Metabolites and bioactivities of Rhizophoraceae mangroves

  • Murukesh NEBULA a,  
  • H.S. HARISANKAR b,  
  • N. CHANDRAMOHANAKUMAR a,b
  •     

Abstract

This review examines the chemical compositions and bioactivities of mangrove plants belonging to the Rhizophoraceae family. The Rhizophoraceae family of true mangrove plants is the most common and is also widely distributed species. It consists of 24 species across four genera. Of the 24 species, 12 species remain unexamined for their phytochemical constituents. There have been 268 metabolites reported from 16 species. The key phytochemical constituents identified across the family are the diterpenoids and triterpenoids. The major diterpenoids include pimaranes, beyeranes, kaurenes, dolabranes and labdanes whereas the significant triterpenoids are lupanes, dammaranes and oleananes. Disulphides, dolabranes and labdanes are considered to be the chemotaxonomic markers of the genera Bruguiera, Ceriops and Rhizophora respectively.

Keywords

Rhizophoraceae    Bruguiera    Rhizophora    terpenoids    Ceriops    

Introduction

Mangrove plants are potential sources of biologically active chemicals that are discernible from their wide spread application in ethnopharmaceutical practices. There habitat exists under stressful conditions and serve as a bridging ecosystem between freshwater and marine systems. These plants have specially adapted their own morphological structures and physiological mechanisms to their harsh natural surroundings. Pneumatophores, stilt roots and buttresses, with salt-excreting glands found in their leaves, and viviparous propagules are some of the several highly specialized adaptations of this group. The path of photosynthesis in mangroves is different from other glycophytes. Furthermore, there are alterations in other physiological processes such as carbohydrate metabolism or polyphenol synthesis. These plants survive under extreme conditions of salinity, temperature gradients, tidal fluctuations and anoxic soil conditions, with these plants possessing many chemical compounds, which protect them from these destructive elements1. Even though extracts from mangroves and mangrove-dependent species possess therapeutic activity against humans, animal and plant pathogens, the specific metabolites responsible for these bioactivities remains to be elucidated.

1 Rhizophoraceae

The global mangrove plant have 84 species belonging to 24 genera and 16 families2. Among them, 70 species are true mangroves pertaining to sixteen genera and eleven families whereas fourteen species are semi mangroves belonging to eight genera and five families. According to Wu et. al, suggests the family Rhizophoraceae belongs to true mangrove family, which contains 21 species in four genera2. In contrast three more species; Rhizophora annamalayana3, Kandelia obovata4 and Ceriops zeppeliana blume5 become 24 species in four genera in the Rhizophoraceae family of true mangroves. Thus the family Rhizophoraceae include: Bruguiera which contains seven species, Ceriops (five species), Kandelia (two species) and Rhizophora (ten species). The distribution of species in Rhizophoraceae family is detailed in Table 1. 54 studies can achieve the validity of ethnomedicines as well as apply the use of mangrove plants in the development of new drugs.

Table 1

Mangroves of Rhizophoraceae family of true mangroves

Bruguiera Ceriops Kandelia Rhizophora
B. cylindrica C. decandra K. candel R. apiculata
B. exarista C. tagal K. obovata R. harrisoni
B. gymnorrhiza C. tagal var. australasica R. lamarckii
B. hainessi C. tagal var. typical R. mangle
B. parviflora C. zeppeliana blume R. mucronata
B. sexangula R. racemosa
B. sexangula var. rhynchopetala R. samoesis
R. selala
R. stylosa
R. annamalayana

In this review, the compounds identified from this family were listed, and their reported biological activities were compiled. Also chemotaxonamy and importance of further phytochemical research is discussed.

2 Chemical Constituents

2.1 Bruguiera

The genus Bruguiera has six species and one hybrid species which are derived from B. sexangula, including B. cylindrica, B. exarista, B. gymnorrhiza, B. hainessi, B. parviflora, B. sexangula and B. sexangula var. rhynchopetala. The metabolic pattern of this genus has been extensively characterised by a suite of diterpenes and triterpenes. In addition, these species also produce flavonoids, tropane derivatives and cyclic polysulphides. These include 22 metabolites from B. cylindrica, 54 metabolites from B. gymnorrhiza, nine metabolites from B. exaristata, six metabolites from B. parviflora, two metabolites from B. sexangula and 40 metabolites from B. sexangula var rhynchopetala were identified so far. A total of 114 metabolites have been reported form this genus including. A detailed list of chemical compounds identified from Bruguiera is recorded in Table 2.

