeria, Ghana Leaves/fruits consumed, coughs, dysuria, nasal ulcers, asthma, toothache, cardiac disorder, worm complaints, spinal chord and nervous disorder, fever, diabetes, artherosclerosis carminative, nasal ulcers, asthma, parturition, worm expeller, itching [30-32], hypolipidemic [33, 34], anaemia [31, 32, 35], Huntington's, Alzheimer, Parkinson, amyotrophic lateral sclerosis [36], antioxidant [33, 37-39], hypotensive [38]
8 S. arboreum Costa Rica, Colombia, Trinidad Anti-leishmanial [60, 61], antimalarial [62]
9 S. arundo Kenya Abortion [64], hepatoprotective [65]
10 S. asperum Brazil Anti-molluscicidal [66], antifungal [67]
11 S. asterophorum Jurubeba-de-fogo Brazil Liver dysfunctions, antidiarrheal [68], spasmolytic [69]
12 S. betaceum English: tree tomato, South America: tamamoro and tomate de árbol, French: arbre à tomates, tomate de La Paz, tomate en arbre. Spanish: tamarillo, tomate de árbol, tomate Serrano Ecuador, Colombia, Peru, Bolivia, Rwanda, South Africa, India, Nepal China, United States, Chile, Australia, New Zealand, Malaysia, Philippines, Puerto Rico, Bhutan [71-74] Ripe fruit edible, preservative [71, 72], antioxidant [75]
13 S. buddleifolium Unknown Brazil [79] Unknown
14 S. caavurana Laranjinha do mato, 'jurubebarana' or 'jurubeba-branca' Brazil (Ceará, Bahia, Mato Grosso do Sul, Paraná, Santa Catarina States), Paraguay, Argentina Anemia, liver disorders, digestion [80]
15 S. capsicoides Cockroach berry, polohauai'i (Polynesia), devil's apple Brazil, Central America, Australia, Brooklyn, New York [81-84] Ornamental [83], anti-inflammatory [85], anticancer [86], antihypertensive [87]
16 S. cathayanum China Anti-inflammatory, anti-bacterial [102], antitumor, anti-neurodegenerative [102-106]
17 S. cernuum "Panaceia" Brazil Gastric ulcers, hepatic injuries, skin disorders, anti-tumor, depurative, diuretic, antihemorrhagic, antiblennorrhoea, cardiac disorders, analgesic, anti-inflammatory, urinary disorders, gastric cancer, gonorrhea [107-112]
18 S. chrysotrichum "Sosa" Mexico Anti-mycotic, anti-inflammatory [113-120]
19 S. cornifolium Latin America Anti-mycotic [121]
20 S. crinitum "jurubeba" and "fruto-de-lobo" Brazil, Colombia Anti-tumor [122, 123]
21 S. diphyllum Mexico, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Florida, Texas, Indonesia, Philippines, West Indies, China, Taiwan, Egypt [124-126] Anti-tumor [126]
22 S. dulcamara Bittersweet/bitter/European/deadly/blue climbing/woody nightshade, felonwort, violet-bloom, fellen, scarlet/snake berry, mortal, fever twig, staff vine Northern Africa, North America, Europe, Asia Skin diseases, cancers, anti-tumors, alterative, anodyne, depurative, mildly diuretic, emetic, expectorant, hepatic, mildly narcotic and purgative [127-131], skin abrasions, inflammation [132]
23 S. elaeagnifolium Prairie berry, Silverleaf nightshade, silverleaf/Whitehorse/bull/horse nettle (English); silver-leaf bitter-apple, Satan's bush (South Africa); trompillo (Spanish); meloncillo del campo quillo-quillo, revienta caballo (Argentina); tomatillo (Chile); trompillo (Honduras)[540] Mexico, USA, South America, Middle East, Southern Africa, North Africa, Taiwan, Penghu Islands, Brazil, India, Germany, Kenya [539, 540] Contraceptive, corticosteroid drugs, hepatoprotective, hypoglycemic, hepatotonic, laxative, appetizer, cardiotonic, antispasmodic, antiepileptic, renal pain, analgesic, anti-inflammatory, anticancer, antimolluscicidal [133, 134]
24 S. erianthum Aamourette marron (French); big eggplant, black/mullein nightshade, China flowerleaf, flannel bush, tropillo, turkey berry, wild tobacco, jia yan ye shu (Chinese) Americas, Cuba, Dominican Republic, Haiti, Jamaica, Trinidad, South America Leukorrhea, abortion, analgesic, vertigo, dysentery, fever, diarrhea, digestive problems, anti-inflammatory, leprosy, sexually-transmitted diseases, malaria, laxative, anti-diuretic, antihepatitis B, anti-tumor [135-139]
25 S. glabratum Saudi Arabia, Yemen Antibacteria, diuretic, scabies, syphilis, cough, hemorrhoids, anticancer [140-144]
26 S. glaucophyllum Brazil, Bolivia, Argentina, Paraguay, Uruguay Anticancer [145, 146]
27 S. guaraniticum Jurubeba, false-jurubeba Brazil, Paraguay, Argentina Anemia, fevers, erysipela, hepatitis, ulcers, uterine tumors, tonic, digestive stimulant, fevers, antioxidants [147-149]
28 S. incanum Thorn/bitter/sodom/poison/snake apple, mutongu (Kikuyu), mtunguja mwitu (Kiswahili), ochok (Luo) Kenya, Uganda, Tanzania, Middle East, India, Australia, Madagascar, Mauritius, Saudi Arabia [150, 151] Antibacterial [152, 153], antileishmanial [154], anticancer [155] conjunctivitis, inflammations [156]
29 S. indicum Poison berry, Indian nightshade, African eggplant, bush tomato, ntunfulu, bhantaki, bari kateri, kateli, kshudra bhantaaki, mahati, mahotika, vartaki, vrihati, kataai kalaan, mullamkatti, papparamulli, barahantaa India, Sri Lanka, Malaysia, China, Philippine Islands, Africa [157-159] Diaphoretic, diuretic, expectorant, stimulant, bronchites, itching, bodyaches, asthma, wounds, toothache, narcotic, cutaneous disorders, ringworm, mouthwash [157], anti-inflammatory, respiratory disorders, dropsy, heart diseases, chronic fever, colic, scorpion stings, difficult urination, worm infestation [158], alopecia areata, erectile failure, boost appetite, abdominal pain, distaste, deworming, colitis [159], antitumor [160-163], ascites, edema [164]
30 S. jabrense Brazil [165-169] Anticancer [168], molluscicidal [169]
31 S. khasianum India Anti-inflammatory, antihelmintic, Anticancer [170-172]
32 S. laciniatum Kangaroo apple Australia, Tasmania, Wales, New Zealand [173, 174] Unknown
33 S. laxum Potato vine, potato climber, jasmine nightshade, Australia [175, 176], Uruguay, Argentina [177, 178] Aphid repellant pesticide [177]
34 S. ligustrinum Natri, Tomatillo [541, 542] Chile Antipyretic, anti-inflammatory, fever, anti-fungal [179]
35 S. lycocarpum Wolf apple, lobeira, fruit-of-wolf, jurubebao (Brazil) fruta-do-lobbo (Portuguese) [543] Brazil Anti-inflammatory, antihepatotoxic, hypotensive, antihistamine [180], anticancer [181], antidiabetic [182], antischistosomicidal [183, 184], antileishmanicidal [185], anti-trypanosomal [186] antiprotozoa [187]
36 S. lycopersicum Tomatillo (Mexico), tomate (Spanish), tomato (English) Mexico, South & Central America, Asia, Africa [188] Antimicrobial [189], antiasthma, antiatherosclerosis [190], antiplatelet [191], anticancer [190, 192]
37 S. lyratum Nipplefruit (English), China South America [193] Anticancer [88, 89, 194-200], anti-inflammatory [201]
38 S. melongena Aubergine, bringal, eggplant, terong, baigan, melongene India, China, Thailand, Burma, Iran, Egypt, Turkey, East Asia [202, 203] Antioxidant [90, 91, 204-206], anticancer [206-208], antidiabetic [209], anti-inflammatory, analgesic, sedative, hypnotic, blood circulation [210], antimelanogenesis [211]
39 S. muricatum Melon pear, Pepino, Tree melon, sweet cucumber [544-547] Equador, Colombia, Peru, Chile, Sri Lanka, New Zealand, Western Australia, Spain, Israel, Morocco, Kenya, Hawaii, California [212, 213] Anti-inflammatory [214], antidiabetic [215], antitumor [212, 213]
40 S. nienkui China (Hainan) [216-218] Unknown
41 S. nigrum Black nightshade, duscle, garden nightshade, Indian nightshade, garden huckleberry, hound's berry, petty morel, wonder berry, small-fruited black nightshade, or popolo, makoi (Hindi), manathakkali (Tamil) Eurasia, Americas, Austrasia, South Africa [219-221] Mouth ulcers, peptic ulcers, dysentery, skin disorders, ringworms, painful periods, cough [219-221], anti-inflammatory, hepatoprotective, diuretic, antipyretic, tuberculosis, cervical carcinoma [220-222], emollient, febrifuge, narcotic, purgative, sedative, analgesic, antispasmodic, vasodilator [222], antihyperlipidemic [131, 223], antimicrobial [224-226], antitumor [92-97, 227-230], anti-molluscicidal [231-233], antinociceptive, antipyretic [230, 234, 235], antiulcerogenic [235], antihistaminic, antiallergic [236, 237], hepatoprotective, anti-inflammatory, antipyretic [98, 236, 237], CNS-depressant action [238]
42 S. nudum Caribbean, Haiti, Cuba [239] Antiplasmodial [240-249]
43 S. orbignianum Brazil [250] Unknown
44 S. paludosum Brazil Hypertension, vasorelaxant, antioxidant, antibiotics [251, 252]
45 S. paniculatum Jurubeba, jubeba, juribeba, juripeba, jupela, juripeba, juuna, juvena, jurubebinha, jurubeba-branca, jurubeba-verdadeira Brazil, Argentina, Paraguay, southern, central, eastern and northern Brazil [253-255] Anemia, anorexia, bile insufficiency, bladder problems, blood cleansing, bloating, boils, catarrh, congestion, contusions, constipation, convalescence, cystitis, debility, diabetes, digestive sluggishness, dyspepsia, edema, erysipelas, fever, flatulence, gallbladder inflammation, gastric disorders, hangover, headache, heartburn, hepatitis, hives, irritable bowel syndrome, itch, jaundice, liver problems, malaria, menstrual disorders, nausea, skin disorders, spleen inflammation, tumors, ulcers, water retention, wounds [253-255], antiherpes [256], antiulcers [257, 258], antifungal [259, 548], antibacterial [260]
46 S. pseudocapsicum Jerusalem/winter cherry, Madeira, South Africa, Australia, New Zealand, Peru, Ecuador [261-263] Hepatoprotective [264]
47 S. rostratum Buffalobur/spiny nightshade, Colorado bur, Kansas/Mexican/Texas thistle United States, northern and central Mexico [265-272] Cardiovascular [273]
48 S. sarrachoides Hairy/leafy-fruited nightshade Columbia [274, 275] Unknown
49 S. schimperianum Somali, Eritrea, Ethiopia, Egypt, Yemen [276] Antimicrobial [277, 278], antifungal [279]
50 S. septemlobum Qing qi (Chinese) China (Anhui, Gansu, Hebei, Henan, Jiangsu, Liaoning, Nei Mongol, Shandong, Shanxi, Sichuan, Xinjiang, East Xizang, Zhejiang) [280, 281] Antipyretic, antidotal [261], anticancer [261, 262]
51 S. sessiliflorum Cocona Peru, Colombia, Venezuela [282-284, 549], Bolivia, Mexico [268] Antioxidant [550], antimicrobial, hypolipidemic [285]
52 S. sisymbriifolium Vila-vila, sticky nighthade, red bufallor bur, fire and ice, litchi tomato, morelle de balbis Brazil, Argentina, Uruguay, Paraguay [286-288] Cardiovascular [289], antidiarrheal [290], hypotensive [291, 292], antimicrobial, antioxidative [293], anticonvulsant, CNS depressant [294], antimolluscicidal [295], analgesic [290, 296]
53 S. spirale Southern China, India, Bangladesh, Thailand, Laos, Philippines, Australia [551] Anaesthetic, diuretic and narcotic, antibacterial, anticancer [297-299]
54 S. surattense Cockroach/yellow berry; thorn gourd/eggplant; belladonna; Night-shade, Febrifuge plant (English); Choti kateri/Bhatakataiyya, Rengani (Hindi); China [300, 301], India [302] Anti-inflammatory, antibacterial, antitumor, antioxidant, anti-platelet aggregation [303-308], diuretic [308], antiplasmodial [309], anthelmintic, anti-convulsant, antihyperlipide-mic, antiurolithiatic, natriuretic, antiulcer, wound healing, antiasthmatic, hypoglycemic, hepatoprotective [99]
55 S. torvum Turkey berry, prickly nightshade, devil's fig, shoo-shoo bush, wild/pea eggplant (English), aubergine sauvage épineuse, fausse aubergine (French), kantɔsi (Ghana), susumber (Jamaica), berenjena cimarrona (Spanish), kaisurisuri, kausoni, kauvotovotua, soni (Fijian), shui qie (Chinese), bhankatiya, katai (Hindi) [552] Brazil, Colombia, Caribbean, Central America, Mexico, tropical Africa, Asia, Australia, Hawaii, Guam, American Samoa [310-312] Antibacterial, anti-platelet aggregation [100, 313], pesticide [314], analgestic [314], anticancer [315-317], antifungal, antimicrobial [318-320], antiulcerogenic [321], antiviral [322], anticonvulsant [323], antihypertensive [324, 325, 553], antinephrotoxicity [326, 327], antioxidants [328-330], anti-inflammatory [331], antidepressant [332, 333], antiplasmodial [334], antidiabetic [335-337], antihelminthic [338]
56 S. tridynamum Spanish: mala mujer, sacamanteca, ojo de liebre, berenjena Silvestre Mexico [339, 340] Antidiabetic [339-341]
57 S. trilobatum Purple fruited pea eggplant, Thai nightshade India, Myanmar, Thailand, Vietnam, Malaysia [342, 343] Antifungal, antimitotic, asthma, vomiting, rheumatism, leprosy [342, 343], fever, antioxidant [344], antibacterial [345-347], antidiabetic [348], anticancer [349-355], mosquitocidal [356, 357], anti-inflamatory [358], antinociceptive [359], antihepatitis [360]
58 S. triste Venezuela, Trinidad, Martinique, Dominica [361] Unknown
59 S. tuberosum Potato Chile, Peru, Bolivia [101, 362, 363] Antifungal, antimicrobial [364], antioxidants [365, 366], antileishmanial [367, 368], anticancer [369-372], antihypertensive [373]
60 S. umbelliferum Bluewitch nightshade California, Arizona [374-379] Anticancer [380]
61 S. uporo Cannibal's tomato Fiji island, Tonga, Samoa, Tuamotus, Hawaii [381-384] Unknown
62 S. validinervium Venezuela [385]
63 S. vestissimum Toronjo, tumo/coquina melon, lulo fruit Colombia, Venezuela [386, 387]
64 S. villosum Hairy nightshade, whooly nightshade, red nightshade Europe, western Asia, northern Africa, North America, Australia, India Antimolluscicidal [554], mosquito larvicidal [388, 389, 555]
65 S. violaceum Ci tian qie (Chinese) China, India, Myanmar, Thailand, Cambodia, Laos, Vietnam, Malaysia, Indonesia, Philippines Anticancer, anti-inflammatory, antimicrobial, antioxidant, anthelmintic [390-393]
66 S. xanthocarpum Wild eggplant, Kantakari, yellow berried nightshade, huang shui qi (Chinese) Nepal, Pakistan, Bhutan, Bangladesh, Myanmar, Sri Lanka, China, Iran, Yemen, Thailand, Afghanistan, Saudi Arabia, India Anthelmintic, anti-inflammatory, anodyne, digestive, carminative, appetizer, stomachic, depurative, sudorific, febrifuge, expectorant, laxative, diuretic, emmenagogue, aphrodisiac, leishmaniasis, immunomodulatory, anti-asthmatic [394-400], antimicrobial [226, 401-405], molluscicidal, hepatoprotective, antidiabetic [406-413] antioxidant, antinociceptive, nephroprotective, mosquitocidal, anti-psoriatic, diuretic, antiurolithiatic [414-429]

3 Chemical Constituents and Their Biological Properties

At least 670 compounds, including 134 steroidal saponins (1-134), 63 steroidal alkaloids (135-197), 13 pregnane glycosides (198-210), 128 terpenes (211-338), 72 flavonoids (339-413), 31 lignans (414-444), 31 other types of alkaloids (445-475), 66 sterols (476-541), 52 phenols (542-593), 20 coumarins and coumestans (594-613), 4 coumarinolignoids (614-617), 23 fatty acids and esters (618-640) and 30 other compounds (641-670) were reported from the genus Solanum. Most of them were investigated for various biological activities. The chemical constituents and their biological properties are presented in Table 2, together with their plant sources and parts, alongside the classification of structures.