Table 2

Chemical constituents from the genus Bruguiera

Compound Class and Name Plant Plant Part References
Alkaloids
brugine (1) B. cylindrica stem and bark 14
B. exaristata stem bark 6
tropine (2) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine acetate (3) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine benzoate (4) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine isobutyrate (5) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine isovalerate (6) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine n-butyrate (7) B. exaristata stem bark 6
B. sexangula stem bark 6
tropine propionate (8) B. exaristata stem bark 6
B. sexangula stem bark 6
D-Friedooleananes (Triterpenoids)
3α-taraxerol (9) B. cylindrica fruits 15
3α-E-caffeoyltaraxerol (10) B. cylindrica fruits and hypocotyls 16
3α-E-coumaroyltaraxerol (11) B. cylindrica fruits 15
3α-E-feruloyltaraxerol (12) B. cylindrica fruits 15
3α-Z-coumaroyltaraxerol (13) B. cylindrica fruits 15
3α-Z-feruloyltaraxerol (14) B. cylindrica fruits 15
3β-taraxerol (26) B. cylindrica fruits 15
3β-E-feruloyltaraxerol (17) B. cylindrica fruits 15
3β-Z-feruloyltaraxerol (23) B. cylindrica fruits 15
taraxerone (25) B. sexangula var. rhynchopetala stem 12
Lupanes (Triterpenoids)
3α-lupenol (32) B. cylindrica fruits and hypocotyls 16
3α-E-coumaroyllupeol (34) B. cylindrica fruits and hypocotyls 16
3α-Z-coumaroyllupeol (37) B. cylindrica fruits and hypocotyls 16
3β-E-caffeoyllupeol B (44) B. cylindrica fruits and hypocotyls 16
3β-Z-caffeoyllupeol (38) B. parviflora fruits 8
3β-E-coumaroyllupeol (45) B. cylindrica fruits and hypocotyls 16
3β-Z-coumaroyllupeol (55) B. cylindrica fruits and hypocotyls 16
B. parviflora fruits 8
betulin (57) B. gymnorrhiza leaves 17
lupenone (64) B. cylindrica fruits and hypocotyls 16
B. sexangula var. rhynchopetala stem 12
B. parviflora fruits 8
lupeol (65) B. cylindrica fruits and hypocotyls 16
B. gymnorrhiza leaves 17
B. sexangula var. rhynchopetala stem 12
B. parviflora fruits 8
trans-hydroxy-cinnamoyl lupeol (66) B. sexangula var. rhynchopetala stem 12
dioslupecin A (57) B. parviflora fruits 8
Oleanane (Triterpenoids)
oleanolic acid (70) B. gymnorrhiza leaves 17
β-amyrin (71) B. gymnorrhiza leaves 17
β-amyril palmitate (72) B. sexangula var. rhynchopetala stem 12
Ursanes (Triterpenoids)
ursolic acid (73) B. gymnorrhiza leaves 17
α-amyrin (74) B. gymnorrhiza leaves 17
Dammaranes (Triterpenoids)
bruguierin A (75) B. gymnorrhiza flowers 18
bruguierin B (76) B. gymnorrhiza flowers 18
bruguierin C (77) B. gymnorrhiza flowers 18
Triterpene alcohol
gymnorhizol (3-epi-δ-amyrin) (85) B. gymnorrhiza leaves 19
Lanostanes (Triterpenoids)
sexangulic acid (86) B. sexangula stem 10
squalene (Triterpenoid)