Table 2

Phytochemistry, biological properties and classification of Solanum compounds

No. Compounds Plant sources Parts Biological properties References
Steroidal Saponins
1 Chlorogenone S. torvum Fruit [430]
2 (5α, 25S)-Spirostan-3, 6-dione S. torvum Fruit [430]
3 Solakhasoside S. khasianum Fruit [431]
4 Foliumin S. amygdalifolium Aerial [57]
5 Foliumin A S. amygdalifolium Aerial [56]
6 Neotigogenin S. paniculatum Leaf Cytotoxic [257]
7 Diuranthoside A S. cathayanum Root [432]
8 Torvoside N S. torvum Aerial Anticancer [316]
9 Atroposide E S. dulcamara Aerial [433]
10 Degalactotigonin S. dulcamara Aerial [433]
11 Trillin S. paniculatum Aerial [258]
12 Diosgenin gentiobioside S. paniculatum Aerial [258]
13 Diosgenone S. nudum Leaf Hepatoprotective [242, 247, 249]
14 (22R, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1″"-3″')-O-[β-D-quinovosyl(1″'-2′)]-O-[α-L-rhamnosyl (1″-3′)] -O-β-D-quinovoside S. paniculatum Aerial [258]
15 Nuatigenosido S. sisymbriifolium Root Antihypertensive [289, 291]
16 (3β, 5α, 14β, 25R)-3-Hydroxyspirost-8-en-11-one S. villosum Leaf [434]
17 (3β, 5α, 6α, 25S)-3-Hydroxyspirostan-6-yl 6-deoxy-3-O-(6-deoxy-α-L-mannosyl) -β-D-glucoside S. torvum Whole [435]
18 Torvoside Q S. torvum Aerial [331, 436]
19 Dioscin S. indicum Fruit [160]
S. melongena Fruit Antimelanogenesis [211]
S. rostratum Aerial [437]
20 Prosapogenin A S. indicum Fruit [160]
21 Diosgenin S. lycopersicum Aerial [438]
S. melongena Aerial [439]
S. nigrum Fruit [440]
S. torvum Fruit [430]
S. tridynamum Root [341]
S. tuberosum Stem [441]
S. violaceum Aerial [391, 442]
22 Aspidistrin S. cathayanum Root [432]
23 Torvoside M S. torvum Aerial Anticancer [316]
24 Protodioscin S. abutiloides Root [7]
S. incanum Root [156]
S. indicum Fruit [160, 443]
S. spirale Fruit [444]
25 Methylprotodioscin S. incanum Root [155]
S. indicum Fruit [160]
26 Indioside D S. incanum Root [156]
27 26-O-β-D-Glucosyl-22-methoxyfurost-5-ene-3β, 26-diol 3-O-α-L-rhamnosyl-(1-2)-β-D-glucoside S. indicum Fruit [160]
S. spirale Fruit [444]
28 (3β, 22α, 25R)-26-(β-D-Glucosyloxy)-22-hydroxyfurost-5-en-3-yl O-β-D-glucosyl-(1-2)-O-β-D-glucosyl-(1-4)-β-D-glucoside S. cathayanum Root [432]
29 25R-Timosaponin H1 S. cathayanum Root [432]
30 Torvoside O S. torvum Leaf [445]
31 (23S, 25R)-spirost-5-en-3, 23 diol 3-O-α-L-rhamnosyl-(1-2)-O-α-L-rhamnosyl-1-4)β-D-glucoside S. glabratum Aerial [141]
32 23-β-D-glucosyl (23S, 25R)spirost-5-en-3, 23 diol 3-O-α-L-rhamnosyl-1-2)O-α-L-rhamnosyl-(1-4)β-D-glucoside S. glabratum Aerial [141]
33 (25R)spirost-5-en-3-ol 3-O-α-L-rhamnosyl-1-2)O-β-D-glucosyl-1-3)β-D-galactoside S. glabratum Aerial [141]
34 Isonuatigenin-3-O-β-solatriose S. sisymbriifolium Root [446]
35 Saponin SC-1 S. chrysotrichum Leaf [118]
36 Saponin SC-2 S. chrysotrichum Leaf Antifungal [113-115, 117]
37 Saponin SC-3 S. chrysotrichum Leaf Antifungal [114, 117]
38 Saponin SC-4 S. chrysotrichum Leaf Antifungal [114, 117]
39 Saponin SC-5 S. chrysotrichum Leaf Antifungal [114, 117]
40 Saponin SC-6 S. chrysotrichum Leaf Antifungal [114, 117]
S. torvum Whole [435]
41 Chlorogenin S. chrysotrichum Leaf [117]
S. tridynamum Root [341]
S. torvum Fruit [430]
42 Chrysogenin S. chrysotrichum Leaf [117]
43 Laxumin A S. laxum Aerial [178]
44 Laxumin B S. laxum Aerial [178]
45 Luciamin S. laxum Aerial [177]
46 Lyconoside Ⅰa S. lycocarpum Fruit [447]
47 Lyconoside Ⅰb S. lycocarpum Fruit [447]
48 Lyconoside Ⅱ S. lycocarpum Fruit [447]
49 Lyconoside Ⅲ S. lycocarpum Fruit [447]
50 Lyconoside Ⅳ S. lycocarpum Fruit [447]
51 26-O-(β-D-Glucosyl) nuatigenin-3-O-α-L-rhamnosyl-(1-4)-β-D-glucoside S. surattense Aerial [305]
52 Aculeatiside A S. surattense Aerial [305]
53 (22R, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3) -β-D-quinovoside S. surattense Aerial [305]
54 (22R, 23S, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3)-O-β-D-quinovoside S. surattense Aerial [305]
55 (22R, 23R, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3)-O-β-D-quinovoside S. surattense Aerial [305]
56 Neochlorogenin 6-O-β-D-quinovoside S. torvum Aerial [331, 448]
57 Neochlorogenin 6-O-β-D-xylosyl -(1-3)-β-D-quinovoside S. torvum Aerial Anti-inflammatory [331, 448]
58 Neochlorogenin 6-O-α-L-rhamnosyl-(1-3)-β-D-quinovoside S. torvum Aerial [448, 449]
59 Solagenin 6-O-β-D-quinovoside S. torvum Whole [448-450]
60 Solagenin 6-O-α-L-rhamnosyl-(1-3)-β-D-quinovoside S. torvum Whole [448]
61 (25S)26-β-D-glucosyloxy)3-oxo-5α-furost-20(22)en-6α-yl-O-β-D-xyloside S. torvum Fruit [451]
62 (25S)26-β-D-glucosyloxy)3-oxo-22α-methoxy-5α-furostan-6α-yl-O-β-D-xyloside S. torvum Fruit [451]
63 (25S)26-β-D-glucosyloxy)3β-hydroxy-22α-methoxy-5α-furostan-6α-yl-O-α-L-rhamnosyl-1-3)β-D-glucoside S. torvum Fruit [451]
64 Torvoside A S. torvum Aerial [313, 449]
65 Torvoside B S. torvum Root [449]
66 Torvoside E S. torvum Root [449]
67 Torvoside F S. torvum Root [449]
68 Torvoside H S. torvum Fruit [313]
69 (25S)3β-hydroxy-5α-spirostan-6α-yl-O-β-D-xyloside S. torvum Fruit [451]
70 (25S)3-oxo-5α-spirostan-6α-yl-O-β-D-xyloside S. torvum Fruit [451]
71 (25S)3β-hydroxy-5α-spirostan-6α-yl-O-β-D-glucoside S. torvum Fruit [451]
72 (25S)3β, 27-dihydroxy-5α-spirostan-6α-yl-O-β-D-glucoside. S. torvum Fruit [451]
73 Neochlorogenin S. tridynamum Root [451]
S. torvum Aerial [341]
74 Tigogenin S. americanum Leaf [54]
S. torvum Fruit [430]
75 Yuccagenin S. tridynamum Root [341]
76 Yamogenin S. violaceum Aerial [391]
77 Yamogenone S. violaceum Aerial [391]
78 Indioside L S. violaceum Aerial [391]
79 Indioside M S. violaceum Aerial [391]
80 Indioside N S. violaceum Aerial [391]
81 Indioside O S. violaceum Aerial [391]
82 Indioside G S. violaceum Whole [392]
83 Indioside H S. violaceum Whole Anticancer [392]
84 Borassoside D S. violaceum Whole [392]
85 Borassoside E S. violaceum Whole Anticancer, anti-inflammatory [392]
86 Indioside Ⅰ S. violaceum Whole Anticancer, anti-inflammatory [392]
87 Indioside J S. violaceum Whole [392]
88 Indioside K S. violaceum Whole [392]
89 Yamoscin S. torvum Aerial Anti-inflammatory [331]
S. violaceum Whole Anticancer [392]
90 Zingiberoside A1 S. violaceum Whole [392]
91 Solanolactoside A S. torvum Aerial [316]
92 Solanolactoside B S. torvum Aerial [316]
93 Solanolactoside C S. torvum Aerial [436]
94 Solanolide S. torvum Aerial [316]
95 Torvoside J S. surattense Aerial Anticonvulsant [305]
S. torvum Aerial [323, 331, 452]
96 Torvoside K S. surattense Aerial Anticonvulsant, antifungal [305]
S. torvum Aerial [323, 331, 452]
97 Torvoside L S. surattense Aerial Anticonvulsant [305]
S. torvum Aerial [323, 331, 435, 452]
S. paniculatum Leaf [260]
98 (22R, 23S, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3)-O-β-D-quinovoside S. torvum Aerial [323, 331]
99 (22R, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3)-O-β-D-quinovoside S. torvum Aerial Anti-inflammatory [331]
100 (22R, 23R, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylosyl-(1-3)-O-β-D-quinovoside S. torvum Aerial Anti-inflammatory [331]
101 Gekogenin S. torvum Fruit [430]
102 Sisalagenin S. torvum Fruit [430]
103 Δ25(27)tigogenin-3-O-β-D-glucoside S. paniculatum Leaf Antiviral [257]
104 Soladulcosides A S. dulcamara Aerial [129]
105 Soladulcosides B S. dulcamara Aerial [129]
106 Abutiloside L S. abutiloides Root [4]
107 Abutiloside M S. abutiloides Root [4]
108 Abutiloside N S. abutiloides Root [4]
109 Abutiloside O S. abutiloides Root [4]
110 Torvoside C S. torvum Root [449]
111 Torvoside D S. surattense Aerial [305]
S. torvum Root [331, 449]
112 Torvoside G S. torvum Fruit, Root [313, 449]
113 Torvoside P S. torvum Leaf [445]
114 Anguivioside A S. anguivi Fruit [41]
115 Anguivioside B S. anguivi Fruit [41]
116 Anguivioside C S. anguivi Fruit [41]
117 Anguivioside Ⅰ S. indicum Fruit [443]
118 Anguivioside Ⅲ S. anguivi Fruit [43]
S. indicum Fruit [443]
119 Anguivioside XI S. anguivi Fruit [43]
120 Anguivioside XV S. anguivi Fruit [43]
121 Anguivioside XVI S. anguivi Fruit [43]
122 Inunigroside A S. nigrum Fruit [453]
123 25(S)-26-O-β-D-glucosyl-5α-furost-22(20)-en-3β, 6α, 26-triol 6-O-[α-L-rhamnosyl-(1-3)-O-β-D-quinovoside] S. torvum Fruit Anticancer [317]
124 25(S)-26-O-β-D-glucosyl-5α-furost-22(20)-en-3-one-6α, 26-diol 6-O-[α-L-rhamnosyl-(1-3)-O-β-D-quinovoside] S. torvum Fruit Anticancer [317]
125 25(S)-26-O-β-D-glucosyl-5α-furost-22(20)-en-3β, 6α, 26-triol 6-O-β-D-quinovoside S. torvum Fruit Anticancer [317]
126 Paniculonin B S. torvum Leaf [323]
127 Smilaxchinoside A S. rostratum Aerial [437]
128 6-O-α-L-rhamnosyl-(1″-3′)-β-D-quinovosyl-(22S, 23R, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
129 6-O-β-D-Xylosyl-(1″-3′)-β-D-quinovosyl-(23R, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
130 6-O-β-D-Xylosyl-(1″-3′)-β-D-quinovosyl-(22S, 23R, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
131 3-O-α-L-Rhamnosyl-(1″-3′)-β-D-quinovosyl-(22S, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
132 3-O-β-D-Xylosyl-(1″-3′)-β-D-quinovosyl-(22S, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
133 6-O-α-L-Rhamnosyl-(1″-3′)-β-D-quinovosyl-(22S, 25S)-1β, 3β, 6α-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
134 6-O-β-D-Xylosyl-(1″-3′)-β-D-quinovosyl-(22S, 25S)-3β, 4β, 6α-trihydroxy-5α-spirostane S. paniculatum Leaf [260]
Steroidal alkaloids
135 Demissine S. tuberosum Stem [101]
136 Solasodiene S. torvum Fruit [430]
137 Solanoside A S. surattense Whole [454]
138 Solanoside B S. surattense Whole [454]
139 Solamargine S. abutiloides Root [7]
S. aculeastrum Fruit [19]
S. asperum Root [66, 67]
S. buddleifolium Stem [79]
S. americanum Fruit [55]
S. anguivi Root [42]
S. crinitum Fruit [122]
S. erianthum Leaf [137, 455]
S. incanum Root [156]
S. khasianum Fruit [456]
S. lycocarpum Fruit Leishmanicidal, antidiabetic, schistosomicidal, trypanocidal [182, 183, 185, 186, 447, 457]
S. melongena Fruit, Root [206, 439]
S. nigrum Whole [228]
S. paludosum Fruit [253]
S. sarrachoides Leaf Anticancer [458]
S. surattense Aerial [305]
S. uporo Root Antibacterial, molluscicidal [384]
S. xanthocarpum Fruit [403, 406]
140 γ-Solamargine S. nigrum Whole [228]
S. umbelliferum Whole [380]
141 Khasianine S. khasianum Fruit [456]
S. nigrum Whole [228]
S. surattense Aerial Anticancer [305]
S. xanthocarpum Fruit Antibacterial, molluscicidal [403, 406, 407]
142 Solasonine S. americanum Leaf [54]
S. amygdalifolium Aerial [56]
S. asperum Fruit [66, 67]
S. crinitum Aerial [122, 123, 459]
S. erianthum Leaf [137, 455]
S. khasianum Fruit [456]
S. lycocarpum Fruit Leishmanicidal, antidiabetic, schistosomicidal [182, 183, 185, 447, 457]
S. melongena Fruit, Root [206, 439]
S. sarrachoides Leaf [458]
S. sessiliflorum Fruit [460]
S. sisymbriifolium Fruit [294]
143 β1-Solasonine S. nigrum Whole [228]
144 12-Hydroxysolasonine S. lycocarpum Fruit [182, 447]
145 Solasodine
S. americanum Leaf [54]
S. aculeastrum Fruit Anticancer [13]
S. crinitum Aerial [123]
S. khasianum Fruit [172, 456]
S. laciniatum Aerial [461, 462]
S. lycocarpum Fruit [185]
S. melongena Fruit [206]
S. nigrum Whole [163, 440]
S. sisymbriifolium Fruit [294]
S. surattense Whole CNS depressant [303]
S. torvum Whole Anti-inflammatory [463]
S. trilobatum Whole [358]
S. villosum Whole [442]
S. xanthocarpum Fruit Antibacterial [403, 429]
S. umbelliferum Whole [380]
146 N-Hydroxysolasodine S. paludosum Root [464]
147 O-Acetylsolasodine S. umbelliferum Whole [380]
148 Putuline S. paludosum Root [464]
149 Anguivine S. anguivi Root [42]
S. uporo Root [384]
150 Isoanguivine S. uporo Root [384]
151 Arudonine S. arundo Root [64]
152 Solanandaine S. asperum Fruit [66]
153 Robeneoside A S. lycocarpum Fruit [182, 447]
154 Robeneoside B S. lycocarpum Fruit [182, 447]
155 Lobofrutoside S. lycocarpum Fruit [447]
156 Solanigroside P S. nigrum Whole [228]
157 (22R, 25R)-16β-H-22α-N-Spirosol-3β-ol-5-ene 3-O-α-L-rhamnosyl-(1-2)-[α-L-rhamnosyl-(1-4)]-β-D-glucoside S. surattense Aerial Anticancer [305]
158 Solaculine A S. aculeastrum Root [19]
159 β-Solamarine S. aculeastrum Root [19]
S. elaeagnifolium Seed [465]
S. incanum Root [155]
160 Tomatidenol S. aculeastrum Root [19]
S. palodusum Root [464]
S. lycopersicum Fruit [192]
S. surattense Aerial [454]
161 Tomatidine 3-O-β-D-glucoside S. arboreum Aerial [63]
162 Dehydrotomatine S. lycopersicum Fruit [192]
163 Tomatidine 3-O-O-β-D-xylosyl-1-6)β-D-glucoside] S. arboreum Aerial [63]
164 Solaverol A S. uporo Root [384]
165 (23S)-23-hydroxyanguivine S. uporo Root [384]
166 (23S)-23-hydroxyisoanguivine S. uporo Root [384]
167 Tomatidine S. lycopersicum Fruit [192]
S. aculeastrum Fruit Anticancer [13]
168 Tomatine S. lycopersicum Fruit [192, 466]
S. cathayanum Whole Neurotoxicity [106]
S. sarrachoides Leaf [276]
169 22-Imido-3-[4′-(6″-deoxy-α-L-mannoside)-β-D-glucoside]-5-dehydro spirostane S. xanthocarpum Fruit [407]
170 Leptinidine S. paludosum Root [253]
S. orbignianum Aerial [250]
171 Leptinine Ⅰ S. orbignianum Aerial [250]
172 Leptinine Ⅱ S. orbignianum Aerial [250]
173 Solanine S. dulcamara Stem [467]
S. indicum Whole [162]
S. tuberosum Stem [441]
S. villosum Fruit [468]
174 α-Chaconine S. tuberosum Stem [372, 441]
175 β-D-Glucoside, (3β, 23β)23-hydroxysolanid-5-en-3-yl S. orbignianum Aerial [250]
176 Solanidine S. villosum Fruit [469]
177 Solanopubamine S. schimperianum Aerial Antifungal [279]
178 Jurubine S. paniculatum Fruit [273, 548]
179 Etioline S. spirale Root [470]
180 Deacetylveralosine S. spirale Root [470]
S. diphyllum Root [126]
181 Solaspiralidine S. spirale Root [470]
182 Soladunalinidine S. arboreum Aerial [59]
183 3-epi-Soladunalinidine S. arboreum Aerial [59]
184 Caavuranamide S. caavurana Fruit Antibacterial [80]
185 4-Tomatiden-3-one S. caavurana Fruit [80]
186 5-Tomatidan-3-one S. caavurana Fruit [80]
187 (22S, 25S)-3β-aminospirosol-5-ene S. arboreum Aerial [59]
188 (22R, 25R)3β-amino-5α-spirosolane S. triste Aerial [362, 471]
189 (22R, 25R)3β-amino-5-spirosolene S. triste Aerial [362, 471]
190 Isojuripidine S. asterophorum Aerial Spasmolytic [70]
191 23, 24-2-methyl-tetrahydrofuran)Solanidine S. cornifolium Aerial [472, 473]
192 Spiraloside C S. spirale Fruit [474]
193 Spiraloside B S. spirale Fruit [474]
194 Spiraloside A S. spirale Fruit [474]
195 Soladulcine A S. dulcamara Aerial [433]
196 Soladulcine B S. dulcamara Aerial [433]
197 Esculeoside A S. lycopersicum Fruit [475]
Pregnane glycosides
198 Solanigroside A S. nigrum Whole [476]
199 Solanigroside B S. nigrum Whole [476]
200 5α-Pregn-16-en-3β -ol-20-one lycotetraoside S. nigrum Whole [476]
201 (5α)-3-Hydroxypregn-16-en-20-one S. lyratum Whole [194]
202 Hypoglaucin H S. nigrum Whole [476]
S. rostratum Aerial [437]
203 16-Dehydropregnolone S. lyratum Whole Anticancer [194]
204 16-dehydropregnenolone 3-O-α-L-rhamnosyl-1-2)β-D-glucosiduronic acid S. lyratum Whole [194]
205 Torvpregnanoside A S. torvum Aerial [317, 331]
206 5α-pregn-16-en-3, 20-dione-6α-ol-6-O-[α-L-rhamnosyl-(1-3)-β-D-quinovoside] S. torvum Fruit Anticancer [317]
207 Torvpregnanoside B S. torvum Aerial [331]
208 Ganaxolone S. torvum Aerial [323]
209 Allopregnanolone S. torvum Aerial [323]
210 Pregnanolone S. torvum Aerial [323]
Triterpenes
211 Betulinic acid S. buddleifolium Stem [79]
212 Lupeol S. cathayanum Aerial [472, 473, 477]
S. schimperianum Aerial [278]
S. spirale Leaf Anticancer [297]
213 Cycloeucalenone S. cernuum Leaf Anticancer [107]
214 24-oxo-31-norcycloartanone S. cernuum Leaf Anticancer [107]
215 Friedelin S. lycopersicum Seed [478]
216 Ursolic acid S. lyratum Whole [197]
S. torvum Aerial [463]
S. xanthocarpum Root [427]
217 2α, 3β-Dihydroxyursolic acid S. torvum Aerial [463]
218 Daturaolone S. arundo Whole [65]
219 Carbenoxolone S. cernuum Leaf [109]
220 β-Amyrin S. melongena Aerial [439]
221 Oleanolic acid S. torvum Aerial [463]
S. xanthocarpum Root [427]
222 2α-Hydroxyoleanolic acid S. torvum Aerial [463]
223 3β-Acetoxy-11α, 12α-epoxyoleanan-13ß, 28-olide S. torvum Aerial [463]
224 Solanoglycosydane Ⅰ S. torvum Fruit [314]
Diterpenes
225 Phytol S. pseudocapsicum Leaf [263]
S. villosum Leaf [434, 479]
226 Kaur-16-ene S. aculeastrum Leaf [11]
227 Solanerioside A S. erianthum Leaf [138]
228 Tricalysioside U S. violaceum Whole [392]
Sesquiterpenes
229 Roseoside S. erianthum Leaf [138]
230 (6E, 10E)-5, 12-Dihydroxy-ß-nerolidol 5-O-β-D-glucoside S. erianthum Leaf [138]
231 Amarantholidoside Ⅳ S. erianthum Leaf [138]
232 3β-Hydroxysolavetivone S. abutiloides Root Antifungal [3]
S. aethiopicum Root [29]
233 Solavetivone S. abutiloides Root Antifungal [3]
S. aethiopicum Root [29]
S. indicum Root [163]
S. jabrense Aerial [166]
234 13-Hydroxysolavetivone S. buddleifolium Stem [79]
S. aethiopicum Root [29]
235 Lubimin S. abutiloides Root Antifungal [3]
S. aethiopicum Root [29]
236 Lubiminoic acid S. aethiopicum Root [29]
237 Epilubimin S. aethiopicum Root [29]
238 Epilubiminoic acid S. aethiopicum Root [29]
239 Lubiminol S. aethiopicum Root [29]
240 α-Farnesene S. aculeastrum Leaf [11]
241 Nerolidol S. aculeastrum Leaf [11]
242 2, 7, 10-Trimethyldodecane S. aculeastrum Leaf [11]
243 Aethione S. aethiopicum Root [29]
244 Anhydro-β-rotunol S. aethiopicum Root [29]
245 (4S, 5R, 7S)-4, 11-Dihydroxy-guaia-1(2), 9(10)-dien S. erianthum Stem [480]
246 Caryophyllene S. erianthum Fruit [481]
247 Cadina-1(10), 4-diene S. erianthum Fruit [481]
248 α-Gurjunene S. erianthum Fruit [481]
249 Globulol S. erianthum Fruit [481]
250 α-Guaiene S. erianthum Fruit [481]
251 α-Calacorene S. erianthum Fruit [481]
252 2-naphthalenemethanol S. erianthum Fruit [481]
253 Octahydro-2, 2-dimethyl-4a, 7a-ethano-5H-cyclobut[e]inden-5-ol S. erianthum Fruit [481]
254 4, 5-Dehydroisolongifolene S. erianthum Fruit [481]
255 α -Caryophyllene S. erianthum Fruit [481]
256 Solafuranone S. indicum Root [163]
257 Lyratol D S. lyratum Whole Anticancer [199]
S. septemlobum Whole [482]
258 Solajiangxin B S. lyratum Whole Anticancer [198]
S. septemlobum Whole [482]
259 Septemlobin D S. septemlobum Whole [483]
260 Blumenol A S. lyratum Whole Anticancer [199, 484]
261 Blumenol C S. lyratum Whole [484]
262 Dehydrovomifoliol S. lyratum Whole Anticancer [199, 484]
263 Grasshopper ketone S. lyratum Whole [484]
264 6α-Epoxy-7-megastigmen-9-one S. lyratum Whole [484]
265 (1′R, 2R, 5S, 10R)2-1′, 2′-dihydroxy-1′-methylethyl)6, 10-dimethylspiro[4, 5]dec-6-en-8-one S. lyratum Whole [484]
266 (1′S, 2R, 5S, 10R)2-1′, 2′-dihydroxy-1′-methylethyl)6, 10-dimethylspiro[4, 5]dec-6-en-8-one S. lyratum Whole [484]
267 2-1′, 2′-dihydroxy-1′-methylethyl)6, 10-dimethyl-9-hydroxyspiro[4,5]dec-6-en-8-one S. lyratum Whole [200, 484]
268 Boscialin S. lyratum Whole [484]
269 1β-Hydroxy-1, 2-dihydro-α-santonin S. lyratum Whole [193, 484]
270 Lyratol A S. lyratum Whole [485]
271 Lyratol B S. lyratum Whole [485]
S. septemlobum Whole [482]
272 Lyratol C S. lyratum Whole Anticancer [199]
273 Lyratol G S. lyratum Whole [196]
274 Solajiangxin A S. lyratum Whole Anticancer [198]
275 Solajiangxin C S. lyratum Whole Anticancer [198]
276 Solajiangxin D S. lyratum Whole Anticancer [200]
S. septemlobum Whole [482]
277 Solajiangxin E S. lyratum Whole Anticancer [200]
278 Solajiangxin F S. lyratum Whole Anticancer [197]
S. septemlobum Whole [482]
279 Solajiangxin G S. lyratum Whole Anticancer [197]
280 2-hydroxysolajiangxin E S. lyratum Whole Anticancer [200]
281 Dehydrocarissone S. lyratum Stem [486]
S. septemlobum Whole [482]
282 Atractylenolide Ⅰ S. lyratum Stem [486]
283 Ligucyperonol S. septemlobum Whole [482]
284 Nardoeudesmol A S. septemlobum Whole [482]
285 Solanerianone A S. septemlobum Whole [482]
286 Pterocarptriol S. torvum Root [487]
287 Selina-3β, 4α, 11-triol S. torvum Root [487]
288 2-(1′, 2′-dihydroxy-1′-methylethyl)-6, 10-dimethylspiro[4, 5]dec-6, 9-dien-8-one S. torvum Root [487]
289 10β, 12, 14-Trihydroxy-allo-aromadendrane S. torvum Root [487]
290 10β, 13, 14-Trihydroxy-allo-aromadendrane S. torvum Root [487]
291 2-(1′, 2′-dihydroxy-1′-methylethyl)-6, 10-dimethyl-9-hydroxy-spirodec-6-en-8-one S. torvum Root [487]
292 1β, 10β, 12, 14-Tetrahydroxy-allo-aromadendrane S. torvum Root [487]
293 1β, 10β, 13, 14-Tetrahydroxy-allo-aromadendrane S. torvum Root [487]
294 Teferidin S. schimperianum Aerial [278]
295 Teferin S. schimperianum Aerial [278]
296 Ferutinin S. schimperianum Aerial [278]
297 Bisabolol S. sessiliflorum Fruit [488]
298 11, 12-O-Isopropylidenesolajiangxin F S. septemlobum Whole [483]
299 Eudesmane S. septemlobum Whole [281]
300 Vitispirane S. septemlobum Whole [281]
301 Septemlobin A S. septemlobum Whole Anticancer [281]
302 Septemlobin B S. septemlobum Whole Anticancer [281]
303 Septemlobin C S. septemlobum Whole Anticancer [281]
304 3β, 11-dihydroxy-4, 14-oxideenantioeudesmane S. torvum Root [487]
305 Aromadendrene oxide S. erianthum Fruit [481]
306 Thujopsene S. betaceum Fruit [77]
307 α-Cedrene S. betaceum Fruit [77]
308 Cedrol S. betaceum Fruit [77]
309 α-Hexylcinnamaldehyde S. betaceum Fruit [77]
310 β-Cadinene S. betaceum Fruit [77]
Monoterpenes
311 Decanal S. aculeastrum Leaf [11]
312 Decane S. aculeastrum Leaf [11]
313 2, 4-Decadienal S. aculeastrum Leaf [11]
314 1, 8-Cineole S. betaceum Fruit [77]
315 Terpinen-4-ol S. betaceum Fruit [77]
316 Linalool S. vestissimum Fruit [489, 490]
317 Geraniol S. vestissimum Fruit [490]
318 Limonene S. vestissimum Fruit [490]
319 β-Cyclocitral S. aculeastrum Leaf [11]
320 β-Ionone S. aculeastrum Leaf [11]
S. pseudocapsicum Leaf [263]
S. betaceum Fruit [77]
321 1, 2-Dihydro-1, 1, 6-trimethyl-naphthalene S. aculeastrum Leaf [11]
322 trans-β -Damascenone S. aculeastrum Leaf [11]
323 Loliolide S. erianthum Leaf [137]
S. americanum Aerial [49]
S. pseudocapsicum Leaf [263]
324 Hotrienol S. vestissimum Fruit [468, 490]
325 Neroloxide S. vestissimum Fruit [468]
326 5-Ethynyltetrahydro-α, α, 5-trimethyl-2-furanmethanol S. vestissimum Fruit [490]
327 Nerol S. vestissimum Fruit [490]
328 8-Hydroxylinalool S. vestissimum Fruit [491]
329 (R)-Linalyl β-D-glucoside S. vestissimum Fruit [492]
330 (1R, 4E)-1-Ethenyl-6-hydroxy-1, 5-dimethyl-4-hexen-1-yl β-D-glucoside S. vestissimum Fruit [492]
331 (R)-Linalyl β-vicianoside S. vestissimum Fruit [492]
332 6-O-linked β-D-glucoside of (R)E)2, 6-dimethyl-3, 7-octadiene-2, 6-diol S. vestissimum Fruit [468]
333 (3E, 6R)-2, 6-Dimethyl-3, 7-octadiene-2, 6-diol S. vestissimum Fruit [468]
334 p-Cymenene S. betaceum Fruit [77]
335 Dihydroactinidiolide S. erianthum Leaf [137]
336 Apiole S. sessiliflorum Fruit [488]
337 α-Terpinen-7-al S. betaceum Fruit [77]
338 1, 3, 8-p-Menthatriene S. betaceum Fruit [77]
Flavonoids
339 Vitecetin S. agrarium Aerial [31]
340 Quercetin S. anguvi Fruit Anticancer [31]
S. elaeagnifolium Seed [493]
S. incanum Aerial [494]
S. melongena Stem [205]
S. muricatum Whole [215]
S. nigrum Leaf [92-98, 230-238, 495-497]
S. torvum Whole [498]
341 Kaempferol 7-O-rhamnoside S. asperum Fruit [67]
342 Rutin S. anguvi Fruit Anticancer [31]
S. melongena Stem [499, 500]
S. muricatum Fruit [215]
S. nigrum Leaf [230]
S. spirales Aerial [470]
343 Kaempferol 3-rutinoside-7-rhamnoside S. asperum Fruit [67]
344 Afzelin S. cernuum Leaf [109, 112, 501]
345 Quercitrin S. cernuum Leaf [109]
S. melongena Stem [205]
346 Astragalin S. cernuum Leaf [501]
S. crinitum Aerial [459]
S. incanum Aerial [494]
S. elaeagnifolium Aerial [502]
347 Kaempferol 3-O-[α-apiofuranosyl-(1-2)]-α-rhamnoside S. cernuum Leaf [501]
348 Kaempferol 3-O-[α-apiofuranosyl-(1-2)]-β-galactoside S. cernuum Leaf [501]
349 Tiliroside S. asperum Fruit [67]
S. crinitum Aerial [123, 459]
S. elaeagnifolium Whole Anticancer [503]
S. cernuum Leaf [501]
350 cis-Tiliroside S. cernuum Leaf [501]
S. elaeagnifolium Aerial [502]
351 Kaempferol S. crinitum Aerial [459]
S. elaeagnifolium Whole [504]
S. incanum Aerial [494]
S. indicum Whole [505]
S. nigrum Leaf [227]
S. surattense Whole [99]
S. torvum Whole [498]
352 Camelliaside C S. erianthum Leaf [137]
353 Baimaside S. incanum Aerial [506]
354 Narcissin S. glabratum Aerial [141]
355 Isorhamnetin 3-glucoside S. incanum Aerial [506]
356 Populnin S. elaeagnifolium Aerial [502]
357 Quercetin 3-O-robinoside S. paniculatum Aerial [258]
358 Kaempferol 3-O-(6″-O-cis-p-coumaroyl)-O-β-galactoside S. elaeagnifolium Aerial [502]
359 Myricetin-3-galactoside S. melongena Stem [205]
360 Apigenin S. lyratum Whole [507]
S. torvum Whole [498]
361 Pelanin S. tuberosum Stem [508]
362 Petanin S. tuberosum Stem [508]
363 Peonanin S. tuberosum Stem [508]
364 Keracyanin S. betaceum Fruit Anticancer [75, 76]
365 Pelargonidin 3-rutinoside S. betaceum Fruit Anticancer [75, 76]
366 Tulipanin S. betaceum Fruit Anticancer [75, 76]
367 Delphinidin 3-O-α-L-rhamnosyl-(1-6)-β-D-glucoside-3′-O-β-D-glucoside S. betaceum Fruit Anticancer [75, 76]
368 Cyanidin 3-O-(2″-O-xylosyl)rutinoside S. betaceum Fruit [76]
369 Asterin S. betaceum Fruit [76]
370 Biochanin A-7-O-β-D-apiofuranosyl-1-5)β-D-apiofuranosyl-1-6)β-D-glucoside S. crinitum Fruit [122]
371 2R, 3R-5, 7, 4′-trihydroxy-dihydroflavon-3-O-α-D-glucosyl-6″-O-β-D-glucoside-6‴-p-hydroxy benzoate S. elaeagnifolium Whole Anticancer [503]
372 6, 2′, 3″, 5″, 4‴-Pentahydroxy-3, 7″-biflavone S. dulcamara Fruit [130]
373 Kaempferol 8-C-β-D-galactoside S. elaeagnifolium Aerial Hepatoprotective [502]
374 Kaempferol 8-C-glucoside S. elaeagnifolium Aerial [502]
375 Kaempferol 6-C-glucoside S. elaeagnifolium Aerial [502]
376 Vitexin S. elaeagnifolium Aerial [502]
377 Vicenin Ⅱ S. elaeagnifolium Aerial [502]
378 Quercetin 6-C-β-glucoside S. elaeagnifolium Aerial [502]
379 Quercetin 3-O-β-galactoside S. elaeagnifolium Aerial [502]
380 Isoquercitrin S. elaeagnifolium Aerial [502-504]
S. incanum Aerial [494]
S. torvum Root [338]
S. melongena Stem [205]
381 Quercetin 3-O-β-apiofuranosyl-(1-2)-O-β-galactoside S. elaeagnifolium Aerial [502]
382 5-Hydroxy, 7, 2′, 3′, 5′-tetramethoxyflavone S. glabratum Whole [140]
383 Combretol S. glabratum Whole [140]
384 Baicalin S. incanum Aerial [506]
385 Kaempferol 3‐O‐(6‴‐O‐2, 5‐dihydroxycinnamoyl)‐β‐D‐glucosyl(1-2) β‐D‐glucoside S. incanum Aerial [506]
386 (±)-Naringenin S. indicum Whole [505]
S. nienkui Whole [509]
S. sessiliflorum Fruit [510]
S. surattense Whole [99]
387 Manghaslin S. lycopersicum Fruit [511]
388 Genkwanin S. jabrense Aerial [167]
S. palodusum Aerial [512]
389 Ombuine S. jabrense Aerial [167]
390 Rhamnocitrin S. jabrense Aerial [167]
S. palodusum Aerial [513]
391 Retusin S. jabrense Aerial [167]
S. palodusum Aerial [512]
S. schimperianum Aerial [278]
S. torvum Fruit [322]
392 Pentamethoxyquercetin S. jabrense Aerial [167]
393 3-O-Methylquercetin S. jabrense Aerial [167]
S. palodusum Aerial [513]
394 Kumatakenin S. jabrense Aerial [167]
S. palodusum Aerial [513]
395 3′-Hydroxyflindulatin S. jabrense Aerial [167]
S. palodusum Aerial [513]
396 3, 7, 8-Trimethylherbacetin S. jabrense Aerial [167]
397 3, 7, 8, 3′, 4′-Pentamethylgossypetin S. jabrense Aerial [167]
S. palodusum Aerial [512, 513]
398 Diosmetin S. nienkui Whole [509]
399 Formononetin S. lyratum Whole [514]
400 Ononin S. lyratum Whole [514]
401 Daidzein S. lyratum Whole [507, 514]
402 Genistin S. lyratum Whole [514]
403 5-Hydroxylononin S. lyratum Whole [514]
404 2, 7-Dihydroxy-3-(4-hydroxyphenyl)-5-methoxy-4H-1-benzopyran-4-one S. nienkui Whole [509]
405 5-hydroxy-3, 7, 4′-trimethoxyflavone S. schimperianum Aerial [278]
406 Kaempferol-3-O-β-D-glucoside S. schimperianum Aerial [278]
407 Luteolin S. schimperianum Aerial [278]
408 Tamarixin S. torvum Whole [498]
409 Torvanol A S. torvum Root Antidepressant, antiviral [322, 332]
410 5-methoxy-(3, 4″-dihydro-3″, 4″-diacetoxy)-2″, 2′-dimethyl-(7, 8:5″, 6″)-flavone S. erianthum Leaf [137]
411 5, 7, 8, 4′-tetrahydroxy-3-methoxyflavone-8-O-β-D-xyloside S. rostratum Aerial [515]
412 3-O-Methylquercetin 3-O-β-D-galactoside S. rostratum Whole [516]
413 3-O-Methylquercetin 3-O-β-D-glucoside S. rostratum Whole [516]
Lignans
414 Isolariciresinol S. buddleifolium Stem [79]
415 5-Methoxyisolariciresinol S. buddleifolium Stem [79]
416 Polystachyol S. buddleifolium Stem [79]
417 (+)-Lyoniresinol 3-O-D-glucoside S. buddleifolium Stem [79]
418 (-)-Lyoniresinol 3-O-D-glucoside S. buddleifolium Stem [79]
419 Alangilignoside C S. buddleifolium Stem [79]
420 (+)-(7S, 8R, 7′E)-4-Hydroxy-3, 5, 5′, 9′-tetram ethoxy-4′, 7-epoxy-8, 3′-neo-lign-7′-en-9-ol S. erianthum Stem [480]
421 (-)-(7R, 8S, 7′E)-4-Hydroxy-3, 5, 5′, 9′-tetramethoxy-4′, 7-epoxy-8, 3′-neo-lign-7′-en-9-ol S. erianthum Stem [480]
422 Liriodendrin S. lyratum Whole [517]
423 Syringaresinol S. lyratum Whole [517]
S. nigrum Whole [496]
S. surattense Whole [518]
424 Melongenamide A S. melongena Root [210]
425 Cannabisin D S. melongena Root Anti-inflammatory [210]
426 Melongenamide B S. melongena Root Anti-inflammatory [210]
427 Grossamide S. melongena Root Anti-inflammatory [210]
428 Melongenamide C S. melongena Root Anti-inflammatory [210]
429 Cannabisin F S. melongena Root Anti-inflammatory [210]
430 Melongenamide D S. melongena Root Anti-inflammatory [210]
431 Cannabisin G S. melongena Root Anti-inflammatory [210]
432 1, 2-dihydro-6, 8-dimethoxy-7-hydroxy-1-(3, 5-dimethoxy-4-hydroxyphenyl)-N1, N2-bis-[2-(4-hydroxyphenyl)ethyl]-2, 3-naphthalene dicarboxamide S. melongena Root [210]
433 Sisymbrifolin S. sisymbriifolium Fruit [519]
434 Grossamide K S. melongena Root [210]
435 Pinoresinol S. nigrum Whole [496]
436 Pinoresinol 4-O-β-D-glucoside S. nigrum Whole [520]
437 Medioresinol S. nigrum Whole [496]
S. torvum Stem [436]
438 Syringaresinol-4′-O-β-D-glucoside S. nigrum Whole [520]
439 Glycosmisic acid S. surattense Whole [518]
440 Simulanol S. surattense Whole [518]
441 Balanophonin S. surattense Whole [518]
442 Ficusal S. melongena Root [209]
443 Tribulusamide A S. surattense Whole [518]
444 Clemastanin B S. torvum Fruit [521]
Other alkaloids
445 Xylogranatinine S. cathayanum Stem [477]
446 Cernumidine S. cernuum Leaf [109, 111, 112]
447 Isocernumidine S. cernuum Leaf [111]
448 Cernidine S. cernuum Leaf [501]
449 Ethyl orotate S. cathayanum Stem [103, 477]
450 3-Indolecarboxylic acid S. americanum Aerial [49]
451 L-Valyl-L-isoleucyl-L-leucine S. asperum Fruit [67]
452 2-Methyltetrahydro-β-carboline S. jabrense Aerial [166]
453 Proline S. asperum Fruit [67]
454 Acetamide S. schimperianum Aerial [277]
455 Stearamide S. schimperianum Aerial [277]
456 (6E, 9E)N, N-dimethyloctadeca-6, 9-dienamide S. schimperianum Aerial [277]
457 (2E)-3-(4-Hydroxyphenyl)-N-[(2S)-2-(4-hydroxyphenyl)-2-methoxyethyl]-2-propenamide S. torvum Aerial [450]
458 4-Coumaroyltyramine S. buddleifolium Stem [79]
S. cathayanum Stem [522]
S. indicum Root [163]
S. melongena Root [209]
S. surattense Whole [518]
S. torvum Aerial [338]
S. lyratum Whole [507]
459 N-trans-Feruloyltyramine S. buddleifolium Stem [79]
S. cathayanum Stem [522]
S. indicum Root [163]
S. melongena Root Antidiabetic [209]
S. lyratum Whole [507]
460 N-trans-Feruloylmethoxytyramine S. buddleifolium Stem [79]
S. cathayanum Stem [522]
461 N-trans-Caffeoyltyramine S. buddleifolium Stem [79]
462 N-trans-Feruloyldopamine S. buddleifolium Stem [79]
463 N-trans-Feruloyloctopamine S. cathayanum Stem [522]
S. septemlobum Aerial [523]
464 N-trans-p-coumaroyloctopamine S. americanum Aerial Antidiabetic [49]
S. torvum Aerial [524]
465 N-trans-p-feruloyloctopamine S. americanum Aerial Antidiabetic [49]
466 N-trans-p-coumaroyltyramine S. americanum Aerial Antidiabetic [49]
S. melongena Root
467 N-trans-p-feruloytyramine S. americanum Aerial Antidiabetic [49]
S. torvum Aerial [524]
468 N-cis-p-Coumaroyltyramine S. melongena Root [209]
469 Caffeoylputrescine S. melongena Stem [205]
470 3-(3, 4-Dihydroxyphenyl)-N-[3-[[4-[[3-(3, 4-dihydroxyphenyl)-1-oxo-2-propen-1-yl] amino]butyl]amino]propyl]-2-propenamide S. melongena Stem [205]
471 Aurantiamide acetate S. torvum Aerial [524]
472 N1, N4, N8-Tris(dihydrocaffeoyl) spermidine S. sessiliflorum Fruit [525]
473 N-(4-Aminobutyl)-N-[3-[[3-(3, 4-dihydroxyphenyl)-1-oxopropyl] amino]propyl]-3, 4-dihydroxybenzenepropanamide S. sessiliflorum Fruit [525]
474 N-(3-Aminopropyl)-N-[4-[[3-(3, 4-dihydroxyphenyl)-1-oxopropyl] amino]butyl]-3, 4-dihydroxybenzenepropanamide S. sessiliflorum Fruit [525]
475 Soya-cerebroside Ⅰ S. torvum Root [435]
Sterols
476 Cilistol G S. capsicoides Leaf [85]
477 Capsisteroid A S. capsicoides Leaf [85]
478 Capsisteroid B S. capsicoides Leaf [85]
479 Capsisteroid C S. capsicoides Leaf [85]
480 Capsisteroid D S. capsicoides Leaf [85]
481 Capsisteroid E S. capsicoides Leaf [85]
482 Capsisteroid F S. capsicoides Leaf [85]
483 β-Sitosterol S. cathayanum Stem [477, 522]
S. anguvi Fruit [34]
S. cornifolium Aerial [472, 473]
S. dulcamara Fruit [130]
S. elaeagnifolium Whole [134, 504]
S. indicum Whole [160]
S. lycopersicum Seed [478]
S. melongena Aerial [206, 439]
S. schimperianum Aerial [278]
S. surattense Aerial [518]
S. torvum Root [526]
S. trilobatum Whole [356]
S. xanthocarpum Fruit [398]
484 Daucosterol S. cathayanum Stem [522]
S. chrysotrichum Leaf [120]
S. elaeagnifolium Whole [504]
S. glabratum Whole [140]
S. ligustrinum Aerial [179]
S. septemlobum Aerial [523]
S. torvum Root [526]
S. violaceum Whole [392]
485 Campesterol S. elaeagnifolium Seed [134]
S. melongena Root [439]
486 Cholesterol S. lycopersicum Seed [478]
S. sessiliflorum Fruit [285]
487 γ-Sitosterol S. lycopersicum Seed [478]
488 7-Oxositosterol S. violaceum Aerial [391]
489 (3β)-7-Hydroxystigmast-5-en-3-yl β-D-glucoside S. violaceum Whole [392]
490 Stigmasterol S. cornifolium Aerial [472, 473]
S. dulcamara Fruit [130]
S. elaeagnifolium Whole [134, 504]
S. lycopersicum Seed [478]
S. melongena Aerial [439]
S. septemlobum Aerial [523]
S. surattense Aerial [527]
S. xanthocarpum Fruit [398]
491 Brassicasterol S. elaeagnifolium Seed [134]
492 Poriferasterol monoglucoside S. glabratum Whole [140]
493 7-Oxostigmasterol S. violaceum Aerial [391]
494 β-stigmasteryl-3-O-β-D-6-palmityl) glucoside S. septemlobum Aerial [523]
495 Clerosterol S. elaeagnifolium Seed [134]
496 7-Sitoster-3β-ol S. elaeagnifolium Seed [134]
497 (3β, 5α)Cholest-7-en-3-ol S. lycopersicum Seed [478]
498 Stigmasta-5, 24(28)-dien-3-ol S. elaeagnifolium Seed [134]
S. torvum Leaf [318]
499 Avenasterol S. elaeagnifolium Seed [134]
500 5, 24-Stigmastadienol S. elaeagnifolium Seed [134]
501 γ-Tocopherol S. lycopersicum Seed [478]
S. villosum Leaf [479]
502 Ergosterol S. lycopersicum Seed [478]
503 Lanosterol S. lycopersicum Seed [478]
504 Peroxyergosterol S. lyratum Stem [486]
S. violaceum Aerial [391]
505 9, 11-Dehydroergosterol peroxide S. lyratum Stem [486]
S. violaceum Aerial [391]
506 Nigralanostenone S. nigrum Leaf [528]
507 Tumacone A S. nudum Leaf [242, 247]
508 Tumacone B S. nudum Leaf [242, 247]
509 Tumacoside A S. nudum Leaf Antiplasmodial [242, 247]
510 Tumacoside B S. nudum Leaf Antiplasmodial [242, 247]
511 SN-1 S. nudum Aerial Antiplasmodial [245]
512 SN-2 S. nudum Aerial Antiplasmodial [245]
513 SN-3 S. nudum Aerial Antiplasmodial [245]
514 SN-4 S. nudum Aerial Antiplasmodial [245]
515 SN-5 S. nudum Aerial Antiplasmodial [245]
516 9α, 11α-epidioxyergosta-6, 22-dien-3β-ol S. septemlobum Aerial [523]
517 Carpesterol S. capsicoides Seed Anticancer, antifungal [86]
S. sisymbriifolium Fruit [519]
518 Carpesterol methyl ether S. xanthocarpum Fruit Antifungal [401]
519 Carpesterol ethyl ether S. xanthocarpum Fruit Antifungal [401]
520 Stigmast-7-en-6-one, 3-β-D-glucosyloxy)22-hydroxy-4-methyl-(3β, 4α, 5α, 22R) S. xanthocarpum Fruit Antifungal [401]
521 Stigmast-7-en-6-one, 3-β-D-glucosyloxy)22-methoxy-4-methyl-(3β, 4α, 5α, 22R) S. xanthocarpum Fruit Antifungal [401]
522 Toptriol S. glaucophyllum Leaf [529]
523 Cholecalciferol S. glaucophyllum Leaf [530]
524 β-D-Glucoside, (1α, 3β, 5Z, 7E)-3, 25-dihydroxy-9, 10-secocholesta -5, 7, 10(19) -trien -1-yl S. glaucophyllum Leaf [530]
525 Dehydrocholesterol
526 3, 4-Dihydro-3, 5, 8-trimethyl-3-(4, 8, 12-trimethyltridecyl)-2H-1-benzopyran-7-yl acetate S. villosum Leaf [479]
527 Tumaquenone S. nudum Aerial [247]
528 Abutiloside A S. abutiloides Root [5, 7-9]
529 Abutiloside B S. abutiloides Root [5]
530 Abutiloside H S. abutiloides Root [5]
531 Abutiloside Ⅰ S. abutiloides Root [5]
532 Abutiloside J S. abutiloides Root [5]
533 Abutiloside K S. abutiloides Root [5]
534 Abutiloside C S. abutiloides Root [7, 8]
535 Abutiloside D S. abutiloides Root [6]
536 Abutiloside E S. abutiloides Root [6]
537 Abutiloside F S. abutiloides Root [6]
538 Abutiloside G S. abutiloides Root [6]
539 Aethioside A S. aethiopicum Stem [28]
540 Aethioside B S. aethiopicum Stem [28]
541 Aethioside C S. aethiopicum Stem [28]
Phenolic compounds
542 4-Caffeoylquinic acid S. melongena Stem, Leaf [205, 531]
S. lyratum Whole [517]
543 5-Caffeoylquinic acid S. melongena Stem [205]
S. sessiliflorum Fruit [525]
544 (1R, 3R, 4S, 5R)-3-(Acetyloxy)-5-[[(2E)-3-(3, 4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy] -1, 4-dihydroxycyclohexanecarboxylic acid S. melongena Stem [205]
545 (1S, 3R, 4R, 5R)-3-(Acetyloxy)-4-[[(2E)-3-(3, 4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy] -1, 5-dihydroxycyclohexanecarboxylic acid S. melongena Stem [205]
546 Chlorogenic acid S. anguvi Fruit Anticancer [31]
S. guaraniticum Leaf [146]
S. incanum Aerial [494]
S. lycocarpum Fruit [532]
S. lyratum Whole [517]
S. melongena Stem, Leaf [205, 531]
S. surattense Whole [99]
547 Neochlorogenic acid S. lyratum Whole [517]
548 Rosmarinic acid S. betaceum Fruit [78]
S. guaraniticum Leaf [146]
549 3, 5-Dicaffeoylquinic acid S. melongena Stem [91]
550 (Z)-Neochlorogenic acid S. melongena Stem [91]
551 Gallic acid S. anguvi Fruit Anticancer [31]
S. cernuum Leaf [112]
S. spirale Aerial [299]
S. surattense Whole [99]
552 4-hydroxybenzoic acid S. crinitum Fruit [122]
S. americanum Aerial [49]
553 Protocatechuic acid S. lyratum Whole [514]
S. spirale Leaf [297]
S. nigrum Whole [520]
554 Vanillic acid S. lyratum Whole [514]
S. sessiliflorum Fruit [510]
S. nigrum Whole [520]
S. vestissimum Fruit [491]
555 Caffeic acid S. anguvi Fruit Anticancer [31]
S. guaraniticum Leaf [146]
S. incanum Aerial [506]
S. lycocarpum Fruit [532]
S. lyratum Whole [194]
S. melongena Stem [205]
S. muricatum Whole [215]
S. surattense Whole [99, 518]
S. xanthocarpum Root [427]
556 P-Coumaric acid S. americanum Aerial [49]
557 Isoferulic acid S. cernuum Leaf [109, 112]
558 2, 4, 6-Trimethoxyphenol S. torvum Stem [533]
559 Propionylsyringol S. torvum Stem [533]
560 Resveratrol S. americanum Fruit [45]
561 cis-p-Coumaric acid ethyl ester S. crinitum Fruit [122]
562 cis-p-Coumaric acid S. crinitum Fruit [122]
563 trans-p-Coumaric acid ethyl ester S. crinitum Fruit [122]
564 trans-p-Coumaric acid S. crinitum Fruit [122]
S. incanum Aerial [506]
565 Erythro-1, 2-bis-(4-hydroxy-3-methoxyphenyl)-1, 3-propanediol S. lyratum Whole [517]
566 Threo-1, 2-bis-(4-hydroxy-3-methoxyphenyl)-1, 3-propanediol S. lyratum Whole [517]
567 Evofolin B S. surattense Whole [518]
568 Ethyl caffeate S. nienkui Whole [509]
569 Methyl salicylate S. nienkui Whole [509]
S. aculeastrum Leaf [11]
570 p-Hydroxybenzoic acid S. nigrum Whole [520]
571 Vanillin S. nienkui Whole [509]
572 Protocatechuic aldehyde S. nienkui Whole [509]
573 3, 5-Diethoxyphenol S. nigrum Leaf [528]
574 Quinic acid S. sessiliflorum Fruit [525]
575 Phenol S. sessiliflorum Fruit [525]
576 Salicylic acid S. torvum Aerial [524]
577 Violaxanthin S. sessiliflorum Fruit [525]
578 Lutein S. sessiliflorum Fruit [525]
579 α-Carotene S. sessiliflorum Fruit [525]
580 Kryptoxanthin S. sessiliflorum Fruit [525]
581 Luteoxanthin S. sessiliflorum Fruit [525]
582 15-cis-β-Carotene S. sessiliflorum Fruit [525]
583 Foliaxanthin S. sessiliflorum Fruit [525]
584 Physoxanthin S. sessiliflorum Fruit [525]
585 Coniferol S. surattense Whole [518]
586 1, 2-Bis(4-hydroxy-3-methoxyphenyl)-1, 3-propanediol S. surattense Whole [518]
587 Threo-1-(4-Hydroxy-3-methoxyphenyl)-2-[4-[(E)-3-hydroxy-1-propenyl]-2-methoxy phenoxy]-1, 3-propanediol S. surattense Whole [518]
588 Tyrosol C S. validinervium Aerial [534]
589 (E)-Coniferaldehyde S. melongena Root [209]
590 trans-Cinnamic acid S. spirale Leaf Antibacterial [297]
591 Methyl caffeate S. torvum Fruit Antibacterial, antidiabetic [315, 320, 335-337]
592 (E)-2, 3-dihydroxycyclopentyl-3-(3′, 4′-dihydroxyphenyl)acrylate S. torvum Fruit Antihypertensive [521]
593 Eugenol S. torvum Stem [533]
Coumarins and coumestans
594 Scopolin S. cathayanum Stem Anticancer [104, 105]
S. lyratum Whole [194]
S. septemlobum Aerial [523]
595 Scopoletin S. glabratum Whole [140]
S. indicum Seed [535]
S. ligustrinum Aerial [179]
596 Coumarin S. incanum Leaf [494]
S. surattense Whole [99]
S. vestissimum Fruit [491]
597 Fraxetin S. indicum Seed [536]
598 Isofraxidin S. indicum Seed [536]
599 Umbelliferone S. lycopersicum Aerial [438]
600 7-hydroxy-6, 8-dimethoxy-3-(4′-hydroxy-3′-methoxyphenyl)-coumarin S. indicum Seed [536]
601 Cleosandrin S. indicum Seed [535]
602 4, 4′-Biisofraxidin S. indicum Seed [535]
603 Arteminorin A S. indicum Seed [535]
604 Indicumin E S. indicum Seed [536]
605 Bergaptin S. lycopersicum Aerial [438]
606 Aesculetin S. lycopersicum Aerial [438]
S. validinervium Aerial [534, 537]
607 6, 7-Dimethoxycoumarin S. melongena Root [209]
608 Escopoletin S. nigrum Whole [520]
609 Isoscopoletin S. validinervium Aerial [534, 537]
610 1′-O-7-esculetin-4′-O-1″-ethylenglycol-β-D-glucose S. validinervium Aerial [534]
611 Coumestrol S. lyratum Whole Anti-inflammatory [88]
612 9-hydroxy-2′, 2′-dimethyl[5′, 6′:2, 3]-coumestan S. lyratum Whole Anti-inflammatory [88]
613 Solalyratin A S. lyratum Whole Anti-inflammatory [88]
Coumarinolignoids
614 Indicumine A S. indicum Seed Anti-HBV [535]
615 Indicumine B S. indicum Seed Anti-HBV [535]
616 Indicumine C S. indicum Seed [535]
617 Indicumine D S. indicum Seed [535]
Fatty acids and esters
618 Hexadecanoic acid S. aculeastrum Leaf [11]
S. vestissimum Fruit [490]
S. villosum Leaf [434, 479]
619 Octadecanoic acid, S. aculeastrum Leaf [11]
S. erianthum Leaf [137]
620 Linoleic acid S. aculeastrum Leaf [11]
S. glabratum Whole [140]
621 Lignoceric acid S. cathayanum Stem [477]
622 Corchorifatty acid B S. americanum Aerial [49]
623 Linolenic acid S. erianthum Leaf [137]
S. glabratum Whole [140]
624 9(Z), 11(E)-Octadecadienoic acid S. erianthum Leaf [137]
625 13S-Hydroxy-9(Z), 11(E)-octadecadienoic acid S. erianthum Leaf [137]
626 9S-Hydroxy-10(E), 12(Z), 15(Z)-octadecatrienoic acid S. erianthum Leaf [137]
627 Decosahexaenoic acid S. glabratum Whole [140]
628 Decosapentaenoic acid S. glabratum Whole [140]
629 Oleic acid S. glabratum Whole [140]
630 Eicosapentaenoic acid S. glabratum Whole [140]
631 Lauric acid S. glabratum Whole [140]
632 Palmitoleic acid S. glabratum Whole [140]
633 Arachidonic acid S. glabratum Whole [140]
S. trilobatum Whole [356]
634 Myristic acid S. glabratum Whole [140]
635 Gamma-linolenic acid S. glabratum Whole [140]
636 9-Oxo-(10E, 12Z)-octadecadienoic acid S. melongena Calyx [91]
637 (10Z, 12E)-9-Oxo-10, 12-octadecadienoic acid S. melongena Calyx [91]
638 Eicosanoic acid S. torvum Root [526]
639 Octacosanoic acid S. torvum Root [526]
640 4-(3, 5-Di-Tert-Butyl-4-Hydroxy Phenyl) butyl Acrylate S. villosum Leaf [479]
Others
641 Puerariafuran S. lyratum Whole Anti-inflammatory [88]
642 1, 2-Benzenedicarboxylic acid S. aculeastrum Leaf [11]
643 1, 4-Dimethyl-benzene S. aculeastrum Leaf [11]
644 n-Nonane S. aculeastrum Leaf [11]
645 n-Octanol S. aculeastrum Leaf [11]
646 Methyl hexadecanoate S. aculeastrum Leaf [11]
647 Dodecane S. aculeastrum Leaf [11]
648 Undecanal S. aculeastrum Leaf [11]
649 Nonanal S. aculeastrum Leaf [11]
650 Eicosane S. aculeastrum Leaf [11]
S. betaceum Fruit [77]
651 Methyl-9, 12-octadecadienoate S. aculeastrum Leaf [11]
652 Hexadecane S. aculeastrum Leaf [11]
653 9, 17-Octadecadienal S. aculeastrum Leaf [11]
654 Hexanal S. betaceum Fruit [78]
655 Ethyl butanoate S. betaceum Fruit [78]
656 4-Hydroxy-4-methyl-2-pentanone S. betaceum Fruit [78]
657 2, 3-Butanediol S. betaceum Fruit [78]
658 cis-3-Hexen-1-ol S. betaceum Fruit [78]
659 3(Z)-Hexenal S. betaceum Fruit [78]
660 Ethyl-α-D-arabinofuranoside S. lyratum Whole [514]
661 Solalyratin B S. lyratum Whole Anti-inflammatory [88]
662 1-{1-[2-(2 hydroxypropoxy) propoxy] propan-2-yloxy} propan-2-ol S. schimperianum Aerial [277]
663 5-Hydroxymethyl furfural S. torvum Stem [533]
664 Solanesol S. tuberosum Leaf [538]
665 3-Hydroxymethyl-7-methoxywutaifuranol S. cathayanum Whole [102]
666 Phenylmethyl 2-O-β-D-xylosyl-β-D-glucoside S. incanum Aerial [506]
667 Zizybeoside Ⅰ S. lycopersicum Fruit [511]
668 Methyl salicylate 2-O-β-D-glucosyl-(1-2)-[O-β-D-xylosyl-(1-6)]-O-β-D-glucoside S. lycopersicum Fruit [511]
669 Phenethyl alcohol 8-O-β-D-glucosyl-(1-2)-[O-α-L-arabinosyl-(1-6)]-O-β-D-glucoside S. lycopersicum Fruit [511]
670 Benzyl alcohol 7-O-β-D-glucosyl-(1-2)-[O-α-L-arabinosyl-(1-6)]-β-D-glucoside S. lycopersicum Fruit [511]