squalene (87) B. sexangula var. rhynchopetala stem 12
Fatty acids
linoleic acid (88) B. gymnorrhiza leaves 20
linolenic acid (89) B. gymnorrhiza leaves 20
palmitic acid (90) B. gymnorrhiza leaves 20
Steroids
3-O-α-L-rhamnopyranosyl-(+)-catechin-(4α→2)phloroglucinol (91) B. gymnorrhiza bark 21
campesterol (92) B. gymnorrhiza leaves 17
cholesterol (93) B. gymnorrhiza leaves 17
daucosterol (94) B. sexangula var. rhynchopetala stem 12
β-sitosterol (96) B. sexangula var. rhynchopetala stem 12
B. gymnorrhiza leaves 17
stigmaste-7-en-3β-ol (98) B. gymnorrhiza leaves 17
stigmasterol (99) B. gymnorrhiza leaves 17
α-hydroxy-sitosterol (100) B. sexangula var. rhynchopetala stem 12
Kauranes (Diterpenoids)
(16R)-13, 17-epoxy-16-hydroxy-ent-kaur-9(11)-en-19-al (101) B. sexangula var. rhynchopetala stem 11
13, 16, 17-trihydroxy-ent-9(11)-kaurene-19-oic acid(102) B. gymnorrhiza stem 22
13-hydroxy-16-ent-kauren-19-al (103) B. gymnorrhiza stem 22
B. gymnorrhiza bark 23
16, 17-dihy-droxy-ent-9(11)-kaurene-19-al (107) B. gymnorrhiza stem 22
B. sexangula var. rhynchopetala stem 11
16, 17-dihydroxy-ent-9(11)-kauren-19-oic acid (108) B. gymnorrhiza stem 22
16, 17-dihydroxy-19-nor-ent-kaur-9(11)-en-3-one(109) B. sexangula var. rhynchopetala stem 11
16-ent-kaurene-13, 19-diol (115) B. gymnorrhiza stem 22
B. gymnorrhiza bark 23
B. cylindrica roots 24
16-ent-kauren-19-ol (110) B. gymnorrhiza stem 22
16H-17, 19-ent-kauranediol (104) B. gymnorrhiza stem 22
16H-17-hydroxy-ent-kauran-19-oic acid (105) B. gymnorrhiza stem 22
16, 17-dihydroxy-ent-kauran-19-al (106) B. gymnorrhiza stem 22
17-chloro-13, 16-dihydroxy-ent-kauran-19-al (111) B. gymnorrhiza stem 22
ceriopsin F (113) B. sexangula var. rhynchopetala stem 11
steviol (120) B. gymnorrhiza bark 23
methyl(16R)-13, 17-epoxy-16-hydroxy-ent-kaur-9(11)-en-19-oate (119) B. sexangula var. rhynchopetala stem 11
B. gymnorrhiza bark 23
methyl-16α, 17-dihydroxy-ent-kaur-9(11)-en-19-oate(116) B. sexangula var. rhynchopetala stem 11
B. gymnorrhiza stem 22
methyl-16, 17-dihydroxy-ent-kauran-19-oate (117) B. gymnorrhiza stem 22
Pimaranes (Diterpenoids)
15(S)-isopimar-7-en-15, 16-diol (123) B. gymnorrhiza stem 25
B. gymnorrhiza root bark 23
ent-8(14)-pimarene-15R, 16-diol (128) B. gymnorrhiza stem 25
ent-8(14)-pimarene-1α, 15R, 16-triol (129) B. gymnorrhiza Stem, root bark 25, 23
isopimar-7-ene-1β, 15R, 16-triol (130) B. gymnorrhiza stem 25
(5R, 9S, 10R, 13S, 15S)ent-8(14)-pimarene-1-oxo-15R, 16-diol (122) B. gymnorrhiza stem 25
(1αH, 15R)-ent-pimar-8(14)-ene-1, 15, 16-triol (121) B. sexangula var. rhynchopetala stem 11
Beyeranes (Diterpenoids)
(4R, 5S, 8R, 9R, 10S, 13S)-ent-17-hydroxy-16-oxobeyeran-19-al (135) B. gymnorrhiza stem 22
ent-17-hydroxy-16-oxobeyer-9(11)-en-19-al (136) B. sexangula var. rhynchopetala stem 11