3.1 Steroidal Saponins

Steroidal saponins are prominent characteristic components in Solanum species, from which 134 compounds, 1-134, have been obtained (Fig. 1). Among all the studied species, S. torvum was the one studied mostly, resulting in the isolation of 32 saponins including chlorogenone (1), (5α, 25S)-spirostan-3, 6-dione (2), diosgenone (13), 56-72, neochlorogenin (73), solanolactosides A-C (91-93), torvosides J-L (95-97) and 98-102 from the leaves, fruits, aerial parts and the whole plant [323, 325, 430, 435, 436, 448, 449, 451, 452, 463].

Fig. 1

Steroidal saponins 1-134 from Solanum

Included herein are spirostane saponins, SC1-SC6 (35-40), isolated from the leaves of S. chrysotrichum [113, 114, 115, 117], and lyconosides Ⅰa (46), Ⅰb (47), Ⅱ (48), Ⅲ (49), and Ⅳ (50) reported from the fruits of S. lycocarpum. Indiosides G (82) and H (83) with an iso-type F ring were isolated from the methanolic extract of the whole plant of S. violaceum, together with indioside Ⅰ (86), and two unusual furostanol saponins with a deformed F ring, indiosides J (87) and K (88) [391, 392]. In addition, four steroidal sapogenins, indiosides L-O (78-81) were also obtained from this plant [391]. Indioside L (78) is a rare spirostanoid possessing a 1, 4-dien-3-one moiety in ring A. Compounds 80 and 81 represent rare examples of spirostane with the 3β, 7α-diol-5, 6-ene moiety compared to the normal 3β, 7β-diol-5, 6-ene derivatives [391].

Two C-22 steroidal lactone saponins, namely solanolactosides A, B (91, 92) and two spirostanol glycosides, torvosides M, N (23, 8) were isolated from ethanol extract of aerial parts of S. torvum. Compounds 91 and 92 possess the aglycon of solanolide (94), while 23 and 8 have the aglycons of yamogenin (76) and neochlorogenin (73), resp. The aglycon of 94 is an unusual C-22 steroidal lactone sapogenin [316].

An avenacoside-type saponin (51) was isolated from aerial parts of S. surattense [305]. Two 23-keto-spirostanol glycosides, torvoside Q (18) and paniculonin B (126) were obtained from aerial parts of S. torvum [323, 331]. Torvosides A (64), B (65), F (67) and G (112) displayed a positive reaction with Ehrlich reagent, suggesting these to be furostanol glycosides [449]. Abutilosides L (106), M (107) and N (108), a 22S, 25S-epoxy-furost-5-ene type glycosides, and abutiloside O, being a 20, 22-seco-type steroidal glycoside, were isolated from the fresh fruits of S. abutiloides [4].

Anguiviosides Ⅲ (118) and Ⅺ (119) are hydroxylated at C-23 and C-26 on the spirostanol and furostanol skeletons, resp. Anguiviosides XV (120) and XVI (121) are based on a 16, 22-dicarbonyl aglycon, with 121 hydroxylated at C-23 and C-26 followed by ring closure. The biogenetic pathway of 16, 22-dicarbonyl compounds such as 120 and 121 might be considered via a 17R-hydroxy spirostanol such as pennogenin, 11 or via a 3β, 16β, 22, 26-tetrahydroxycholesterol glycoside such as anguivioside A (114) [43].

Solanum saponins were reported to have various bioactivies, e.g. cytotoxic [257], anticancer [316, 317, 392], hepatoprotective [242, 247], antihypertensive [289, 291], antimelanogenesis [211], antifungal [113, 114, 117], anti-inflammatory [331, 392, 448] anticonvulsant [305] and antiviral [257].

Nuatigenosido (15) from the roots of S. sisymbriifolium presented anti-hypertensive effect in experimental hypertensive rats [291]. Dioscin (19) showed antimelanogenesis effect on α-melanocyte stimulating hormone (α-MSH)induced melanogenesis in B16 murine melanoma cells. It significantly downregulated the expression of tyrosinase, TRP-1, and TRP-2, which led to the reduction of α-MSH-induced melanogenesis in B16 cells [211]. Degraded diosgenone (13) from S. nudum exhibited hepatoprotective effect on the liver of mice infected with Plasmodium berghei; necrosis of hepatocytes in mice infected with malaria decreased 47-65 [249].

Spirostanic saponins SC2-SC6 (36-40) from the leaves of S. chrysotrichum displayed activity against dermatophytes and yeasts. 36 was the most active in indicating fungicidal effect against Candida albicans and non-albicans strains [113, 114, 117].

Indioside H (83), borassoside E (85), indioside Ⅰ (86) and yamoscin (89) demonstrated cytotoxic activity against six human cancer cell lines (HepG2, Hep3B, A549, Ca9-22, MDA-MB-231, and MCF-7) (IC50=1.83-8.04 μg/mL) [392]. Seperately, 85 and 86 presented inflammation inhibitory effects on SAG (IC50=0.62±0.03 and 2.84±0.18 μg/mL, resp.). Compound 85 also inhibited elastase release with IC50 values of 111.05±7.37 μg/mL [392], while 89 showed anti-neutrophilic inflammatory activity against SAG with an IC50 value of 3.59 μM [331].

Torvosides N (8) and M (23) revealed significant cytotoxicity against MGC-803, HepG2, A549 and MCF-7 as compared to the positive control, CDDP [316]. Torvosides J-L (95-97), isolated from the leaves of S. torvum, exhibited substantial anticonvulsant activity in zebrafish seizure assays [323], while 96 also showed considerable antifungal activity against Aspergillus flavus and Fusarium verticillioides with MIC ranging from 31.25 to 250 μg/mL [318]. Compounds 99 and 100 inhibited both inflammatory mediators SAG (IC50=3.49 and 2.87 μM) and elastase release (IC50=2.69 and 0.66 μM) [331], while 123-125 convinced cytotoxicities against melanoma A375 [317].

3.2 Steroidal Alkaloids

Sixty-three steroidal alkaloids (135-197), as other principal components in Solanum were reported from this genus (Fig. 2). Compounds 139-156 are derivatives of solasodine (145), one of the main glycoalkaloid constituents in Solanum spp., even as indicated by several numbers of species from which it has been isolated. Solamargine (139) is the major steroidal alkaloid constituent of Solanum plants and literature data showed that it has been revealed in 18 species.

Fig. 2

Steroidal alkaloids 135-197 from Solanum

Compounds such as 139, solasonine (142), β1-solasonine (143) and solanigroside P (156) with three sugar units and α-L-rhamnose at C-2 or a hydroxyl group on the steroidal backbone may be potential candidates for the treatment of gastric cancer [228].

Featured here are steroidal pseudoalkaloid oligoglycosides, robeneosides A (153) and B (154) and lobofrutoside (155) from the fruits of S. lycocarpum [182, 447], and a rare 16β-H steroidal alkaloid (157) from aerial parts of S. surattense [305]. Also included are leptinine Ⅰ (171) and Ⅱ (172), the solanidane alkaloid glycosides, isolated from aerial parts of S. orbignianum [46].

Two rare C-3 amino steroidal alkaloids, 188 and 189, were isolated from aerial parts of S. triste [362, 471]. Three C-27 steroidal glycoalkaloids, spiralosides A (194), B (193), C (192), were obtained from the fruits of S. spirale [474]. Esculeoside A (197), a tomato saponin, is a significant component of ripened tomatoes isolated by Toshihiro et al. [475].

Various bioactivities e.g. antibacterial [80, 384, 403, 406, 407], anticancer [13, 305, 458], antidiabetic [182, 183], antifungal [279], anti-inflammatory [303], CNS depressant [294], leishmanicidal [182, 183], molluscicidal [384, 403, 406, 407], neurotoxicity [106], schistosomicidal [185, 186, 447, 457], spasmolytic [70] and trypanocidal [185, 186, 447, 457] were highlighted as have been exhibited by steroidal alkaloids of Solanum.

Antioxidant activity of 145 and tomatidine (167) from the berries of S. aculeastrum was investigated using DPPH, ABTS and reducing power assays, and the highest inhibition was observed when the two compounds were combined, followed by 145 and 167 [13]. Furthermore, 145 exhibited significant anti-inflammatory activity at doses of 30 mg/kg, with a maximum inhibition of 77.75% in carrageenan-induced rat paw edema, comparing to indomethacin (81.69%). It also showed stronger (46.79effect in xylene induced ear edema in mice [303]. Intraperitoneal injection of 145 (25 mgkg) significantly delayed latency of hind limb tonic extensor phase in the picrotoxin-induced convulsions, and it also potentiated thiopental-provoked sleep in a dose-dependent manner [294]. Moreover, 145 exhibited not only the antibacterial activity against Klebsiella and Staphylococcus spp. at concentration of 1 mg, together with 139 and 141 [403], but also a potent stemness and invasion inhibitory effect on human colorectal cancer HCT116 cells [155]. Colony Spheroid formation assay showed that solasodine dose-dependently prohibited HCT116 cell stemness. CD133, CD44, Nanog, Oct-4 and Sox-2 were inhibited by 145 to reverse stemness and similar mechanism was stimulated in vivo. Transwell and scratch wound assays revealed that 145 impeded HCT116 cell invasion and migration potential strengthened by TGF-β1. Moreover, solasodine attenuated TGF-β1-induced EMT and decreased MMPs while in vivo study showed the same trend. The results of this study implied that 145 may be a novel therapeutic drug for CRC treatment [155].

Burger et al. documented that the crude extract and aqueous fraction containing 139 displayed potent non-selective cytotoxicity (IC50 15.62 μgmL) and noteworthy 9.1-fold P-glycoprotein inhibition at 100 μgmL [15]. Zhang et al. assessed the molecular mechanism underlying the anti-cancer effect of 139 in human cholangiocarcinoma QBC939 cells. The results revealed that 139 inhibited the viability of QBC939 cells in a dose-dependent manner. Furthermore, it significantly induced the apoptosis of QBC939 cells and altered the mitochondrial membrane potential of cells. Quantitative polymerase chain reaction analysis revealed that 139 decreased the mRNA level of B cell lymphoma-2 (Bcl-2) Bcl-extra-large and X-linked inhibitor of apoptosis protein but increased the mRNA level of Bcl-2-associated X protein (Bax) In addition, western blot analysis demonstrated that 139 inhibited the protein expression of Bcl-2 and poly ADP ribose polymerase (PARP) and promoted the protein expression of Bax, cleaved PARP, caspase 3, cleaved caspase 3 and caspase [97].

Compounds 139, 141 and 157 demonstrated cytotoxicity against A549, whereas 139 and 156 showed cytotoxicity against HepG2 cell lines [305]. Compounds 139 and 141 were confirmed as the effective components for Oncomelania snail control. The death rate of Oncomelania snails was 94.2 at a concentration of 2.50 mg/L (139) [406], while 141 exhibited a lethality of 100against O. hupensis [407]. Moreover, 139 and solasonine (142) displayed not only leishmanicidal activity against promastigote forms of Leishmania amazonensis [185], but also antidiabetic activity by inhibiting the serum glucose increase in oral sucrose-loaded rats and suppressing gastric emptying in mice [182]. A synergistic effect was observed for a mixture of the compounds [183]. Compound 139 also expressed stronger trypanocidal activity (IC50=15.3 μg/mL), when compared to benznidazol (IC50=9.0 μg/mL), the only drug used to treat Chagas' disease [186].

Tomatine (168) was illustrated to exert significant neuroprotective effect on H2O2-induced SH-SY5Y cells, by enhancing intracellular anti-oxidant enzyme activity and brain-derived neurotrophic factor expression and restraining H2O2-induced oxidative stress [106]. Isojuripidine (190) displayed spasmolytic activity by hindering phasic contractions induced by both histamine and acetylcholinein guinea-pig ileum [69].

3.3 Pregnane Glycosides

Compounds 198-210 from Solanum comprise pregnane glycosides (Fig. 3). These compounds coexist in small amounts and could be biosynthesised from steroidal glycosides [194]. Solanigrosides A (198), B (199), 200 and hypoglaucin H (202) were isolated from S. nigrum [476]. Aerial parts of S. torvum gave the highest number of pregnane glycosides, torvpregnanosides A (205) and B (207), ganaxolone (208), allopregnanolone (209) and pregnanolone (210). The whole plant of S. lyratum afforded compounds 203 and 204 [194].

Fig. 3

Pregnane glycosides 198-210 from Solanum

Pregnane glycosides have reportedly demonstrated anticancer properties [194, 317]. Compound 203 exhibited substantial cytotoxic activity against A375-S2, HeLa, SGC-7901, and Bel-7402 cell lines, with IC50 values of 13.1 to 49.8 μg/mL [194]. Compound 206 indicated cytotoxicity against human melanoma A375 (IC50=39.66 μM) [317].

3.4 Triterpenes

Fourteen triterpenes (211-224) were identified in Solanum spp. (Figure 4), with lupeol (212) from S. cathayanum [472, 473, 477], S. schimperianum [278], S. spirale [297] and ursolic acid (216) from S. lyratum [197], S. torvum [463] and S. xanthocarpum [427], as the major ones. Six triterpenes 216-217 and 221-224 were reported from the aerial parts of S. torvum [314, 463]. Two cycloartane triterpenoids, cycloeucalenone (213) and 24-oxo-31-norcycloartanone (214) are the main constituents of S. cernuum leaves [107]. Daturaolone (218) was isolated for the first time from S. arundo [65].

Fig. 4

Triterpenoids 211-224 from Solanum

Solanum triterpenes have indicated to possess anticancer properties. For instance, 213 presented significant activity against KB-Oral cavity cancer (IC50=26.73 μgmL) [297], while 213 exhibited selective activity against lung tumor cell line (NCIH460). The anti-nociceptive activity observed for 213 and 214 was found to be related to the inhibition of different mediators involved in inflammation and nociceptive process. Both compounds decreased cyclooxygenase 2 (COX-2) protein expression, although only 214 reached a significant response (P < 0.05 vs control) [107].

3.5 Diterpenes

Four diterpenes, e.g., phytol (225) from S. pseudocapsicum [263], kaur-16-ene (226) from S. aculeastrum [11], solanerioside A (227) from S. erianthum [138], and tricalysioside U (228) from S. violaceum [392] were reported from Solanum spp. (Figure 5). Solanerioside A (227) was the first example of a diterpenoid glucoside featuring a 14, 15-dinor-cyclophytane scaffold [138].

Fig. 5

Diterpenes 225-228 from Solanum

3.6 Sesquiterpenes

Sesquiterpenes, 229-310, have been characterized from Solanum spp. (Figure 6). Majority of these compounds, 260-282, were from S. lyratum [196, 197, 199, 200, 484, 485, 486] and S. septemlobum [281, 482, 483]. Likewise, 283-285 and 298-303 were reported from S. septemlobum [281, 482, 483]. Compounds 229-231 and 245-255 were isolated from the leaves and fruits of S. erianthum [138, 481], while 286-293 were from the roots of S. torvum [487]. Compounds 236-239 were isolated from the roots of S. aethiopicum [29], while 240-242 were obtained from the leaves of S. aculeastrum [11]. The fruits of S. betaceum yielded compounds 306-310 [77].

Fig. 6

Sesquiterpenes 229-310 from Solanum

The bioactivities notedly displayed by sesquiterpenes include anticancer [197, 198, 199, 200, 281, 484] and antifungal [3]. 3-β-Hydroxysolavetivone (232), solavetivone (233) and lubimin (235) from the roots of S. abutiloides exhibited anti-fungal activities against Fusarium oxysporum f. sp. Melongenae [3]. The eudesmane-type, solajiangxin D (276), and vetispirane-type, solajiangxin E (277) from S. lyratum demonstrated crucial cytotoxicities (ED50=2.1-3.7 μg/mL) against three human cancer lines (P-388, HONE-1, and HT-29) [200]. Solajiangxin B (258), A (274) and C (275) from the whole plant of S. lyratum [198] and Septemlobin D (259), and 11, 12-O-isopropylidene solajiangxin F (298) [483] also showed significant cytotoxicities (ED50=1.9-3.7, and 3.0-7.3 μM, resp.) against these three cancer cell lines. Lyratol D (257), blumenol A (260), dehydrovomifoliol (262) and lyratol C (272) from the whole plant of S. lyratum displayed critical cytotoxic activities against HONE-1 nasopharyngeal, KB oral epidermoid carcinoma, and HT29 colorectal carcinoma cells (IC50=3.7-8.1 μM) [199].

Eudesmane-related sesquiterpenes, septemlobins A (301) and B (302) and vetispirane-type, septemlobin C (303) exhibited significant cytotoxicities against three cancer cell lines (P-388, HONE-1, and HT-29) (IC50=3.8-7.5 mΜ) [281].

3.7 Monoterpenes

Twenty-eight monoterpenes (311-338) have been characterized from Solanum spp. (Fig. 7), with β-Ionone (320) reported from S. aculeastrum [11], S. pseudocapsicum [263] and S. betaceum [77], and loliolide (323) obtained from S. erianthum [137], S. americanum [49] and S. pseudocapsicum [263], as dominant monoterpenes. Majority of the compounds, 316-318 and 324-333 [468, 489, 490, 491, 492], were obtained from the fruits of S. vestissimum. Hotrienol (324), with very sweet and flowery flavor is a well-known constituent of the leaf oil of Cinnamomum camphora. It has also been found in a large number of other natural tissues, such as tea, grapes, wines passion fruit, elderberry flowers, Achillea ligustica and papaya fruit [468]. Seven monoterpenes, 311-313 and 319-322 were reported from the leaves of S. aculeastrum [11], and glycosides 329-332 were the aroma precursors in S. vestissimum fruit peelings [468, 492].

Fig. 7

Monoterpenes 311-338 from Solanum

3.8 Flavonoids

Seventy-two flavonoids 339-413 have been identified in the genus Solanum (Fig. 8), with quercetin (340) and kaempferol (351) as the primary flavonoids. Several glycosylated flavonoids, e.g., afzelin (344), astragalin (346), kaempferol 3-O-[apiofuranosyl-(1→2)]- α-rhamnoside (347) and -β-galactoside (348) from S. cernuum [501], and camelliaside C (352) from S. erianthum [137] were obtained. Five kaempferol derivatives 373-377 were reported from S. elaeagnifolium [502]. Moreover, three anthocyanins 361-363 were isolated from the red and purple tubers of S. tuberosum [508], while five anthocyanin rutinosides 364-368 were reported from the fruits of S. betaceum [75, 76]. Anthocyanins are the largest group of water-soluble pigments in the plant kingdom. They are responsible for most red and blue colours in fruits, vegetables, and have been used in the food industry as pigments, owing to their bright attractive colours, high water solubility and associated health benefits [76]. In addition, diverse flavonoids, such as 388-397 from S. jabrense [167] and S. palodusum [513] and 399-403 from S. lyratum [514] were reported.

Fig. 8

Flavonoids 339-413 from Solanum

Flavonoids of Solanum have displayed various biactivities e.g., anticancer [31, 75, 76, 503], anti-depressant and antiviral [322, 332] and hepatoprotective [502] characteristics. Compound 373 exhibited significant hepatoprotective and curative effects against histopathological and histochemical damage induced by paracetamol in liver [502], while 349 and 371 displayed cytotoxicity against breast MCF7 and liver HPG2 cancer cell lines [503].

Compound 340 and rutin (342) indicated potent and concentration-dependent free radical-scavenging activity [45]. They also inhibited peroxidation of cerebral and hepatic lipids subjected to iron oxidative assault. Compound 340 induced in vitro antiproliferative and apoptotic activities on Jurkat cells (IC50=11.77±2.4 mg/mL) [23], while 364-367 showed antioxidant activities [75]. Torvanol A (409) from the roots of S. torvum exhibited antidepressant, anxiolytic and adaptogenic effects [316], as well as anti-HSV-1 activity (IC50=9.6 μgmL) [322].

3.9 Lignans

Lignans, widely distributed in the plant kingdom, are a family of secondary metabolites produced by oxidative dimerization of two phenylpropanoid units. Although their molecular scaffold consists only of two phenylpropane (C6-C3) units, lignans exhibit an enormous structural diversity originating from various linkage patterns of these phenylpropane units. As the C-8-C-3′/C-7-O-C-4′ linked lignans containing two chiral centers (C-7 and C-8) comprise the core of 2, 3-dihydrobenzo[b]furan [480].

Lignans are rare in the genus Solanum [79], with only 31 compounds (414-444) having been isolated (Fig. 9). Compounds 414-419 were obtained from the stems of S. buddleifolium [79], while 424-432, 434 and 442 were isolated from the roots of S. melongena [208, 209, 210]. Several neo-lignans, sisymbrifolin (433) from the fruits of S. sisimbriifolium [519], ficusal (442) from the roots of S. melongena [209], glycosmisic acid (439), simulanol (440) and balanophonin (443) from the whole plant of S. surattense [518] were identified. A pair of new C-8-C-3′/C-7-O-C-4′ linked neolignan enantiomers, 420 and 421, were isolated from the stems of S. erianthum [480]. Lignanamides 424-432 and 434 were obtained from the roots of S. melongena [210].

Fig. 9

Lignans 414-444 from Solanum

Among lignans from the genus Solanum, only lignanamides (425-432) were reported with bioactivities. They displayed anti-inflammatory activities by inhibition of nitric oxide production in lipopoly-saccharide-induced RAW 264.7 macrophages (IC50=16.2 to 58.5 μM) [210].

3.10 Other Alkaloids

The alkaloids have a natural (2-aminopyrrolidin-1-yl) carboxamidine alkaloidal base acylated with isoferulic (3-hydroxy-4-methoxycinnamic) acid with Z and E configurations, resp. [111]. Thirty-one alkaloids 445-475 have been isolated from Solanum spp. (Fig. 10), comprising types of cyclic guanidine alkaloids, e.g., cernumidine (446) and isocernumidine (447) from the leaves of S. cernuum [109, 111, 112]. Bioactive long chain amides, 454-456, exhibiting antimicrobial activity against Escherichia coli and Candida albicans were isolated from aerial parts of S. schimperianum [277]. Compounds 472-474 were obtained from S. sessiliflorum [525].

Fig. 10

Other alkaloids 445-475 from Solanum

Antidiabetic activity was illustrated by Solanum alkaloids [49, 209]. Four amides, N-trans-p-coumaroyl -octopamine (464) and -tyramine (466), and N-trans-p-feruloyl -octopamine (465) and -tyramine (467) exhibited antidiabetic properties by enhancing α-glucosidase inhibitory activity in a study involving dual high-resolution α-glucosidaseradical scavenging inhibition profiling [35]. Moreover, 459, 466 and 468 demonstrated possession of inhibitory activity against α-glucosidase (IC50=500.6, 5.3 and 46.3 μM, resp.) [209].

3.11 Sterols

Sixty-six sterols (476-541) were obtained from the genus Solanum (Fig. 11), with β-sitosterol (483), daucosterol (484) and stigmasterol (485) as the main sterol constituents. Clistol G (476) and capsisteroids A-F (477-482) were obtained from the leaves of S. capsicoides [85], tumacones A (507) and B (508) and tumacosides A (509) and B (510) were from the leaves of S. nudum [242-247], carpesterol (517) was isolated from the seeds of S. capsicoides [86], and its derivatives (518-521) were reported from the fruits of S. xanthocarpum [401]. From the seeds of S. elaeagnifolium, 491, 495, 496 and 498 were yielded [134]. Additionally, two 26-aminochole- stane-type glycosides, abutilosides A (528) and B (529), and five 26-hydroxycholestane-type glycosides, abutilosides C-G (534-538), were isolated from the fresh roots of S. abutiloides [5-9]. These compounds are important intermediates in the biogenesis of steroidal alkaloids [5].

Fig. 11

Sterols 476-541 from Solanum

Sterols in Solanum have indicated possession of anticancer [86], antifungal [401], and antiplasmodial [242, 245, 247] features. For instance, 509 and 510 displayed in vitro antimalarial activity against P. falciparum chloroquine-resistant FCB-1 strain (IC50=27 and 16 μM) [247]. Compounds 511-515 from aerial parts of S. nudum demonstrated antiplasmodial activity on hepatic trophozoites of P. vivax. All the steroids reduced the number of hepatic P. vivax trophozoites. Among them, 506 and 512 reduced the number of hepatic trophozoites by 47and 39resp. [245]. Compound 517 produced antiproliferative activity in glioma (U251), breast (MCF-7), kidney (786-0), ovary (OVCAR-03), and K562 cell lineages [86]. In addition, 505-509 displayed antifungal activity by inhibiting radial growth of A. niger and T. viride [401].

3.12 Phenolic Compounds

Fifty-two phenolic compounds (542-593) were recorded from Solanum (Fig. 12). The fruits of S. crinitum have yielded 552, 561-564 [122]. Aerial parts of S. torvum indicated a great wealth of phenolic compunds, e.g. 558-559, 576, 591-593 [315, 320, 335-337, 521, 524, 533]. The highest numbers of phenols, 542-546, 549-540, 552, 555 and 589 were reported from stems of S. melongena [205] while 574-575 and 577-584 were mentioned from the fruits S. sessiliflorum [525].

Fig. 12

Phenolic compounds 542-593 from Solanum

Phenolic compounds in Solanum have displayed antibacterial [297, 320, 335-337, 524], anticancer [31], anti- diabetic [297, 320, 335-337, 524] and antihypertensive [521] activities. Chlorogenic acid (546) (21.90±0.02 mgg), gallic acid (551) (17.54±0.04 mgg) and caffeic acid (555) (16.64±0.01 mgg) have indicated potent and concentration-dependent DPPH radical-scavenging activity (IC50=275.03±7.8 μg/mL) [31], and 551 and 555 reportedly have great potentials as natural source of antidiabetic and antioxidant drug [336]. trans-Cinnamic acid (590) showed antibacterial activities (MIC=250 μg/mL) against Staphylococcus aureus [297], and antimycobacterial activities (inhibition zone=0-22 mm) against Proteus vulgaris, Klebsiella pneumoniae (ESBL-), M. tuberculosis (H37Rv) and M. tuberculosis (Rifampin) [320]. Methyl caffeate (591) not only significantly reduced the cell proliferation, but also increased formation of fragmented DNA and apoptotic body in MCF-7 cells. In this study, Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analyses [474]. The effects of oral administration of 591 (10, 20 and 40 mgkg) in streptozotocin induced diabetic rats, including body weight, fasting blood glucose, plasma insulin, hemoglobin, glycated hemoglobin, total protein, hepatic glycogen and carbohydrate metabolism enzymes have been studied for 28 days. At 40 mgkg, the compound significantly prevented the increase in blood glucose level after glucose administration at 60 min in comparison to the hyperglycemic control group. It also produced remarkable reductions in blood glucose and increased body weight in streptozotocin induced diabetic rats [335]. Takahashi et al. further established that 591 has a most favorable structure for both sucrase and maltase inhibition against sucrose and that its moderate inhibitory action against alpha-glucosidase provides a prospect for antidiabetic usage of S. torvum fruit [337].

3.13 Coumarins and Coumestans

Seventeen coumarins 594-610 and three coumastans 611-613 were isolated from Solanum spp. (Fig. 13). The seeds of S. indicum yielded the highest number of coumarins 597-598 and 600-604 [535, 536], while coumestans 611-613 were from the whole plant of S. lyratum [88]. Scopolin (594), scopoletin (595) and coumarin (596) are the main coumarins in Solanum. Compounds 611-613 showed in vitro anti-inflammatory activities with IC50 values in the range of 6.3-9.1 μM [88].

Fig. 13

Coumarins and coumestans 594-613 from Solanum

3.14 Coumarinolignoids

Four coumarinolignoids known as indicumines A-D (614-617) were obtained from the seeds of S. indicum [535] (Fig. 14). Coumarinolignoids, including cleomiscosins, aquillochins and malloapelins, are unique and rare in nature. Coumarinolignoids of the cleomiscosins type bearing cleomiscosins A-D, 8-epi-cleomiscosin A, and malloapeli A functionalities have been identified in a few genera, including Cleome viscosa, Mallotus apelta, and Rhododendron collettianum. The compounds with such functionalities, especially cleomiscosins A-C and 8-epi-cleomiscosin A, which contributed to biological activities, have been reported with hepatoprotective and tyrosinase inhibition activities [535].

Fig. 14

Coumarinolignoids 614-617 from Solanum

3.15 Fatty Acids and Esters

Nine saturated (618-619, 621, 627-628, 631, 634, 638-639) and 13 unsaturated (620, 622-626, 629, 630, 632, 633, 635-637, 640) fatty acids were reported from Solanum (Fig. 15). The whole plant of S. glabratum has yielded the highest number of fatty acid and esters (627-635) in Solanum spp. [140]. Hexadecanoic acid (618), notably the major fatty acid component in Solanum, was isolated from aerial parts of S. aculeastrum [11] S. vestissimum [489] and S. villosum [434, 479].

Fig. 15

Fatty acids and esters 618-640 from Solanum

3.16 Others

Thirty other kinds of compounds (641-670) were also obtained from Solanum spp. (Fig. 16). Most of them, 642-653, were from the leaves of S. aculeastrum [11] and 654-659 were yielded from the fruits of S. betaceum [78]. An aldehyde puerariafuran (641) and a cyclic eight-membered α, β-unsataturated ketone, solalyratin B (661) were isolated from the whole plant of S. lyratum [88]. Compounds 641 and 661 showed in vitro anti-inflammatory activities, with IC50 values in the range 6.3-9.1 μM [88]. Also presented here are two furans, ethyl-α-D-arabinofuranoside (660) from the whole plant of S. lyratum and 5-hydroxymethyl furfural (663) from the stems of S. torvum [533]. Five aromatic glycosides (666-670) were also isolated from the aerial part of S. incanum [494] and the fruit of S. lycopersicum [511].

Fig. 16

Other compounds 641-670 from Solanum

4 Conclusion and Future Prospects

From 1990 to 2017, phytochemical studies on the 65 Solanum species have yielded at least 670 compounds (134 steroidal saponins, 63 steroidal alkaloids, 13 pregnane glycosides, 128 terpenes, 75 flavonoids, 31 lignans, 31 alkaloids, 66 steroids, 52 phenolic compounds, 20 coumarins and coumestans, 4 coumarinolignoids, 23 fatty acids and esters, and 30 other types of compounds).

Pharmacological studies on Solanum genus have focused on antioxidants and anticancer activities. A total of 17 species (fruits of S. aculeastrum, S. americanum, S. muricatum, S. sessiliflorum and S. spirale, seeds of S. capsicoides, the stems of S. cathayanum and S. tuberosum, the roots of S. diphyllum, aerial parts of S. surattense and S. torvum and the whole plant parts of S. aethiopicum, S. nigrum, S. anguivi, S. septemlobum, S. violaceum and S. xanthocarpum) have been explored for anticancer activities and have exhibited significant results.

S. xanthocarpum has outstandingly demonstrated the most diverse pharmacological activities e.g. antioxidants and antitumor, anti-fungal, anti-bacterial, antileishmanial, mosquito larvicidal, molluscicidal, antidiabetic, asthmatic, hepatoprotective, diuretic, nephrotoxicity, antinociceptive, anti-psoriatic, and antiurolithiatic.

Steroidal alkaloids have been presented as being largely responsible for various pharmacological activities of Solanum species, e.g. antibacterial (139, 141 and 145), anticonvulsant and CNS depressant (145), antidiabetic (139, 142 and 144), anti-fungal (145 and 174), anti-inflammatory (145), antileishmanial (139 and 142), molluscicidal (139 and 141), nephrotoxicity (168), antioxidants and antitumor (139, 141, 145, 158, 168 and 180), antiprotozoa (139 and 142), schistosomicidal (139 and 142), spasmolytic (190) and anti-trypanosomal (139).