Sulphur compounds
4-hydroxy-1, 2-dithiolane (144) B. cylindrica stem and bark 14
brugierol (145) B. cylindrica stem and bark 14
B. gymnorrhiza flowers, leaves and stem 26, 27
B. sexangula var. rhynchopetala stem 11
bruguiesulfurol (146) B. gymnorrhiza Flowers, leaves and stem 26, 27
cis-3, 30-dihydroxy-1, 5, 10, 50-tetrathiacyclodecane(147) B. gymnorrhiza leaves and stem 27
gymnorrhizol (148) B. gymnorrhiza leaves and stem 27
isobrugierol (149) B. cylindrica stem and bark 14
B. gymnorrhiza flowers, leaves and stem 26, 27
B. sexangula var. rhynchopetala stem 11
neogymnorrhizol (150) B. gymnorrhiza leaves and stem 27
trans-3, 30-dihydroxy-1, 5, 10, 50-tetrathiacyclodecane(151) B. gymnorrhiza leaves and stem 27
(–)-3, 4-dihydro-3-hydroxy-7-methoxy-2H-1, 5-benzodithiepine-6, 9-dione (152) B. sexangula var. rhynchopetala stem 11
Aromatic compounds
1-(3-hydroxyphenyl)-hexane-2, 5-diol (153) B. gymnorrhiza stem 28
2, 3-dimethoxy-5-propylphenol (154) B. gymnorrhiza branch 29
3-(3-hydroxybutyl)-1, 1-dimethylisochroman-6, 8-diol(155) B. gymnorrhiza stem 28
bruguierol A (156) B. gymnorrhiza stem 28
bruguierol B (157) B. gymnorrhiza stem 28
bruguierol C (158) B. gymnorrhiza stem 28
bruguierol D (159) B. gymnorrhiza branch 29
Carbohydrates
1-d-1-O-methyl muco inositiol (161) B. exaristata leaves 7
Benzoquinone
2, 6-dimethoxy-1, 4-benzoquinone (162) B. sexangula var. rhynchopetala stem 11
Phenolic glycosides
1-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyloxy]-3, 4, 5-trimethoxybenzene (163) B. sexangula var. rhynchopetala stem 13
3, 4, 5-trimethoxyphenyl-β-D-glucopyranoside (164) B. sexangula var. rhynchopetala stem 13
rhyncoside A (168) B. sexangula var. rhynchopetala stem 13
rhyncoside B (169) B. sexangula var. rhynchopetala stem 13
rhyncoside C (170) B. sexangula var. rhynchopetala stem 13
rhyncoside D (171) B. sexangula var. rhynchopetala stem 13
Flavonoids
myricetin-3-O-rutinoside (199) B. sexangula var. rhynchopetala stem 13
nicotiflorin (200) B. sexangula var. rhynchopetala stem 13
rutin (205) B. sexangula var. rhynchopetala stem 13
tricin (206) B. sexangula var. rhynchopetala stem 13
Lignans
(+)-5′-methoxyisolariciresinol-9′-β-D-xylopyranoside (207) B. sexangula var. rhynchopetala stem 13
(+)-lyoniresinol-3α-O-α-L-rhamnopyranoside (208) B. sexangula var. rhynchopetala stem 13
brugunin A (209) B. gymnorrhiza branch 29
hedyotisols A (210) B. sexangula var. rhynchopetala stem 13
hedyotisols B (211) B. sexangula var. rhynchopetala stem 13
hedyotisols C (212) B. sexangula var. rhynchopetala stem 13
lyoniside (213) B. sexangula var. rhynchopetala stem 13
rhynocoside E (214) B. sexangula var. rhynchopetala stem 13
rhynocoside F (215) B. sexangula var. rhynchopetala stem 13