The genus Solanum seems to possess great potential, yet majority of the species remain unknown or scantily studied for the chemical constituents. It would be very necessary for the phytochemistry researchers to explore and investigate more of its species. The vast pharmacological activities envinced by many compounds from Solanum genus should attract the attention of the pharmacological community to determine their exact target sites, structure-activity relationships and other medicinal applications.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
  2. 2.
  3. 3.
    T. Yokose, K. Katamoto, S. Park, H. Matsuura, T. Yoshihara, Biosci. Biotechnol. Biochem. 68, 2640-2642 (2004) CrossRef PubMed Google Scholar
  4. 4.
    H. Yoshimitsu, M. Nishida, T. Nohara, Phytochemistry 64, 1361-1366 (2003) CrossRef PubMed Google Scholar
  5. 5.
    H. Yoshimitsu, M. Nishida, M. Yoshida, T. Nohara, Chem. Pharm. Bull. 50, 284-286 (2002) CrossRef PubMed Google Scholar
  6. 6.
    H. Yoshimitsu, M. Nishida, T. Nohara, Chem. Pharm. Bull. 48, 556-558 (2000) CrossRef PubMed Google Scholar
  7. 7.
    R.H. Tian, E. Ohmura, M. Matsui, T. Nohara, Phytochemistry 44, 723-726 (1997) CrossRef PubMed Google Scholar
  8. 8.
    R.H. Tian, E. Ohmura, H. Yoshimitsu, T. Nohara, M. Matsui, Chem. Pharm. Bull. 44, 1119-1121 (1996) CrossRef PubMed Google Scholar
  9. 9.
    E. Ohmura, T. Nakamura, R.H. Tian, S. Yahara, H. Yoshimitsu, T. Nohara, Tetrahedron Lett. 36, 8443-8444 (1995) CrossRef PubMed Google Scholar
  10. 10.
  11. 11.
    S. Koduru, O.T. Asekun, D.S. Grierson, A.J. Afolayan, J. Ess, Oil-Bear. Plants 9, 65-69 (2006) CrossRef PubMed Google Scholar
  12. 12.
    A.W. Wanyonyi, S.C. Chhabra, G. Mkoji, W. Njue, P.K. Tarus, Fitoterapia 74, 298-301 (2003) CrossRef PubMed Google Scholar
  13. 13.
    S. Koduru, F.O. Jimoh, D.S. Grierson, A.J. Afolayan, J. Pharm. Toxicol. 2, 160-167 (2007) CrossRef PubMed Google Scholar
  14. 14.
    S. Koduru, D.S. Grierson, J. O'Callaghan, A.J. Afolayan, Pharm. Biol 45, 613-618 (2007) CrossRef PubMed Google Scholar
  15. 15.
    T. Burger, V. Steenkamp, W. Cordier, T. Mokoka, G. Fouche, P. Steenkamp, BMC Comp. Alt. Med. 18, 137 (2018) CrossRef PubMed Google Scholar
  16. 16.
    L.M. Njoki, S.A. Okoth, P.M. Wachira, Int. J. Microbiol. 2017, 5273893 (2017) PubMed Google Scholar
  17. 17.
    K.K. Francisca, M. Jacob, L.K. Omosa, J. Nganga, N. Maina, J. Ethnopharmacol. 192, 524-534 (2016) CrossRef PubMed Google Scholar
  18. 18.
    L.T. Laban, J.M. Mutiso, S.G. Kiige, M.M. Ngedzo, Iran. J. Basic. Med. Sci. 18, 64-71 (2015) PubMed Google Scholar
  19. 19.
    A.W. Wanyonyi, S.C. Chhabra, G. Mkoji, U. Eilert, W.M. Njue, Phytochemistry 59, 79-84 (2002) CrossRef PubMed Google Scholar
  20. 20.
  21. 21.
  22. 22.
    A. Chioma, A. Obiora, U. Chukwuemeka, J. Trop. Med. 4, 163-166 (2011) PubMed Google Scholar
  23. 23.
    K.C. Kouassi, B.J.A. Mamyrbekova, Res. J. Rec. Sci. 4, 81-87 (2015) PubMed Google Scholar
  24. 24.
    C.A. Anosike, N.E. Ogbodo, A.L. Ezugwu, R.I. Uroko, C.C. Ani, O. Abonyi, Am.-Eur J. Toxicol. Sci. 7, 104-109 (2015) PubMed Google Scholar
  25. 25.
    A. Adetutu, O.S. Olorunnisola, E.B. Oyewo, Can. J. Pure Appl. Sci. 7, 2357-2362 (2013) PubMed Google Scholar
  26. 26.
    E.E. Nwanna, E.O. Ibukun, G. Oboh, Adv. Food Sci. 35, 30-36 (2013) PubMed Google Scholar
  27. 27.
    C.A. Anosike, O. Obidoa, L.U.S. Ezeanyika, Asian Pac. J. Trop. Med. 5, 62-66 (2012) CrossRef PubMed Google Scholar
  28. 28.
    C. Tagawa, M. Okawa, T. Ikeda, T. Yoshida, T. Nohara, Tetrahedron Lett. 44, 4839-4841 (2003) CrossRef PubMed Google Scholar
  29. 29.
    T. Nagaoka, K. Goto, A. Watanabe, Y. Sakata, T. Yoshihara, J. Biosci. 56, 707-713 (2001) PubMed Google Scholar
  30. 30.
  31. 31.
    O.O. Elekofehinti, J.P. Kamdem, A.A. Bolingon, M.L. Athayde, S.R. Lopes, Asian Pac. J. Trop. Biomed. 3, 757-766 (2013) CrossRef PubMed Google Scholar
  32. 32.
    C. Dalavi, S. Patil, Int. J. Pharm. Sci. Rev. Res. 30, 112-120 (2016) PubMed Google Scholar
  33. 33.
    O.O. Elekofehinti, J.P. Kamdem, I.J. Kade, J.B.T. Rocha, S. Afr. J. Bot. 88, 56-61 (2013) CrossRef PubMed Google Scholar
  34. 34.
    O.O. Elekofehinti, I.G. Adanlawo, J.A. Saliu, S.A. Sodehinde, Pharm. Lett. 4, 811-814 (2012) PubMed Google Scholar
  35. 35.
    O.O. Elekofehinti, I.G. Adanlawo, A. Fakoya, Asian J. Pharm. Health Sci. 2, 416-419 (2012) PubMed Google Scholar
  36. 36.
    O.O. Elekofehinti, J.P. Kamdem, D.F. Meinerz, I.J. Kade, I. Joseph, Arch. Pharmacal Res (2015) PubMed Google Scholar
  37. 37.
    O.O. Elekofehinti, J.P. Kamdem, I.J. Kade, I.G. Adanlawo, Asian J. Pharm. Clin. Res. 6, 252-257 (2013) PubMed Google Scholar
  38. 38.
    J. Gandhiappan, R. Rengasamy, Pharm. Lett. 4, 875-880 (2012) PubMed Google Scholar
  39. 39.
    O.O. Elekofehinti, I.G. Adanlawo, J.A. Saliu, S.A. Sodehinde, Curr. Res. J. Biol. Sci. 4, 530-533 (2012) PubMed Google Scholar
  40. 40.
    I.G. Adanlawo, M.A. Akanji, Rec. Prog. Med. Plants 19, 1-7 (2008) PubMed Google Scholar
  41. 41.
    X.H. Zhu, T. Ikeda, T. Nohara, Chem. Pharm. Bull. 48, 568-570 (2000) CrossRef PubMed Google Scholar
  42. 42.
    H. Ripperger, U. Himmelreich, Phytochemistry 37, 1725-1727 (1994) CrossRef PubMed Google Scholar
  43. 43.
    T. Honbu, T. Ikeda, X.H. Zhu, O. Yoshihara, M. Okawa, A.M. Nafady, T. Nohara, J. Nat. Prod. 65, 1918-1920 (2002) CrossRef PubMed Google Scholar
  44. 44.
  45. 45.
    A.C. Correia, C.L. Macedo, F.S. Monteiro, G. Alves de Oliveira, J. Med. Plants Res. 7, 2293-2299 (2013) CrossRef PubMed Google Scholar
  46. 46.
  47. 47.
  48. 48.
    J.N. Kadima, F.M. Kasali, B. Bavhure, A.O. Mahano, F.M. Bwironde, Int. J. Pharmacol. Pharm. 5, 196-206 (2016) PubMed Google Scholar
  49. 49.
    E.L. Silva, L.R.C. Almeida, R.M. Borges, D. Staerk, Fitoterapia 118, 42-48 (2017) CrossRef PubMed Google Scholar
  50. 50.
    J.M. Vagula, J. Bertozzi, J.C. Castro, O.C. Celestino, Nat. Prod. Res. 30, 2230-2234 (2016) CrossRef PubMed Google Scholar
  51. 51.
    I. Fidrianny, A. Rizkiya, K. Ruslan, J. Chem. Pharm. Res. 7, 666-672 (2015) PubMed Google Scholar
  52. 52.
    L.U. Colmenares, J. Lai, Determination of Phenolic Content, Antioxidant Activity and Mineral Content of Popolo (Solanum americanum) Leaves. Abstracts, 64th Northwest Regional Meeting of the American Chemical Society, (Tacoma, WA, United States, 2009) PubMed Google Scholar
  53. 53.
    B.E. Hope, D.G. Massey, M.G. Fournier, Hawaii Med. J. 52, 160-166 (1993) PubMed Google Scholar
  54. 54.
    V.A. Maritza, N.L. Clara, Afinidad 56, 393-396 (1999) PubMed Google Scholar
  55. 55.
    L. Al Chami, R. Mendez, B. Chataing, J. O'Callaghan, A. Usubillaga, Phytother. Res 56, 254-258 (2003) PubMed Google Scholar
  56. 56.
    A. Vazquez, F. Ferreira, P. Moyna, L. Kenne, Phytochem. Anal. 10, 194-197 (1999) CrossRef PubMed Google Scholar
  57. 57.
    F. Ferreira, A. Vazquez, P. Moyna, L. Kenne, Phytochemistry 36, 1473-1478 (1994) CrossRef PubMed Google Scholar
  58. 58.
  59. 59.
    A. Maxwell, R. Pingal, W.F. Reynolds, S. McLean, Phytochemistry 43, 913-915 (1996) CrossRef PubMed Google Scholar
  60. 60.
    F. Londono, W. Cardona, F. Alzate, F. Cardona, I.D. Velez, J. Med. Plants Res. 10, 100-107 (2016) CrossRef PubMed Google Scholar
  61. 61.
    C.M. Chinchilla, C.I. Valerio, P.R. Sanchez, M.V. Bagnarello, C.D. Rodriguez, Rev. Biol. Trop. 62, 1229-1240 (2014) CrossRef PubMed Google Scholar
  62. 62.
    M. Chinchilla, I. Valerio, R. Sanchez, V. Mora, V. Bagnarello, L. Martinez, Rev. Biol. Trop. 60, 881-891 (2012) PubMed Google Scholar
  63. 63.
    A. Maxwell, R. Pingal, W.F. Reynolds, M.S. McLean, Stewart Phytochem. 42, 543-545 (1996) CrossRef PubMed Google Scholar
  64. 64.
    K. Fukuhara, K. Shimizu, I. Kubo, Arudonine Phytochem. 65, 1283-1286 (2004) CrossRef PubMed Google Scholar
  65. 65.
    M.H. Grace, M.M. Saleh, Pharm 51, 593-595 (1996) PubMed Google Scholar
  66. 66.
    T.M.S. Silva, C.A. Camara, K.R.L. Freire, T.G. da Silva, J. Braz. Chem. Soc. 19, 1048-1052 (2008) CrossRef PubMed Google Scholar
  67. 67.
    F.C.L. Pinto, D.E.A. Uchoa, E.R. Silveira, O.D.L. Pessoa, L.S. Espindola, Quim. Nova 34, 284-288 (2011) CrossRef PubMed Google Scholar
  68. 68.
    P.C.B. Silva, N.J. Clementino, A.D.S. da Silva, S. da Melo, S. Karoline, M.S. Tania, Rev. Bras. Farmacogn. 22, 131-136 (2012) CrossRef PubMed Google Scholar
  69. 69.
    R.C.M. Oliveira, J.T. Lima, L.A.A. Ribeiro, J.L.V. Silva, F.S. Monteiro, J. Biosci. 61, 799-805 (2006) PubMed Google Scholar
  70. 70.
    T.M.S. Silva, R.A. Costa, E.J. Oliveira, F.J.M. Barbosa, J. Braz. Chem. Soc. 16, 1467-1471 (2005) CrossRef PubMed Google Scholar
  71. 71.
  72. 72.
  73. 73.
  74. 74.
  75. 75.
    N.H. Hurtado, A.L. Morales, M.L. Gonzalez-Miret, M.L. Escudero-Gilete, F. Heredia, Food Chem. 117, 88-93 (2009) CrossRef PubMed Google Scholar
  76. 76.
    C. Osorio, N. Hurtado, C. Dawid, T. Hofmann, M. Heredia, J. Francisco, A.L. Morales, Food Chem. 132, 1915-1921 (2012) CrossRef PubMed Google Scholar
  77. 77.
    A.A. Durant, C. Rodriguez, A.I. Santana, C. Herrero, J.C. Rodriguez, Rec. Nat. Prod. 7, 15-26 (2013) PubMed Google Scholar
  78. 78.
    G.J. Maria, P.L. Juliana, O. Coralia, G. Alirio, M. Diana, Mol. 21 (2016) PubMed Google Scholar
  79. 79.
    F.D.C.L. Pinto, M.D.C.M. Torres, E.R. Silveira, Quim. Nova 36, 1111-1115 (2013) CrossRef PubMed Google Scholar
  80. 80.
    N.P. Vaz, E.V. Costa, E.L. Santos, S.B. Mikich, F.A. Marques, R.A. Braga, J. Braz. Chem. Soc. 23, 361-366 (2012) CrossRef PubMed Google Scholar
  81. 81.
  82. 82.
  83. 83.
  84. 84.
  85. 85.
    B.W. Chen, Y.Y. Chen, Y.C. Lin, RSC Adv. 5, 88841-88847 (2015) CrossRef PubMed Google Scholar
  86. 86.
    M. Petreanu, A.A.A. Guimaraes, M.F. Broering, Nau.-Sch Arch. Pharm. 389, 1123-1131 (2016) CrossRef PubMed Google Scholar
  87. 87.
    L.O. Simoes, F.G. Conceicao, T.S. Ribeiro, A.M. Jesus, D.F. Silva, Phytomedicine 23, 498-508 (2016) CrossRef PubMed Google Scholar
  88. 88.
    J. He, B.Z. Ma, X.F. Tian, F.L. Wei, T. Zhao, Chin. Pharm. Mag. 25, 3713-3718 (2014) PubMed Google Scholar
  89. 89.
    S. Xu, L. Wang, H. Liu, Shizhen Chin. Med. J. 17, 523-524 (2006) PubMed Google Scholar
  90. 90.
    G.M. Nino, O.V. Urias, M.D.R. Muy, J.B. Heredia, S. Afr. J. Bot. 111, 161-169 (2017) CrossRef PubMed Google Scholar
  91. 91.
    J. Sun, Y.F. Gu, M.M. Li, X.Q. Su, H. Li, J. Li, P.F. Tu, Chin. Herb. Med. 44, 2615-2622 (2013) PubMed Google Scholar
  92. 92.
    T.F. Cao, L. Zhou, X.H. Huang, L. Wang, D.K. Wang, Q. Wu, W.Y. Hou, Chin. Vet. Med. Mag. 33, 31-33 (2014) PubMed Google Scholar
  93. 93.
    J. He, C.D. Zhou, B.Z. Ma, F. Liu, X. Liu, T. Zhao, Chin. Pharm. 26, 4433-4436 (2015) PubMed Google Scholar
  94. 94.
    H. Huang, J. Zhou, Food Ind. Tech. 30, 315-318 (2009) PubMed Google Scholar
  95. 95.
    L. An, J.T. Tang, X.M. Liu, N.N. Gao, Chin. J. of Chin. Mat. Med. 31(1225-1226), 1260 (2006) PubMed Google Scholar
  96. 96.
    G. Butt, M.A. Romero, F. Tahir, A.A. Farooqi, J. of Cell. Biochem. 119, 9640-9644 (2018) CrossRef PubMed Google Scholar
  97. 97.
    X. Zhang, Z. Yan, T. Xu, Z. An, W. Chen, F. Zhu, Onc. Lett. 15, 6329-6335 (2018) PubMed Google Scholar
  98. 98.
    S.E. Potawale, S.D. Sinha, K.K. Shroff, H.J. Dhalawat, S.S. Boraste, S.P. Gandhi, A.D. Tondare, Pharmacol. Onl. 3, 140-163 (2008) PubMed Google Scholar
  99. 99.
    K. Aftab, R. Noreen, S.A. Bukhari, A. Malik, A. Sahar, Oxid. Commun. 39, 3079-3089 (2016) PubMed Google Scholar
  100. 100.
    Z. Yousaf, Y. Wang, E. Baydoun, J. App. Pharm. Sci. 3, 152-160 (2013) PubMed Google Scholar
  101. 101.
    J. Lachman, K. Hamouz, M. Orsak, V. Pivec, Rost. Vyr. 47, 181-191 (2001) PubMed Google Scholar
  102. 102.
    Y. Zhou, Z.S. Deng, F. Cheng, W.J. Dong, K. Zou, Chem. Nat. Comp. 52, 920-921 (2016) CrossRef PubMed Google Scholar
  103. 103.
    F. Cheng, X. Li, J.Z. Wang, Chin. Chem. Lett. 19, 68-70 (2008) CrossRef PubMed Google Scholar
  104. 104.
    K. Yushan, S. Huang, M. Xie, Y. Xue, J. Zou, Med. Plant 6, 1-3 (2015) CrossRef PubMed Google Scholar
  105. 105.
    Y.S. Kong, S.L. Huang, M.X. Xie, Y.H. Xue, K. Zou, S.P. Liu, Nat. Prod. Res. Dev. 26, 943-946 (2014) PubMed Google Scholar
  106. 106.
    S.L. Huang, H.B. He, K. Zou, C.H. Bai, Y.H. Xue, J.Z. Wang, J.F. Chen, J. Pharm. Pharmacol. 66, 844-854 (2014) PubMed Google Scholar
  107. 107.
    L.C. Lopes, J.E. de Carvalho, M. Kakimore, C.D.B. Vendramini, Inflammopharmacology 22, 179-185 (2014) PubMed Google Scholar
  108. 108.
    R. Grando, M.A. Antonio, C.E.P. Araujo, C. Soares, M.A. Medeiros, J. Biosci. 63, 507-514 (2008) PubMed Google Scholar
  109. 109.
    A.M. Mariza, M. Lemos, A.C. Kamila, D. Rodenburg, J.D. McChesney, J. Ethnopharmacol. 172, 421-429 (2015) CrossRef PubMed Google Scholar
  110. 110.
    J.L. Damasceno, P.F. Oliveira, M.A. Miranda, L.F. Leandro, Biomed. Pharmacother. 83, 1111-1115 (2016) CrossRef PubMed Google Scholar
  111. 111.
    L.C. Lopes, B. Roman, M.A. Medeiros, A. Mukhopadhyay, Tetrahedron Lett. 52, 6392-6395 (2011) CrossRef PubMed Google Scholar
  112. 112.
    J.L. Damasceno, P.F. de Oliveira, M.A. Miranda, M. Lima, C Denise, Biol. Pharm. Bull 39, 920-926 (2016) CrossRef PubMed Google Scholar
  113. 113.
    A. Herrera, F.E. Jimenez, A. Zamilpa, R.M.A. Martinez, Planta Med. 75, 466-471 (2009) CrossRef PubMed Google Scholar
  114. 114.
    H.A. Armando, J.F. Enrique, V.P.A. Maria, Planta Med. 70, 483-488 (2004) CrossRef PubMed Google Scholar
  115. 115.
    H.A. Armando, V.E.O. Lopez, T.A.V. Rodriguez, A. Zamilpa, R.M.A. Martinez, Afr. J. Trad. Comp. Altern. Med. 10, 410-417 (2013) PubMed Google Scholar
  116. 116.
    H.A. Armando, R.S. Artemio, M.R. Maria, M.C. Eugenia, J. Tortoriello, Planta Med. 69, 390-395 (2003) CrossRef PubMed Google Scholar
  117. 117.
    A. Zamilpa, J. Tortoriello, V. Navarro, G. Delgado, L. Alvarez, J. Nat. Prod. 65, 1815-1819 (2002) CrossRef PubMed Google Scholar
  118. 118.
    L. Alvarez, M.D.C. Perez, J.L. Gonzalez, V. Navarro, M.L. Villarreal, Planta Med. 67, 372-374 (2001) CrossRef PubMed Google Scholar
  119. 119.
    X. Lozoya, V. Navarro, M. Garcia, M. Zurita, J. Ethnopharmacol. 36, 127-132 (1992) CrossRef PubMed Google Scholar
  120. 120.
    L. Alvarez, H.A. Armando, S. Marquina, J. Tortoriello, A. Zamilpa, V. Navarro, Curr. Top. Steroid Res. 6, 89-104 (2009) PubMed Google Scholar
  121. 121.
    I. Gaitaan, A.M. Paz, S.A. Zacchino, G. Tamayo, A. Gimeenez, R. Pinzoon, Pharm. Biol. 49, 907-919 (2011) CrossRef PubMed Google Scholar
  122. 122.
    M.T.F. Cornelius, M.G. de Carvalho, T.M.S. da Silva, C.C.F. Alves, J. Braz. Chem. Soc 21, 2211-2219 (2010) CrossRef PubMed Google Scholar
  123. 123.
    E.S. Andressa, T.M.S. da Silva, C.C.F. Alves, M.G. de Carvalho, J. Braz. Chem. Soc 13, 838-842 (2002) CrossRef PubMed Google Scholar
  124. 124.
  125. 125.
  126. 126.
    M.A. El-Sayed, A.E.H. Mohamed, M.K. Hassan, M.E.F. Hegazy, J. Biosci. 64, 644-649 (2009) PubMed Google Scholar
  127. 127.
  128. 128.
  129. 129.
    T. Yamashita, T. Matsumoto, S. Yahara, N. Yoshida, T. Nohara, Chem. Pharm. Bull. 39, 1626-1628 (1991) CrossRef PubMed Google Scholar
  130. 130.
    T. Sabudak, O. Kaya, E. Cukurova, Nat. Prod. Res. 29, 308-314 (2015) CrossRef PubMed Google Scholar
  131. 131.
    N. Mimica-Dukic, L. Krstic, P. Boza, Oxid. Commun. 28, 536-546 (2005) PubMed Google Scholar
  132. 132.
    H. Tunon, H.C. Olavsdotter, L. Bohlin, J. Ethnopharmacol. 48, 61-76 (1995) CrossRef PubMed Google Scholar
  133. 133.
  134. 134.
    H. Feki, I. Koubaa, H. Jaber, J. Makni, M. Damak, J. Eng. Appl. Sci. 8, 708-712 (2013) PubMed Google Scholar
  135. 135.
  136. 136.
  137. 137.
    S.C. Chou, T.J. Huang, E.H. Lin, C.H. Huang, C.H. Chou, Nat. Prod. Commun. 7, 153-156 (2012) PubMed Google Scholar
  138. 138.
    S.Y. Peng, H. Li, D. Yang, B. Bai, L.P. Zhu, Q. Liu, Nat. Prod. Res. 31, 810-816 (2017) CrossRef PubMed Google Scholar
  139. 139.
    S.D. Priyadharshini, V. Sujatha, Int. J. Pharm. Pharm. Sci. 5, 652-658 (2013) PubMed Google Scholar
  140. 140.
    M.A. Monem, R. Azza, Bull. Fac. Pharm. 47, 59-66 (2009) PubMed Google Scholar
  141. 141.
    A.S. Essam, M.A. Farag, E.A. Mahrous, Rec. Nat. Prod. 9, 94-104/1 (2015) PubMed Google Scholar
  142. 142.
    N.A. Siddiqui, M.A. Parvez, A.J. Al-Rehaily, M.S. Al Dosari, Saudi Pharm. J. 25, 184-195 (2017) PubMed Google Scholar
  143. 143.
    R.A. Mothana, N.M. Al-Musayeib, M.F. Al-Ajmi, P. Cos, L. Maes, Evidence-based Comp. Altern. Med. 2014, 905639 (2014) PubMed Google Scholar
  144. 144.
    R.A.A. Mothana, R. Gruenert, P.J. Bednarski, U. Lindequist, Pharmazie 64, 260-268 (2009) PubMed Google Scholar
  145. 145.
  146. 146.
    C.N. Zanuzzi, F. Nishida, E.L. Portiansky, P.A. Fontana, E.J. Gimeno, C.G. Barbeito, Res. Vet. Sci. 93, 336-342 (2012) CrossRef PubMed Google Scholar
  147. 147.
    M. Zadra, M. Piana, T. de Brum, F. Thiele, A.A. Boligon, Molecules 17, 2560-12574 (2012) PubMed Google Scholar
  148. 148.
    G. Bonfanti, K.S.D. Bona, L.D. Lucca, L. Jantsch, M.B. Moretto, Red. Rep. 19, 206-213 (2014) CrossRef PubMed Google Scholar
  149. 149.
    G. Bonfanti, P.R. Bitencourt, S.B. Karine, S.S. Priscila, Molecules 18, 9179-9194 (2013) CrossRef PubMed Google Scholar
  150. 150.
  151. 151.
  152. 152.
    S.A. Alamri, M.F. Moustafa, Saudi Med. J. 33, 272-277 (2012) PubMed Google Scholar
  153. 153.
    B. Taye, M. Giday, A. Animut, J. Seid, Asian Pac. J. Trop. Biomed. 1, 370-375 (2011) CrossRef PubMed Google Scholar
  154. 154.
    S.S. Al-Sokari, N.A.A. Ali, L. Monzote, M. Al-Fatimi, Biomed. Res. Int. 2015, 938747 (2015) PubMed Google Scholar
  155. 155.
    M.J. Manase, O.A.C. Mitaine, D. Pertuit, T. Miyamoto, C. Tanaka, S. Delemasure, Fitoterapia 83, 1115-1119 (2012) CrossRef PubMed Google Scholar
  156. 156.
    S. Sundar, Y.J.K. Pillai, Asian J. Pharm. Clin. Res. 8, 179-188 (2015) PubMed Google Scholar
  157. 157.
  158. 158.
  159. 159.
    Y.W. Zhuang, C.E. Wu, J.Y. Zhou, Z.M. Zhao, C.L. Liu, S.L. Liu, Biochem. Biophy. Res. Commun. 505, 485-491 (2018) CrossRef PubMed Google Scholar
  160. 160.
    H.C. Chiang, T.H. Tseng, C.J. Wang, C.F. Chen, W.S. Kan, Anticancer Res. 11, 1911-1917 (1991) PubMed Google Scholar
  161. 161.
    A. Aberoumand, S.S. Deokule, J. Food Technol. 8, 131-133 (2010) CrossRef PubMed Google Scholar
  162. 162.
    P. Ma, T.T. Cao, G.F. Gu, X. Zhao, Y.G. Du, Y. Zhang, Chin. J. Cancer 25, 438-442 (2006) PubMed Google Scholar
  163. 163.
    W.J. Syu, M.J. Don, G.H. Lee, C.M. Sun, J. Nat. Prod. 64, 1232-1233 (2001) CrossRef PubMed Google Scholar
  164. 164.
    W.H. Huang, C.W. Hsu, J.T. Fang, Clin. Toxicol. 46, 293-296 (2008) CrossRef PubMed Google Scholar
  165. 165.
  166. 166.
    T.M.S. Silva, R. Braz-Filho, M.G. de Carvalho, M.F Agra, Biochem. Syst. Ecol 30, 1083-1085 (2002) CrossRef PubMed Google Scholar
  167. 167.
    T.M.S. Silva, G.M. de Carvalho, B.F Raimundo, Quim. Nova 32, 1119-1128 (2009) PubMed Google Scholar
  168. 168.
    E.S. Andressa, T.M.S.S. da Silva, C.C.F. Alves, M.G. de Carvalho, A Echevarria, Aurea J. Braz. Chem. Soc. 13, 838-842 (2002) CrossRef PubMed Google Scholar
  169. 169.
    T.M.S. Silva, C.A. Camara, M.F. Agra, M.G. de Carvalho, B.F. Raimundo, Fitoterapia 77, 449-452 (2006) CrossRef PubMed Google Scholar
  170. 170.
    E.E. Jarald, S. Edwin, V. Saini, L. Deb, V.B. Gupta, S.P. Wate, K.P. Busari, Nat. Prod. Res. 22, 267-274 (2008) PubMed Google Scholar
  171. 171.
    R. Chand, Indian Drugs 30, 650 (1993) PubMed Google Scholar
  172. 172.
    G. Rosangkima, G.C. Jagetia, J. Pharm. Res. 4, 98-103 (2015) PubMed Google Scholar
  173. 173.
  174. 174.
  175. 175.
  176. 176.
  177. 177.
    S. Soule, C. Guntner, A. Vazquez, V. Argandona, P. Moyna, F. Ferreira, Phytochemistry 55, 217-222 (2000) CrossRef PubMed Google Scholar
  178. 178.
    F. Ferreira, S. Soule, A. Vazquez, P. Moyna, L. Kenne, Phytochemistry 42 (1409) PubMed Google Scholar
  179. 179.
    C. Delporte, N. Backhouse, R. Negrete, P. Salinas, P. Rivas, B.K. Cassels, Phytother. Res. 12, 118-122 (1998) CrossRef PubMed Google Scholar
  180. 180.
    C.C. Munari, P.F. Oliveira, J.C.L. Campos, S.P.L. Martins, J. Nat. Med. 68, 236-241 (2014) CrossRef PubMed Google Scholar
  181. 181.
    C.C. Munari, P.F. de Oliveira, L.F. Leandro, L.M. Pimenta, N.H Ferreira, PLoS ONE 9, 111999 (2014) CrossRef PubMed Google Scholar
  182. 182.
    M. Yoshikawa, S. Nakamura, K. Ozaki, A. Kumahara, T. Morikawa, H. Matsuda, J. Nat. Prod. 70, 210-214 (2007) CrossRef PubMed Google Scholar
  183. 183.
    M.A. Miranda, L.G.M. Magalhaes, R.F.J. Tiossi, C.C. Kuehn, Parasit. Res. 111, 257-262 (2012) CrossRef PubMed Google Scholar
  184. 184.
    A.M. Mariza, C.C. Kuehn, J.F.R. Cardoso, L.G.R. Oliveira, L.G. Magalhaes, Exp. Parasit 133, 396-402 (2013) CrossRef PubMed Google Scholar
  185. 185.
    A.M. Mariza, R.F.J. Tiossi, M.R. da Silva, K.C. Rodrigues, C.C Kuehn, Chem. Biodiversity 10, 642-648 (2013) CrossRef PubMed Google Scholar
  186. 186.
    R.R.D. Moreira, G.Z. Martins, N.O. Magalhaes, A.E. Almeida, R.C.L.R. Pietro, Anais Acad. Bras. Cienc. 85, 903-907 (2013) CrossRef PubMed Google Scholar
  187. 187.
    G.Z. Martins, R.R.D. Moreira, C.S. Planeta, A.E. Almeida, J.K. Bastos, Pharmacogn. Mag. 11, 161-165 (2015) CrossRef PubMed Google Scholar
  188. 188.
  189. 189.
    M. Kralova, M. Sanda, M. Mackova, T. Macek, Collec. Symp. Series 13, 73-76 (2011) PubMed Google Scholar
  190. 190.
    S. Paoli, A.P.M. Dias, P.V.S.Z. Capriles, T.E.M.M. Costa, Rev. Bras. Farmacogn. 18, 190-196 (2008) CrossRef PubMed Google Scholar
  191. 191.
    E. Fuentes, R. Castro, L. Astudillo, G. Carrasco, Evidence-based Comp. Altern. Med. 2012, 147031 (2012) PubMed Google Scholar
  192. 192.
    M. Friedman, C.E. Levin, S.U. Lee, H.J. Kim, I.S. Lee, J. Agric. Food Chem. 57, 5727-5733 (2009) CrossRef PubMed Google Scholar
  193. 193.
  194. 194.
    L.X. Sun, W.W. Fu, J. Ren, L. Xu, K.S. Bi, M.W. Wang, Arch. Pharm. Res. 29, 135-139 (2006) CrossRef PubMed Google Scholar
  195. 195.
    S.H. Liu, X.H. Shen, X.F. Wei, X.H. Mao, T. Huang, Immunopharmcol. Immunotoxicol. 33, 100-106 (2011) CrossRef PubMed Google Scholar
  196. 196.
    X.P. Nie, F. Yao, X.D. Yue, G.S. Li, S.J. Dai, Nat. Prod. Res. 28, 641-645 (2014) CrossRef PubMed Google Scholar
  197. 197.
    G.S. Li, F. Yao, L. Zhang, X.D. Yue, S.J. Dai, Chin. Chem. Lett. 24, 1030-1032 (2013) CrossRef PubMed Google Scholar
  198. 198.
    F. Yao, Q.L. Song, L. Zhang, G.S. Li, S.J. Dai, Fitoterapia 89, 200-204 (2013) CrossRef PubMed Google Scholar
  199. 199.
    Y. Ren, L. Shen, D.W. Zhang, S.J. Dai, Chem. Pharm. Bull. 57, 408-410 (2009) CrossRef PubMed Google Scholar
  200. 200.
    F. Yao, Q.L. Song, L. Zhang, G.S. Li, S.J. Dai, Phytochem. Lett. 6, 453-456 (2013) CrossRef PubMed Google Scholar
  201. 201.
    D.W. Zhang, Y. Yang, F. Yao, Q.Y. Yu, S.J. Dai, J. Nat. Med. 66, 362-366 (2012) CrossRef PubMed Google Scholar
  202. 202.
  203. 203.
  204. 204.
    M.A.S. Atta, M.T.K. Shahid, Oxid. Commun. 39, 2249-2259 (2016) PubMed Google Scholar
  205. 205.
    A.P. Singh, D. Luthria, T. Wilson, N. Vorsa, V. Singh, Food Chem. 114, 955-961 (2009) CrossRef PubMed Google Scholar
  206. 206.
    A. Zhao, Y. Sakurai, K. Shibata, F. Kikkawa, Y. Tomoda, H. Mizukami, Nippon Shokuhin Kagaku Gakkaish 21, 42-47 (2014) PubMed Google Scholar
  207. 207.
    M.M. Shabana, M.M. Salama, S.M. Ezzat, L.R. Ismail, J. Carcinog. Mutagen. 4, 1000149/1-1000149/6 (2013) PubMed Google Scholar
  208. 208.
    K. Yoshikawa, K. Inagaki, T. Terashita, J. Shishiyama, S. Kuo, D.M. Shankel, Mutagen. Res. Gen. Toxicol. 371, 65-71 (1996) CrossRef PubMed Google Scholar
  209. 209.
    X. Liu, J. Luo, L. Kong, Nat. Prod. Commun. 6, 851-853 (2011) PubMed Google Scholar
  210. 210.
    J. Sun, Y.F. Gu, X.Q. Su, M.M. Li, H.X. Huo, J. Zhang, Fitoterapia 98, 110-116 (2014) CrossRef PubMed Google Scholar
  211. 211.
    A. Nishina, K. Ebina, M. Ukiya, M. Fukatsu, M. Koketsu, M. Ninomiya, J. Food Sci. 80, H2354-H2359 (2015) CrossRef PubMed Google Scholar
  212. 212.
    W. Ren, D.G. Tang, Antican. Res. 19, 403-408 (1999) PubMed Google Scholar
  213. 213.
    F.J. Herraiz, M. Plazas, S. Vilanova, J. Prohens, D. Villano, F. Ferreres, Int. J. Mol. Sci. 17, 394 (2016) CrossRef PubMed Google Scholar
  214. 214.
    V.H.C. Chang, T.H. Chiu, S.C. Fu, J. Sci. Food Agric. 96, 192-198 (2016) CrossRef PubMed Google Scholar
  215. 215.
    C.C. Hsu, Y.R. Guo, Z.H. Wang, M.C. Yin, J. Sci. Food Agric. 91, 1517-1522 (2011) CrossRef PubMed Google Scholar
  216. 216.
  217. 217.
  218. 218.
  219. 219.
  220. 220.
  221. 221.
  222. 222.
  223. 223.
    B.K. Sharma, D. Iyer, U.K. Patil, J. Herb. Spic. Med. Plants 18, 257-267 (2012) CrossRef PubMed Google Scholar
  224. 224.
    T.M. Sridhar, P. Josthna, C.V. Naidu, J. Exp. Sci. 2, 24-29 (2011) PubMed Google Scholar
  225. 225.
    L.G. Matasyoh, H.M. Murigi, J.C. Matasyoh, Afr. J. Microbiol. Res. 8, 3923-3930 (2014) PubMed Google Scholar
  226. 226.
    F.Z. Khan, M.A. Saeed, M. Alam, A.R. Chaudhry, M. Ismail, J. Fac. Pharm. Gazi Uni. 10, 105-116 (1993) PubMed Google Scholar
  227. 227.
    H.L. Yuan, X.L. Liu, Y.J. Liu, Asian Pac. J. Cancer Prev. 15, 10469-10473 (2014) PubMed Google Scholar
  228. 228.
    X. Ding, F. Zhu, Y. Yang, M. Li, Food Chem. 141, 1181-1186 (2013) CrossRef PubMed Google Scholar
  229. 229.
    K.V. Prashanth, S. Shashidhara, M.M. Kumar, B.Y. Sridhara, .Fitoterapia 72, 481-486 (2001) CrossRef PubMed Google Scholar
  230. 230.
    H.C. Huang, K.Y. Syu, J.K. Lin, J. Agric. Food Chem. 58, 8699-8708 (2010) CrossRef PubMed Google Scholar
  231. 231.
    G.T. El-Sherbini, R.A. Zayed, E.T. El-Sherbini, J. Parasit. Res. 2009, 474360 (2009) PubMed Google Scholar
  232. 232.
    H. Hammami, A. Ayadi, J. Helminth. 82, 235-239 (2008) CrossRef PubMed Google Scholar
  233. 233.
    A. Rawani, A.S. Ray, G. Chandra, A. Ghosh, M. Sakar, BMC Res. Notes 10, 135 (2017) CrossRef PubMed Google Scholar
  234. 234.
    Z.A. Zakaria, H.K. Gopalan, H. Zainal, P.N.H. Mohd, Yakugaku Zasshi 126, 1171-1178 (2006) CrossRef PubMed Google Scholar
  235. 235.
    M. Jainu, C.S.S. Devi, J. Ethnopharmacol. 104, 156-163 (2006) CrossRef PubMed Google Scholar
  236. 236.
    H.M. Lin, H.C. Tseng, C.J. Wang, J.J. Lin, C.W. Lo, Chem.-Biol. Int. 171, 283-293 (2008) CrossRef PubMed Google Scholar
  237. 237.
    C.C.H.L. Fang, W.C. Lina, J. Ethnopharmacol. 119, 117-121 (2008) CrossRef PubMed Google Scholar
  238. 238.
    R.M. Perez, J.A. Perez, L.M. Garcia, J. Ethnopharmacol. 62, 43-48 (1998) CrossRef PubMed Google Scholar
  239. 239.
  240. 240.
    A. Pabon, S. Blair, J. Carmona, M. Zuleta, J. Saez, Pharm. 58, 263-267 (2003) PubMed Google Scholar
  241. 241.
    G. Alvarez, A. Pabon, J. Carmona, S. Blair, Phytother. Res. 18, 845-848 (2004) CrossRef PubMed Google Scholar
  242. 242.
    M.L. Lopez, R. Vommaro, M. Zalis, W. Souza, S. Blair, C. Segura, Parasit. Int. 59, 217-225 (2010) CrossRef PubMed Google Scholar
  243. 243.
    M.L. Lopez, S. Blair, J. Saez, C. Segura, Memo. Inst. Oswaldo Cruz 104, 683-688 (2009) CrossRef PubMed Google Scholar
  244. 244.
    A. Pabon, E. Deharo, L. Zuluaga, J.D. Maya, J. Saez, S. Blair, Exp. Parasit. 122, 273-279 (2009) CrossRef PubMed Google Scholar
  245. 245.
    B. Londono, E. Arango, C. Zapata, S. Herrera, J. Saez, S. Blair, F.J. Carmona, Phytother. Res. 20, 267-273 (2006) CrossRef PubMed Google Scholar
  246. 246.
    O.M.S. Cardoso, E.J.N. Gomez, L.A. Garces, S.B. Trujillo, Rev. Colomb. Biotechnol. 13, 186-192 (2011) PubMed Google Scholar
  247. 247.
    J. Saez, W. Cardona, D. Espinal, S. Blair, J. Mesa, M. Bocar, A. Jossang, Tetrahedron 54, 10771-10778 (1998) CrossRef PubMed Google Scholar
  248. 248.
    G.H. Paola, A. Pabon, C. Arias, S. Blair, Biomed. 33, 78-87 (2013) PubMed Google Scholar
  249. 249.
    M. Echeverri, S. Blair, J. Carmona, P. Perez, Am. J. Chin. Med. 29, 477-484 (2001) CrossRef PubMed Google Scholar
  250. 250.
    R.M. Coelho, M.C. Souza, M.H. Sarragiotto, Phytochemistry 49, 893-897 (1998) CrossRef PubMed Google Scholar
  251. 251.
  252. 252.
    F.S. Monteiro, A.C.L. Silva, I.R.R. Martins, A.C.C. Correia, J. Ethnopharmacol. 141, 895-900 (2012) CrossRef PubMed Google Scholar
  253. 253.
    M.L.C. Valverde, J. Boustie, H.E. Badaoui, B. Muguet, M. Henry, Planta Med. 59, 483-484 (1993) PubMed Google Scholar
  254. 254.
  255. 255.
  256. 256.
  257. 257.
    Y.M. Valadares, G.C. Brandao'a, E.G. Kroon, J.D.S. Filho, A.B. Oliveira, F.C. Braga, J. Biosci 64, 813-818 (2009) PubMed Google Scholar
  258. 258.
    G.M.J. Vieira, Q.C. Rocha, R.T. Souza, C.L.H. Lima, W. Vilegas, Food Chem. 186, 160-167 (2015) CrossRef PubMed Google Scholar
  259. 259.
    V.S. Mesia, M.T. Santos, C. Souccar, L.M.T.R. Lima, A.J. Lapa, Phytomed. Int. J. Phytother. Phytopharm. 9, 508-514 (2002) PubMed Google Scholar
  260. 260.
    A.B. Valerino-Diaz, G.T. Daylin, A.C. Zanatta, W. Vilegas, L. dos Santos, J. Agric. Food Chem. 66, 8703-8713 (2018) CrossRef PubMed Google Scholar
  261. 261.
  262. 262.
  263. 263.
    A.A. Aliero, O.T. Asekun, D.S. Grierson, A.J. Afolayan, Asian J. Plant Sci. 5, 1054-1056 (2006) CrossRef PubMed Google Scholar
  264. 264.
    P. Vijayan, H.C. Prashanth, P. Vijayaraj, S.A. Dhanaraj, S. Badami, B. Suresh, Pharm. Biol. 41, 443-448 (2003) CrossRef PubMed Google Scholar
  265. 265.
  266. 266.
  267. 267.
  268. 268.
  269. 269.
  270. 270.
  271. 271.
  272. 272.
  273. 273.
    C.A. Ibarra, A. Rojas, S. Mendoza, M. Bah, D.M. Gutierrez, S.L. Hernandez, M. Martinez, Pharmaceu. Bio. 48, 732-739 (2010) CrossRef PubMed Google Scholar
  274. 274.
  275. 275.
  276. 276.
  277. 277.
    W.H.B. Hassan, M. Al-Oqail, M.S. Ahmad, A.J. Al-Rehaily, Biosci. Biotechnol. Res Asia 9, 593-599 (2012) CrossRef PubMed Google Scholar
  278. 278.
    W.H.B. Hassan, M. Al-Oqail, M.S. Ahmad, A.J. Al-Rehaily, Saudi Pharm. J. 20, 371-379 (2012) CrossRef PubMed Google Scholar
  279. 279.
    A.J. Al-Rehaily, J. Adnan, M.S. Ahmad, J. Mustafa, M.M. Al-Oqail, I.A. Khan, J. Saudi Chem. Soc. 17, 67-76 (2013) CrossRef PubMed Google Scholar
  280. 280.
  281. 281.
    L. Zhang, G.S. Li, F. Yao, X.D. Yue, S.J. Dai, Phytochem. Lett. 11, 173-176 (2015) CrossRef PubMed Google Scholar
  282. 282.
  283. 283.
  284. 284.
  285. 285.
    J.R.P. Maia, M.C. Schwertz, R.F.S. Sousa, J.P.L. Rev, Bras. Plantas Med. 17, 112-119 (2015) CrossRef PubMed Google Scholar
  286. 286.
  287. 287.
  288. 288.
  289. 289.
    D.A. Ibarrola, M.D.C. Hellion-Ibarrola, N.L. Alvarenga, Pharm. Biol. 44, 378-381 (2006) CrossRef PubMed Google Scholar
  290. 290.
    A.S. Apu, S.H. Bhuyan, M. Matin, F. Hossain, F. Khatun, A. Taiab Abu, M Matin, Avicenna J. Phytomed 3, 302-312 (2013) PubMed Google Scholar
  291. 291.
    D.A. Ibarrola, M.C.H. Ibarrola, Y. Montalbetti, O. Heinichen, M.A. Campuzano, Phytomedicine 18, 634-640 (2011) CrossRef PubMed Google Scholar
  292. 292.
    D.A. Ibarrola, M.C.I. Hellion, Y. Montalbetti, O. Heinichen, N. Alvarenga, J. Ethnopharmacol. 70, 301-307 (2000) CrossRef PubMed Google Scholar
  293. 293.
    V.K. Gupta, A. Simlai, M. Tiwari, K. Bhattacharya, A. Roy, J. Appl. Pharm. Sci. 4, 75-80 (2014) PubMed Google Scholar
  294. 294.
    K. Chauhan, N. Sheth, V. Ranpariya, S. Parmar, Pharm. Biol. 49, 194-199 (2011) CrossRef PubMed Google Scholar
  295. 295.
    J.J.M. Bagalwa, V.N. Laurence, C. Sayagh, A.S. Bashwira, Fitoterapia 81, 767-771 (2010) CrossRef PubMed Google Scholar
  296. 296.
    T.O. Siddiqi, J. Ahmad, S.U. Khan, K. Javed, M.S.Y. Khan, Philipp. J. Sci. 119, 41-47 (1990) PubMed Google Scholar
  297. 297.
    S. Keawsa-ard, S. Natakankitkul, S. Liawruangrath, A. Teerawutgulrag, Chiang Mai J. Sci. 39, 445-454 (2012) PubMed Google Scholar
  298. 298.
    K.A. Sukanya, B. Liawruangrath, S. Liawruangrath, A. Teerawutgulrag, Nat. Prod. Commun. 7, 955-958 (2012) PubMed Google Scholar
  299. 299.
    T. Payum, A.K. Das, R. Shankar, C. Tamuly, M. Hazarika, Am. J. PharmTech Res. 5, 307-314 (2015) PubMed Google Scholar
  300. 300.
  301. 301.
  302. 302.
  303. 303.
    S.A. Patil, S.N. Sambrekar, Int. J. Res. Pharma. Biomed. Sci. 3, 1559-1566 (2012) PubMed Google Scholar
  304. 304.
    T. Ahmed, R. Kanwal, N. Ayub, M. Hassan, Hum. Ecol. Risk Assess. 15, 624-635 (2009) CrossRef PubMed Google Scholar
  305. 305.
    Y. Lu, J. Luo, L. Kong, Phytochemistry 72, 668-673 (2011) CrossRef PubMed Google Scholar
  306. 306.
    M. Qasim, Z. Abideen, M.Y. Adnan, S. Gulzar, B. Gul, M. Rasheed, S. Afr. J. Bot. 110, 240-250 (2017) CrossRef PubMed Google Scholar
  307. 307.
    A. Yadav, R. Bhardwaj, R.A. Sharma, Int. J. Pharm. Pharm. Sci. 5, 489-493 (2013) PubMed Google Scholar
  308. 308.
    M.M. Ahmed, S. Andleeb, F. Saqib, B.A. Ch, M. Hussain, M.N. Khatun, H. Rahman, B.M.C. Comp, Altern. Med. 16, 166 (2016) PubMed Google Scholar
  309. 309.
    A. Ramazani, S. Zakeri, S. Sardari, N. Khodakarim, N.D. Djadidt, Malaria J. 9, 124 (2010) CrossRef PubMed Google Scholar
  310. 310.
  311. 311.
  312. 312.
  313. 313.
    W.H. Maser, N.D. Yuliana, N. Andarwulan, J. Liq. Chrom. Rel. Technol. 38, 1230-1235 (2015) CrossRef PubMed Google Scholar
  314. 314.
    S.B. Paul, M.D. Choudhury, R. Choudhury, Asian J. Chem. 21, 581-588 (2009) PubMed Google Scholar
  315. 315.
    C. Balachandran, N. Emi, Y. Arun, Y. Yamamoto, B. Ahilan, B. Sangeetha, Chem.-Biol. Inter. 242, 81-90 (2015) CrossRef PubMed Google Scholar
  316. 316.
    Y. Lu, J. Luo, X. Huang, L. Kong, Steroids 74, 95-101 (2009) CrossRef PubMed Google Scholar
  317. 317.
    J. Li, L. Zhang, C. Huang, F. Guo, Y. Li, Fitoterapia 93, 209-215 (2014) CrossRef PubMed Google Scholar
  318. 318.
    R.U. Abhishek, S. Thippeswamy, K. Manjunath, D.C. Mohana, J. Appl. Microbiol. 119, 1624-1636 (2015) CrossRef PubMed Google Scholar
  319. 319.
    K.F. Chah, K.N. Muko, S.I. Oboegbulem, Fitoterapia 71, 187-189 (2000) CrossRef PubMed Google Scholar
  320. 320.
    C. Balachandran, V. Duraipandiyan, N.A. Al-Dhabi, K. Balakrishna, Indian J. Microbiol. 52, 676-681 (2012) CrossRef PubMed Google Scholar
  321. 321.
    T.B. Nguelefack, C.B. Feumebo, G. Ateufack, P. Watcho, S. Tatsimo, J. Ethnopharmacol. 119, 135-140 (2008) CrossRef PubMed Google Scholar
  322. 322.
    D. Arthan, J. Svasti, P. Kittakoop, D. Pittayakhachonwut, M. Tanticharoen, Phytochemistry 59, 459-463 (2002) CrossRef PubMed Google Scholar
  323. 323.
    S. Challal, O.E.M. Buenafe, E.F. Queiroz, S. Maljevic, L. Marcourt, M. Bock, A.C.S. Chem, .Neuroscience 5, 993-1004 (2014) PubMed Google Scholar
  324. 324.
    T.B. Nguelefack, H. Mekhfi, T. Dimo, S. Afkir, M. Nguelefack, P. Elvine, A. Legssyer, A. Ziyyat, J. Comp. Integ. Med. 5 (2008) PubMed Google Scholar
  325. 325.
    M. Mohan, B.S. Jaiswal, S. Kasture, J. Ethnopharmacol. 126, 86-89 (2009) CrossRef PubMed Google Scholar
  326. 326.
    M. Mohan, S. Kamble, P. Gadhi, S. Kasture, F. Chem, Toxicology 48, 436-440 (2010) PubMed Google Scholar
  327. 327.
    C.H. Ramamurthy, A. Subastri, A. Suyavaran, C. Thirunavukkarasu, Environ. Sci. Pollut. Res. Int. 23, 7919-7929 (2016) CrossRef PubMed Google Scholar
  328. 328.
    C. Lalmuanthanga, C. Lalchhandama, M.C. Lallianchhunga, M.A. Ali, World J. Pharm. Res. 4, 1752-1759 (2015) PubMed Google Scholar
  329. 329.
    W. Kusirisin, C. Jaikang, C. Chaiyasut, P. Narongchai, Med. Chem. 5, 583-588 (2009) CrossRef PubMed Google Scholar
  330. 330.
    C.H. Ramamurthy, M.S. Kumar, V.S.A. Suyavaran, J. Food Sci. 77, 907-913 (2012) CrossRef PubMed Google Scholar
  331. 331.
    C.L. Lee, T.L. Hwang, W.J. He, Y.H. Tsai, C.T. Yen, H.F. Yen, C.J. Chen, Phytochemistry 95, 315-321 (2013) CrossRef PubMed Google Scholar
  332. 332.
    M. Mohan, D. Attarde, R. Momin, S. Kasture, Nat. Prod. Res. 27, 2140-2143 (2013) CrossRef PubMed Google Scholar
  333. 333.
    R. Momin, M. Mohan, Nat. Prod. Res. 26, 416-422 (2012) CrossRef PubMed Google Scholar
  334. 334.
    C. Kamaraj, N.K. Kaushik, D. Mohanakrishnan, G. Elango, A. Bagavan, Parasit. Res. 111, 703-715 (2012) CrossRef PubMed Google Scholar
  335. 335.
    G.R. Gandhi, S. Ignacimuthu, M.G. Paulraj, P. Sasikumar, Eur. J. Pharmacol. 670, 623-631 (2011) CrossRef PubMed Google Scholar
  336. 336.
    G.R. Gandhi, S. Ignacimuthu, M.G. Paulraj, Food Chem. Toxicol. 49, 2725-2733 (2011) CrossRef PubMed Google Scholar
  337. 337.
    K. Takahashi, Y. Yoshioka, E. Kato, S. Katsuki, K. Hosokawa, J. Kawabata, Biosci. Biotechnol. Biochem. 74, 741-745 (2010) CrossRef PubMed Google Scholar
  338. 338.
    C. Kamaraj, A.A. Rahuman, G. Elango, A. Bagavan, A.A. Zahir, Parasit. Res. 109, 37-45 (2011) PubMed Google Scholar
  339. 339.
  340. 340.
  341. 341.
    L. Brito, F. Wendy, S. Mejia, M. Gaspar, C.M. Francisco, Afinidad 52, 49-52 (1995) PubMed Google Scholar
  342. 342.
  343. 343.
  344. 344.
    A. Kanchana, C. Panneerselavam, Int. J. Curr. Res. Rev. 3, 37-51 (2011) PubMed Google Scholar
  345. 345.
    R.R. Thanigaiarassu, K. Kannabiran, V.G. Khanna, J. Pharm. Res. 2, 273-276 (2009) PubMed Google Scholar
  346. 346.
    K. Kannabiran, R.R. Thanigaiarassu, G.K. Venkatesan, J. Appl. Biol. Sci. 2, 109-112 (2008) PubMed Google Scholar
  347. 347.
    M. Vanaja, K. Paulkumar, G. Gnanajobitha, S. Rajeshkumar, C. Malarkodi, G. Annadurai, International Journal of Metals, pp. 1-9 (2014) PubMed Google Scholar
  348. 348.
    A.K. Zameer, S.S.Z. Ahmed, P. Ponnusamy, K.B. Senthil, Pak. J. Pharm. Sci. 29, 1578 (2016) PubMed Google Scholar
  349. 349.
    M.B. Kanchana, Int. J. Pharm. Pharm. Sci. 3, 356-364 (2011) PubMed Google Scholar
  350. 350.
    P.V. Mohanan, K.S. Devi, Cancer Lett. 110, 71-76 (1996) CrossRef PubMed Google Scholar
  351. 351.
    P.V. Mohanan, K.S. Devi, Cancer Lett. 112, 219-223 (1997) CrossRef PubMed Google Scholar
  352. 352.
    M. Shahjahan, G. Vani, C.S. Shyamaladevi, Chem.-Biol. Int. 156, 113-123 (2005) CrossRef PubMed Google Scholar
  353. 353.
    P. Jagadeesan, D.A. Prasad, P. Pandikumar, S. Ignacimuthu, Indian J. Nat. Prod. Res. 2, 156-163 (2011) PubMed Google Scholar
  354. 354.
    P.V. Mohanan, K.S. Devi, J. Exp. Clin. Cancer Res. 17, 159-164 (1998) PubMed Google Scholar
  355. 355.
    P. Govindarajan, C. Chinnachamy, Pak. J. Pharm. Sci. 27, 2101-2107 (2014) PubMed Google Scholar
  356. 356.
    P.N. Venkatesan, P. Rajendran, G. Ekambaram, D. Sakthisekaran, Nat. Prod. Res. 22, 1094-1106 (2008) CrossRef PubMed Google Scholar
  357. 357.
    S. Rajkumar, A. Jebanesan, J. Ins. Sci. 5, 15 (2005) PubMed Google Scholar
  358. 358.
    A. Pandurangan, R.L. Khosa, S. Hemalatha, Nat. Prod. Res. 25, 1132-1141 (2011) CrossRef PubMed Google Scholar
  359. 359.
    A. Pandurangan, R.L. Khosa, S. Hemalatha, J. Asian Nat. Prod. Res. 12, 691-695 (2010) CrossRef PubMed Google Scholar
  360. 360.
    M. Shahjahan, K.E. Sabitha, M. Jainu, D.C.S. Shyamala, Indian J. Med. Res. 120, 194-198 (2004) PubMed Google Scholar
  361. 361.
  362. 362.
    A. Maxwell, M. Seepersaud, R. Pingal, D.R. Mootoo, W.F. Reynolds, J. Nat. Prod. 59, 200-201 (1996) CrossRef PubMed Google Scholar
  363. 363.
  364. 364.
  365. 365.
    K.D. Chandrashekara, S.M. Dharmesh, J. Pharm. Res. 8, 1148-1157 (2014) PubMed Google Scholar
  366. 366.
    A.A.A. Mohdaly, M.A. Sarhan, I. Smetanska, A. Mahmoud, J. Sci. Food Agric. 90, 218-226 (2010) CrossRef PubMed Google Scholar
  367. 367.
    D. Paik, P. Das, T.P. De, T. Chakraborti, Exp. Parasit. 146, 11-19 (2014) CrossRef PubMed Google Scholar
  368. 368.
    D. Paik, P. Das, P.K. Pramanik, K. Naskar, T. Chakraborti, Biomed. Pharmacother. 83, 1295-1302 (2016) CrossRef PubMed Google Scholar
  369. 369.
    T. Zuber, D. Holm, P. Byrne, L. Ducreux, M. Taylor, M. Kaiser, C. Stushnoff, Food Funct. 6, 72-83 (2015) PubMed Google Scholar
  370. 370.
    E. Langner, F.M. Nunes, P. Pozarowski, M. Kandefer-Szerszen, Food Chem. Toxicol. 57, 246-255 (2013) CrossRef PubMed Google Scholar
  371. 371.
    L. Reddivari, J. Vanamala, S. Chintharlapalli, S.H. Safe, J.C. Miller Jr., Carcinogenesis 28, 2227-2235 (2007) PubMed Google Scholar
  372. 372.
    M. Friedman, K.R. Lee, H.J. Kim, I.S. Lee, N. Kozukue, J. Agric. Food Chem. 53, 8420 (2005) CrossRef PubMed Google Scholar
  373. 373.
    J.A.O. Ojewole, D.R. Kamadyaapa, C.T. Musabayane, Cardiovasc. J. S. Afr. 17, 166-171 (2006) PubMed Google Scholar
  374. 374.
  375. 375.
  376. 376.
  377. 377.
  378. 378.
  379. 379.
  380. 380.
    Y.C. Kim, Q.M. Che, A.A.L. Gunatilaka, D.G.I. Kingston, J. Nat. Prod. 59, 283-285 (1996) CrossRef PubMed Google Scholar
  381. 381.
  382. 382.
  383. 383.
  384. 384.
    H. Ripperger, Phytochemistry 44, 731-734 (1997) CrossRef PubMed Google Scholar
  385. 385.
    L.E.C. Suarez, D.R.M. Cendales, I.O.P. Clara, Rev. Colomb. Quimica 35, 59-65 (2006) PubMed Google Scholar
  386. 386.
  387. 387.
  388. 388.
  389. 389.
  390. 390.
  391. 391.
    F.R. Chang, C.T. Yen, M. El-Shazly, C.Y. Yu, Bioorg. Med. Chem. Lett. 23, 2738-2742 (2013) CrossRef PubMed Google Scholar
  392. 392.
    C.T. Yen, C.L. Lee, F.R. Chang, T.L. Hwang, H.F. Yen, C.J. Chen, S.L. Chen, J. Nat. Prod. 75, 636-643 (2012) CrossRef PubMed Google Scholar
  393. 393.
    G.S. Raju, M.R. Moghal, S.M.R. Dewan, M.N. Amin, M. Billah, Avic. J. Phytomed. 3, 313-320 (2013) PubMed Google Scholar
  394. 394.
  395. 395.
  396. 396.
  397. 397.
    D. Rani, P.K. Dantu, Nat. Acad. Sci. Lett. 38, 275-279 (2015) CrossRef PubMed Google Scholar
  398. 398.
    S. Khanam, R. Sultana, Int. J. Pharm. Sci. Res. 3, 1057-1060 (2012) PubMed Google Scholar
  399. 399.
    G.P. Vadnere, R.S. Gaud, A.K. Singhai, Pharmacol. 1, 513-522 (2008) PubMed Google Scholar
  400. 400.
    S. Govindan, S. Viswanathan, V. Vijayasekaran, R. Alagappan, J. Ethnopharmacol. 66, 205-210 (1999) CrossRef PubMed Google Scholar
  401. 401.
    O.M. Singh, K. Subharani, N.I. Singh, N.B. Devi, L. Nevidita, Nat. Prod. Res. 21, 585-590 (2007) CrossRef PubMed Google Scholar
  402. 402.
    G. Shiv, S. Gaherwal, C.S. Shrivastava, N. Wast, Eur. J. Exp. Biol. 5, 81-89 (2015) PubMed Google Scholar
  403. 403.
    L.N.C.J. Packia, B.M.S. Bharath, M.A. Anita, B.J. Raja, S. Jeeva, Int. J. Inv. Pharm. Sci. 1, 433-437 (2013) PubMed Google Scholar
  404. 404.
    K. Abbas, U. Niaz, T. Hussain, M.A. Saeed, Z. Javaid, A. Idrees, S. Rasool, Acta Poloniae Pharm. 71, 415-421 (2014) PubMed Google Scholar
  405. 405.
    D.K. Kajaria, M. Gangwar, D. Kumar, S.A. Kumar, R. Tilak, G. Nath, Asian Pac. J Trop. Biomed. 2, 905-909 (2012) CrossRef PubMed Google Scholar
  406. 406.
    Z. Li, X. Cheng, C.J. Wang, G.L. Li, S.Z. Xia, F.H. Wei, Chin. J. Parasitol. Parasit. Diseases 23, 206-208 (2005) PubMed Google Scholar
  407. 407.
    W. Li, X. Huang, C. Qi, S. Liu, O. Kodama, K. Utaka, China Pest. 46, 591-593 (2007) PubMed Google Scholar
  408. 408.
    T. Changbunjong, W. Wongwit, S. Leemingsawat, Y. Tongtokit, V. Deesin, S. Asian J. Trop. Med. Pubic Health 41, 320-325 (2010) PubMed Google Scholar
  409. 409.
    T. Hussain, R.K. Gupta, K. Sweety, M.S. Khan, M.D. Hussain, A.M.D. Sarfaraj, Asian Pac. J Trop. Biomed. 2, 454-460 (2012) CrossRef PubMed Google Scholar
  410. 410.
    G.B. Jalali, H. Ghaffari, H.S. Prakash, K.R. Kini, Pharm. Biol. 52, 1060-1068 (2014) CrossRef PubMed Google Scholar
  411. 411.
    R.K. Gupta, T. Hussain, G. Panigrahi, A. Das, G.N. Singh, K. Sweety, Asian Pac. J Trop. Med. 4, 964-968 (2011) CrossRef PubMed Google Scholar
  412. 412.
    K. Poongothai, P. Ponmurugan, K.S.Z. Ahmed, B.S. Kumar, Asian Pac. J Trop. Med. 4, 778-785 (2011) CrossRef PubMed Google Scholar
  413. 413.
    D.M. Kar, L. Maharana, S. Pattnaik, G.K. Dash, J. Ethnopharmacol. 108, 251-256 (2006) CrossRef PubMed Google Scholar
  414. 414.
    C. Archana, J. Jacob, Asian J. Phytomed Clin. Res. 3, 32-36 (2015) PubMed Google Scholar
  415. 415.
    P. Velu, P. Iyappan, A. Vijayalakshmi, D. Indumathi, Biomed. Pharmacother. 84, 430-437 (2016) CrossRef PubMed Google Scholar
  416. 416.
    S. Kumar, A.K. Pandey, BMC Comp. Altern. Med. 14, 112 (2014) CrossRef PubMed Google Scholar
  417. 417.
    S. Kumar, U.K. Sharma, A.K. Sharma, A.K. Pandey, Cell. Mol. Biol. 58, 174-181 (2012) PubMed Google Scholar
  418. 418.
    K.K. Bhutani, A.T. Paul, W. Fayad, S. Linder, Phytomedicine, 789-793 (2010) PubMed Google Scholar
  419. 419.
    M.T. Rahman, M. Ahmed, M. Alimuzzaman, J.A. Shilpi, Fitoterapia 74, 119-121 (2003) CrossRef PubMed Google Scholar
  420. 420.
    T. Hussain, R.K. Gupta, K. Sweety, B. Eswaran, M. Vijayakumar, C.V. Rao, Asian Pac. J. Trop. Med. 5, 686-691 (2012) CrossRef PubMed Google Scholar
  421. 421.
    K.P. Mahesh, K. Murugan, K. Kovendan, J. Subramaniam, D. Amaresan, Parasit. Res. 110, 2541-2550 (2012) CrossRef PubMed Google Scholar
  422. 422.
    K.P. Mahesh, K. Murugan, K. Kovendan, C. Panneerselvam, Parasit. Res. 111, 609-618 (2012) CrossRef PubMed Google Scholar
  423. 423.
    S.K. Bansal, K.V. Singh, S. Kumar, J. Environ. Biol. 30, 221-226 (2009) PubMed Google Scholar
  424. 424.
    L. Mohan, P. Sharma, C.N. Srivastava, J. Environ. Biol. 26, 366-401 (2005) PubMed Google Scholar
  425. 425.
    K.M. Parmar, P.R. Itankar, A. Joshi, S.K. Prasad, J. Ethnopharmacol. 198, 158-166 (2017) CrossRef PubMed Google Scholar
  426. 426.
    D. Ranka, M. Aswar, U. Aswar, B.S. Bodhankar, Indian J. Exp. Biol. 51, 833-839 (2013) PubMed Google Scholar
  427. 427.
    B. Bhatt, J. Chem. Pharm. Res. 3, 176-181 (2011) PubMed Google Scholar
  428. 428.
    P.K. Patel, M.A. Patel, B.A. Vyas, D.R. Shah, T.R. Gandhi, J. Ethnopharmacol. 144, 160-170 (2012) CrossRef PubMed Google Scholar
  429. 429.
    O.M. Singh, T.P. Singh, J. Sci. Ind. Res. 69, 732-740 (2010) PubMed Google Scholar
  430. 430.
    A.C. Cuervo, B. Gerald, A.V. Patel, Phytochemistry 30, 1339-1341 (1991) CrossRef PubMed Google Scholar
  431. 431.
    W. Putalun, L.J. Xuan, H. Tanaka, Y. Shoyama, J. Nat. Prod. 62, 181-183 (1999) CrossRef PubMed Google Scholar
  432. 432.
    X.M. Zuo, L.Z. Guo, F. Cheng, Z.Y. Guo, K. Zou, Nat. Prod. Res. Dev. 25, 1205-1208 (2013) PubMed Google Scholar
  433. 433.
    Y. Lee Y., F. Hashimoto, S. Yahara, T. Nohara, N. Yoshida, Chem. Pharm. Bull. 42, 707-709 (1994) CrossRef PubMed Google Scholar
  434. 434.
    A. Mohy-ud-din, Z. Khan, M. Ahmad, M.A. Kashmiri, Asian J. Chem. 22, 2919-2927 (2010) PubMed Google Scholar
  435. 435.
    W. Shu, Y. Zhang, W. Ye, G. Zhou, J. Jinnan Univ. Nat. Sci. Med. 32, 493-497 (2011) PubMed Google Scholar
  436. 436.
    W. Shu, C. Wu, Y. Zhang, W.C. Ye, G. Zhou, Nat. Prod. Res. 27, 1982-1986 (2013) CrossRef PubMed Google Scholar
  437. 437.
    L.J. Hao, S. Wang, J.J. Zhu, Z.M. Wang, S.H. Wei, China J. Chin. Mat. Med. 39, 2034-2038 (2014) PubMed Google Scholar
  438. 438.
    R.H. Al-Sofany, O.A. Rashwan, Bull. Fac. Pharm. 39, 99-101 (2001) PubMed Google Scholar
  439. 439.
    K.M. Ahmed, Egyptian J. Pharm. Sci. 37, 37-44 (1996) PubMed Google Scholar
  440. 440.
    A.C. Suthar, R.M. Mulani, Pharmacogn. Mag. 4, 112-115 (2008) PubMed Google Scholar
  441. 441.
    K.E. Hellenas, A. Nyman, P. Slanina, L. Loof, J. Gabrielsson, J. Chromatogr. 573, 69-78 (1992) CrossRef PubMed Google Scholar
  442. 442.
    R.F. Keeler, D.C. Baker, W. Gaffield, Offic. J. Int. Soc Toxicon. 28, 873-884 (1990) CrossRef PubMed Google Scholar
  443. 443.
    E.A. Mona, H. Miyashita, T. Ikeda, J.H. Lee, H. Yoshimitsu, T. Nohara, K. Murakami, Chem. Pharm. Bull. 57, 747-748 (2009) CrossRef PubMed Google Scholar
  444. 444.
    X. Teng, Y.J. Zhang, C. Yang, Acta Bot. Yunnan. 30, 239-242 (2008) PubMed Google Scholar
  445. 445.
    Y. Lu, J. Luo, L. Kong, Mag. Reson. Chem. 47, 808-812 (2009) CrossRef PubMed Google Scholar
  446. 446.
    E.A. Ferro, N.L. Alvarenga, D.A. Ibarrola, I.M.C. Hellion, A.G. Ravelo, Fitoterapia 76, 577-579 (2005) CrossRef PubMed Google Scholar
  447. 447.
    S. Nakamura, M. Hongo, S. Sugimoto, H. Matsuda, M. Yoshikawa, Phytochemistry 69, 1565-1572 (2008) CrossRef PubMed Google Scholar
  448. 448.
    Y.Y. Lu, J.G. Luo, L.Y. Kong, Chin. J. Nat. Med. 9, 30-32 (2011) PubMed Google Scholar
  449. 449.
    S. Yahara, T. Yamashita, N. Nozawa, T. Nohara, Phytochemistry 43, 1069-1074 (1996) CrossRef PubMed Google Scholar
  450. 450.
    W. Shu, G. Zhou, W. Ye, Chin. Trad. Herb. Drugs 42, 424-427 (2011) PubMed Google Scholar
  451. 451.
    A.P. Colmenares, L.B. Rojas, O.A.C. Mitaine, L. Pouysegu, S. Quideau, T. Miyamoto, C. Tanaka, T. Paululat, Phytochemistry 86, 137-143 (2013) CrossRef PubMed Google Scholar
  452. 452.
    Y. Iida, Y. Yanai, M. Ono, T. Ikeda, T. Nohara, Chem. Pharm. Bull. 53, 1122-1125 (2005) CrossRef PubMed Google Scholar
  453. 453.
    M. Ohno, K. Murakami, M. El-Aasr, J.R. Zhou, K. Yokomizo, M. Ono, T. Nohara, J. Nat. Med. 66, 658-663 (2012) CrossRef PubMed Google Scholar
  454. 454.
    H. Nawaz, E. Ahmed, A. Sharif, M. Arshad, N. Batool, M.A. Rasool, U.H. Mukhtar, Chem. Nat. Comp. 49, 1091-1094 (2014) CrossRef PubMed Google Scholar
  455. 455.
    H.T. Nguyen, V.T. Nguyen, D.T. Nguyen, V.M. Chau, Tap Chi Duoc Hoc 48, 31-36 (2008) PubMed Google Scholar
  456. 456.
    W. Putalun, N. Fukuda, H. Tanaka, Y. Shoyama, J. Liq. Chrom. Rel. Technol. 25, 2387-2398 (2002) CrossRef PubMed Google Scholar
  457. 457.
    A. Schwarz, E. Pinto, M. Haraguchi, Phytother. Res. 21, 1025-1028 (2007) CrossRef PubMed Google Scholar
  458. 458.
    J.J. Jared, L.K. Murungi, B. Torto, Pest Manag. Sci. 72, 828-836 (2016) CrossRef PubMed Google Scholar
  459. 459.
    M.T.F. Cornelius, C.C.F. Alves, T.M.S. da Silva, K.Z. Alves, M.G. de Carvalho, Rev. Bras. Farmacia 85, 57-59 (2004) PubMed Google Scholar
  460. 460.
    F.J.M. Barbosa, M.F. Agra, R.A. Oliveira, M.Q. Paulo, G. Trolin, Memo. Inst. Oswaldo Cruz 86, 189-191 (1991) CrossRef PubMed Google Scholar
  461. 461.
    J. Manosroi, A. Manosroi, P. Sripalakit, Acta Hort. 679, 105-111 (2005) PubMed Google Scholar
  462. 462.
    T. Purwanti, Majalah Farmasi Indon. 8, 115-122 (1997) PubMed Google Scholar
  463. 463.
    H. Zhou, F. Wang, Z. Fang, China J. Chin. Mat. Med. 36, 2096-2098 (2011) PubMed Google Scholar
  464. 464.
    J. Bhattacharyya, I.J.L.D. Basilio, L.C.S.L. Morais, M.F. Agra, Biochem. Syst. Ecol. 37, 228-229 (2009) CrossRef PubMed Google Scholar
  465. 465.
    F. Njeh, H. Feki, I. Koubaa, N. Hamed, M. Damak, Pharm. Biol. 54, 726-731 (2016) CrossRef PubMed Google Scholar
  466. 466.
    A. Cristea, M. Tanasescu, P.M. Adelina, Farmacia 40, 25-30 (1992) PubMed Google Scholar
  467. 467.
    C. Butnaru, L. Vlase, D. Lazar, L. Agoroaei, .Farmacia 59, 172-178 (2011) PubMed Google Scholar
  468. 468.
    H. Wintoch, A. Morales, C. Duque, P. Schreier, Nat. Food Chem. 41, 1311-1314 (1993) CrossRef PubMed Google Scholar
  469. 469.
    A. Sammani, E. Shammaa, F. Chehna, Int. J. Pharm. Sci. Rev. Res. 23, 23-27 (2013) PubMed Google Scholar
  470. 470.
    H. Ripperger, Phytochemistry 43, 705-707 (1996) CrossRef PubMed Google Scholar
  471. 471.
    A. Maxwell, M. Seepersaud, R. Pingal, D.R. Mootoo, W.F. Reynolds, J. Nat. Prod. 58, 625-628 (1995) CrossRef PubMed Google Scholar
  472. 472.
    C.A. Coy-Barrera, L.E. Cuca-Suarez, I.O. Clara, Acta Biol. 27, 131-134 (2005) PubMed Google Scholar
  473. 473.
    E.C.S. Luis, A.C.B. Carlos, C.I. Orozco, Rev. Colomb. Quimica 33, 7-12 (2004) PubMed Google Scholar
  474. 474.
    D. Li, Y.L. Zhao, X.J. Qin, L. Liu, X.W. Yang, Y.Y. Chen, X.D. Luo, Nat. Prod. Bioprospect. 6, 225-231 (2016) CrossRef PubMed Google Scholar
  475. 475.
    J.L. Liu, S.C. Chen, F.L. Lu, D.P. Li, Guangxi Plant Catal. 32, 415-418 (2012) PubMed Google Scholar
  476. 476.
    X.L. Zhou, X.J. He, G.X. Zhou, W.C. Ye, X.S. Yao, J. Asian Nat. Prod. Res. 9, 517-523 (2007) CrossRef PubMed Google Scholar
  477. 477.
    M. Xie, Y. Zhou, K. Zou, F. Cheng, R. Liu, J. Chin. Med. Mat. 31, 1332-1334 (2008) PubMed Google Scholar
  478. 478.
    J. Luo, B. Zhang, D. Deng, J. Chin. Cereals Oils 30, 125-128 (2015) PubMed Google Scholar
  479. 479.
    R. Venkatesh, R. Vidya, K. Kalaivani, Int. J. Pharm. Sci. Res. 5, 5283-5287 (2014) PubMed Google Scholar
  480. 480.
    H. Li, S.Y. Peng, D.P. Yang, B. Bai, L.P. Zhu, Z.M. Zhao, Chirality 28, 259-263 (2016) CrossRef PubMed Google Scholar
  481. 481.
    R. Mahadev, H. Ramakrishnaiah, V. Krishna, N.N. Kumar, Don. J. Ess. Oil-Bear. Plants 15, 387-391 (2012) CrossRef PubMed Google Scholar
  482. 482.
    X. Nie, L. Zhang, F. Yao, K. Xiao, S. Dai, China J. Chin. Mat. Med. 40, 1514-1517 (2015) PubMed Google Scholar
  483. 483.
    L. Zhang, H. Lei, H.Q. Lin, G.S. Li, X.D. Yue, S.J. Dai, Nat. Prod. Res. 29, 1889-1893 (2015) CrossRef PubMed Google Scholar
  484. 484.
    X.D. Yue, F. Yao, L. Zhang, G.S. Li, S.J. Dai, China J. Chin. Mat. Med. 39, 453-456 (2014) PubMed Google Scholar
  485. 485.
    S.J. Dai, L. Shen, Y. Ren, Nat. Prod. Res. 23, 1196-1200 (2009) CrossRef PubMed Google Scholar
  486. 486.
    S.M. Yu, H.J. Kim, E.R. Woo, H. Park, Arch. Pharm. Res. 17, 1-4 (1994) CrossRef PubMed Google Scholar
  487. 487.
    P. Yuan, F. Guo, K. Zheng, K. Chen, Q. Jia, Y. Li, Nat. Prod. Res. 30, 1682-1689 (2016) CrossRef PubMed Google Scholar
  488. 488.
    F. Marx, E.H.A. Andrade, J.G. Maia, Food Res. Technol. 206, 364-366 (1998) PubMed Google Scholar
  489. 489.
    M. Suarez, C. Duque, H. Wintoch, P. Schreier, J. Agric. Food Chem. 39, 1643-1645 (1991) CrossRef PubMed Google Scholar
  490. 490.
    M. Suarez, C. Duque, J. Agric. Food Chem. 39, 1498-1500 (1991) CrossRef PubMed Google Scholar
  491. 491.
    M. Suarez, C. Duque, C. Bicchi, H. Wintoch, G. Full, P. Schreier, Flavour Frag. J. 8, 215-220 (1993) CrossRef PubMed Google Scholar
  492. 492.
    C. Duque, H. Wintoch, M. Suarez, P. Schreier, Linalool glycosides as aroma precursors in lulo (Solanum vestissimum D.) fruit peelings (Prog. Flavour Precursor. Stud. Proc. Int. Conf. 1993), pp. 279-281 PubMed Google Scholar
  493. 493.
    H. Feki, I. Koubaa, M. Damak, Mediter. J. Chem. 2, 639-647 (2014) CrossRef PubMed Google Scholar
  494. 494.
    Y.L. Lin, W.Y. Wang, Y.H. Kuo, C.F. Chen, J. Chin. Chem. Soc. 47, 247-251 (2000) CrossRef PubMed Google Scholar
  495. 495.
    S.A. Nirmal, A.P. Patel, S.B. Bhawar, S.R. Pattan, J. Ethnopharmacol. 142, 91-97 (2012) CrossRef PubMed Google Scholar
  496. 496.
    Y. Zhao, F. Liu, H. Lou, Chin. Trad. Herb. Drugs 33, 555-556 (2010) PubMed Google Scholar
  497. 497.
    A. Mohy-Ud-Din, Z. Khan, M. Ahmad, M.A. Kashmiri, S. Yasmin, H. Mazhar, J. Chilean Chem. Soc. 54, 486-490 (2009) PubMed Google Scholar
  498. 498.
    W.W. Tang, X.L. Liu, D.Q. Zeng, J. Jiangxi Agric. Univ. 34, 483-486 (2012) PubMed Google Scholar
  499. 499.
    Y. Ji, Y. Sun, C. Hui, Lishizen Med. Mat. Med. Res 20, 2431-2432 (2009) PubMed Google Scholar
  500. 500.
    D. Lin, Y. Sun, L. Zhang, X. Zeng, shizen Med. Li, Mat. Med. Res 20, C3-C4 (2009) PubMed Google Scholar
  501. 501.
    A.C. Ramos, R.O. Rodrigo, Nat. Prod. Res. 31, 2405-2412 (2017) CrossRef PubMed Google Scholar
  502. 502.
    U.W. Hawas, G.M. Soliman, L.T.E. Abou, A.R.H. Farrag, J. Biosci. 68, 19-28 (2013) PubMed Google Scholar
  503. 503.
    M.M. Radwan, A. Badawy, R. Zayed, H. Hassanin, M.A. ElSohly, Med. Chem. Res. 24, 1326-1330 (2015) CrossRef PubMed Google Scholar
  504. 504.
    A. Badawy, R. Zayed, S. Ahmed, H. Hassanean, J. Nat. Prod. 6, 156-167 (2013) PubMed Google Scholar
  505. 505.
    Y. Wang, Z. Li, J. Yang, J. Yunnan Univ. 20, 396-398 (1998) PubMed Google Scholar
  506. 506.
  507. 507.
    Y. Ren, L. Shen, S. Dai, China J. Chin. Mat. Med. 34, 721-723 (2009) PubMed Google Scholar
  508. 508.
    G. Ishii, M. Mori, Y. Umemura, S. Takigawa, S. Tahara, Nippon Shokuhin Kagaku Kogaku Kaishi 43, 887-895 (1996) CrossRef PubMed Google Scholar
  509. 509.
    W. Dan, G.W. Chen, C.R. Han, W.J. Liu, H.Z. Yang, Chin. Trad. Herb. Drugs 43, 1068-1070 (2012) PubMed Google Scholar
  510. 510.
    J. Cardona, E.C. Juliana, S. Cuca, E. Luis, G. Barrera, A. Jaime, Rev. Colomb. Quimica 40, 185-200 (2011) PubMed Google Scholar
  511. 511.
    M. Ono, Y. Shiono, T. Tanaka, C. Masuoka, S. Yasuda, T. Ikeda, T. Nohara, J. Nat. Med. 64, 500-505 (2010) CrossRef PubMed Google Scholar
  512. 512.
    S. Siqueira, F.S. Vivyanne, M.F. Agra, C. Dariva, S.J.P. Siqueira, J. Sup. Flu. 58, 391-397 (2011) CrossRef PubMed Google Scholar
  513. 513.
    S.T.M.S. Silva, R. Braz-Filho, M.G. Carvalho, M.F. Agra, Biochem. Syst. Ecol. 30, 479-481 (2002) CrossRef PubMed Google Scholar
  514. 514.
    H.L. Yin, J. Li, Q.S. Li, J.X. Dong, Bull. Acad. Milit. Med. Sci. 34, 65-67 (2010) PubMed Google Scholar
  515. 515.
    H.J. Huang, H.M. Wang, A.C. Cao, C.X. Zhang, S.H. Wei, T.J. Ling, Nat. Prod. Res. 31, 1831-1835 (2014) PubMed Google Scholar
  516. 516.
    Q. Shao, L. Chang, Y. Wei, Z. Wei, J. Chromatogr. Sci. 56, 695-701 (2018) CrossRef PubMed Google Scholar
  517. 517.
    J. He, X.J. Zhang, B.Z. Ma, F. Liu, Chin. Pharm. J. 50, 2035-2038 (2015) PubMed Google Scholar
  518. 518.
    J.H. Li, H.L. Yin, J.X. Dong, Acad. Milit. Med. Sci. 37, 130-134 (2013) PubMed Google Scholar
  519. 519.
    A.K. Chakravarty, S. Mukhopadhyay, S. Saha, S.C. Pakrashi, Phytochemistry 41, 935-939 (1996) CrossRef PubMed Google Scholar
  520. 520.
    L. Wang, N. Wang, X. Yao, Chin. Trad. Herb. Drugs 30, 792-794 (2007) PubMed Google Scholar
  521. 521.
    A. Simaratanamongkol, K. Umehara, H. Niki, H. Noguchi, P. Panichayupakaranant, J. Funct. Foods 11, 557-562 (2014) CrossRef PubMed Google Scholar
  522. 522.
    X. Zuo, Z. Deng, Z. Guo, K. Zou, F. Cheng, J. Cent, China Norm. Univ. 46, 322-324 (2012) PubMed Google Scholar
  523. 523.
    G. Xie, W. Duan, B. Tao, C. Li, Nat. Prod. Res. Dev. 20(627-629), 643 (2008) PubMed Google Scholar
  524. 524.
    H. Zhou, F. Wang, Y. He, J. Tang, Z. Fang, West China J. Pharm. Sci. 26, 522-524 (2011) PubMed Google Scholar
  525. 525.
    E. Rodrigues, L.R.B. Mariutti, A.Z. Mercadante, J. Agric. Food Chem. 61, 3022-3029 (2013) CrossRef PubMed Google Scholar
  526. 526.
    D. Wu, Z. Fang, Guangdong Med. Coll. J. 24, 139-140 (2008) PubMed Google Scholar
  527. 527.
    A.K. Sharma, M.C. Sharma, M.P. Dobhal, Pharm. Lett. 5, 355-361 (2013) PubMed Google Scholar
  528. 528.
    V. Aeri, Rajkumari, M. Mujeeb, M. Ali, Indian J. Nat. Prod 21, 40-42 (2005) PubMed Google Scholar
  529. 529.
    G.A. Mathis, A. Toggenburger, R. Pokorny, S. Autzen, R. Ibanez, J. Steroid Biochem. Mol. Biol. 144, 40-43 (2014) CrossRef PubMed Google Scholar
  530. 530.
    H. Bachmann, S. Autzen, U. Frey, U. Wehr, Brit. Poultry Sci. 54, 642-652 (2013) CrossRef PubMed Google Scholar
  531. 531.
    D.R. Baek, M.J. Lee, N.I. Baek, K.H. Seo, Y.H. Lee, J. Appl. Biol. Chem. 59, 103-106 (2016) PubMed Google Scholar
  532. 532.
    M.G. Morais, A.F.C. Guilherme, A.A. Aleixo, L.A.R.S. Lima, Nat. Prod. Res. 29, 480-483 (2015) CrossRef PubMed Google Scholar
  533. 533.
    P.L. Yuan, X.P. Wang, K.X. Chen, Y.M. Li, Q. Jia, Chin. Patent Med. 38, 104-107 (2016) PubMed Google Scholar
  534. 534.
    M.C.D. Ricardo, C.S.L. Enrique, P. Orozco, I. Clara, Actual. Biol. 27, 49-52 (2005) PubMed Google Scholar
  535. 535.
    Y.H. Long, J.H. Li, J. Li, B. Li, L. Chen, J.X. Dong, Fitoterapia 84, 360-365 (2013) CrossRef PubMed Google Scholar
  536. 536.
    Y.H. Long, L.J. Hui, B. Li, L. Chen, J.X. Dong, J. Asian Nat. Prod. Res. 16, 153-157 (2014) CrossRef PubMed Google Scholar
  537. 537.
    J.M. Antonio, J.S. Gracioso, W. Toma, L.C. Lopez, F. Oliveira, A.R.M.S. Brito, J. Ethnopharmacol. 95, 83-88 (2004) CrossRef PubMed Google Scholar
  538. 538.
    T. Chen, J. Zhang, X. Sun, X. Xu, S. Zhang, Fine Chem. 26, 47-50 (2009) PubMed Google Scholar
  539. 539.
  540. 540.
  541. 541.
  542. 542.
  543. 543.
  544. 544.
  545. 545.
  546. 546.
  547. 547.
  548. 548.
    P.M. Veira, L.P.M. Marinho, S.C.S. Ferri, C. Lee, Anais Acad. Bras. Cienc. 85, 553-560 (2013) CrossRef PubMed Google Scholar
  549. 549.
  550. 550.
    D.R.L.H. Mascato, M. M. Passarinho, D.M.L. Galeno, R. P. Carvalho, J. Nutr. Met., 364185/1-364185/8 (2015) PubMed Google Scholar
  551. 551.
  552. 552.
  553. 553.
    T.B. Nguelefack, H. Mekhfi, A.B. Dongmo, T. Dimo, P. Watcho, J. Zoheir, J. Ethnopharmacol. 124, 592-599 (2009) CrossRef PubMed Google Scholar
  554. 554.
    G.T. El-Sherbini, R.A. Zayed, E.T. El-Sherbini, J. Parasit. Res. 2009 (2009) PubMed Google Scholar
  555. 555.
    N. Chowdhury, A. Ghosh, G. Chandra, B.M.C. Comp, Altern. Med. 8, 10 (2008) PubMed Google Scholar

Copyright information

© The Author(s) 2019

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Joseph Sakah Kaunda
    • 1,2
  • Ying-Jun Zhang
    • 1,3
  •     
  1. 1. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
  2. 2. Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
  3. 3. Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China