Three sulphur compounds along with an alkaloid brugine were reported from the stem and bark of B. cylindrica by Japanese scientists of during 1975–1976. 20 years later, a number of oleananes and lupanes (triterpenoids) and one kaurane (diterpenoid) were reported. The first report on the chemical constituents of B. gymnorrhiza dates back to 1978 in which Sarkar and Ganguly reported a new triterpenoid called gymnorhizol (3-epi-δ-amyrin). Since then various triterpenoids (lupanes, oleananes, ursanes, dammaranes) and diterpenoids (kauranes, pimaranes, beyaranes) along with sulphur compounds, sterols and aromatic compounds were reported from this plant.

Only two reports are available regarding the chemical constituents of B. exaristata. As part of their investigation on tumor inhibitory plants, in 1969 Loder and Russell identified the presence of alkaloids (brugine, tropine and tropine esters of acetic, iosbutyric, iosvaleric, propionic, n-butyric and benzoic acids) in the bark extracts of B. exaristata6 while a pronounced accumulation of 1-d-1-O-methyl-muco-inositiol in the young leaves of B. exaristata was reported later by Richter and his team7.

In a continuing search for bioactive constituents from Thai medicinal plants, Chumkaew and his team isolated and elucidated a new triterpenoid ester 3-(Z)-caffeoyllupeol along with five other tritepenoids; lupeol caffeate, 3-(Z)-coumaroyllupeol, dioslupecin A, lupeol and lupenone from the fruits of B. Parviflora8. The earliest work regarding the chemical constituents of mangroves deals with the isolation and characterization of the tropine 1, 2-dithiolane-3-carbonylate named as bruguine from the stem bark of B. sexangula9. Later the same team identified additional alkaloids from the same plant as part of their investigation on tumor inhibitory plants6. In a study focusing on the marine fauna and flora from Chinese coasts, Li and his coworkers collected samples of the mangrove B. sexangula from Hainan Province, China. On separation of an EtOAc-soluble fraction of a methanol extract of the title plant, they isolated a new triterpene, named sexangulic acid10.

Investigation of Chinese mangrove plants led to the isolation and characterisation of 13 compounds; three new diterpenes; six known diterpenes, a new dithiobenzoquinone two cyclic disulfides and 2, 6-dimethoxy-1, 4-benzoquinone from the EtOH extract of the stem of B. sexangula var. rhynchopetala11. Further several triterpenoids and sterols were reported12. Recently, a continuous investigation for chemical diversity of B. sexangula var. rhynchopetala led to the isolation and characterization of six new phenolic constituents named rhyncosides A–F, together with twelve known compounds including two phenolic glycosides, four flavonoids, and six lignan derivatives13.

Fig. 1

Alkaloids from Rhizophoraceae mangroves

2.2 Ceriops

The genus of Ceriops has two species and two varieties, namely C. tagal (Perr.), C. decandra, C. tagal var. australasica and C. tagal var. typical. These plants are valued for their rich tannin content and are a rich source of pentacyclic triterpenoids17. To date, 30 metabolities from C. decandra and 72 metabolites from C. tagal are known. Thus a total of 92 metabolites including 45 diterpenoids (23 dolabranes, six dimeric diterpenoids, four beyeranes, five kauranes, and seven pimaranes) and 45 tritepenoids (35 lupanes, seven dammaranes, one oleanane, one ursane, and one abietane) along with two steroids have been reported so far from this genus.

On examination of the roots of C. decandra collected from the Kauvery estuary (Parangipettai coast), Anjaneyulu and his team isolated and characterised twelve diterpenoids30, 31, 32. Subsequently, two novel triterpene esters were isolated from the leaves of C. decandra in addition to 16 known triterpenes33 by scientists from Thailand. Dolabranes (diterpenoids) are the marker metabolites of C. tagal. These compounds can be used as chemotaxonomic markers of this plant. Dimeric diterpenoids (tetraterpenoids) and triterpenoids of lupane, dammarane, pimarane groups are also found in this plant. One abietane and an oleanane triterpenoid were also isolated from the stems and twigs of C. tagal. The chemical constituents identified from ceriops are listed in Table 3.

Table 3

Chemical constituents of Ceriops

Compound Class and Name Plant Plant Part References
Dolabranes (Diterpenoids)
tagalsin A (223) Ceriops tagal stem and twigs 34
aerial parts 35
tagalsin B (224) C. tagal stem and twigs 34
aerial parts 35
tagalsin C (225) C. tagal stem and twigs 34
aerial parts 35
roots 36
tagalsin D (226) C. tagal stem and twigs 34
tagalsin E (227) C. tagal stem and twigs 34
aerial parts 35
tagalsin F (228) C. tagal stem and twigs 34
aerial parts 35
roots 37, 38
tagalsin G (229) C. tagal stem and twigs 34
aerial parts 35
tagalsin H (230) C. tagal stem and twigs 34
tagalsin O (231) C. tagal aerial part 35
tagalsin P (232) C. tagal stems and twigs 38
tagalsin Q (233) C. tagal stems and twigs 38
tagalsin R (234) C. tagal stems and twigs 38
tagalsin S (235) C. tagal stems and twigs 38
tagalsin T (236) C. tagal stems and twigs 38
tagalsin U (237) C. tagal stems and twigs 38
(5S*, 8S*, 9S*, 10R*, 13S*)-3-hydroxy-16-nor-2-oxodolabr-3-en-15-oic acid (219) C. tagal stems and twigs 38
(5S*, 8S*, 9S*, 10R*, 13S*)-3, 16-dihydroxydolabar-3-ene-2, 15-dione (218) C. tagal stems and twigs 38
(5S*, 8S*, 9S*, 10*, 13S*)-2-hydroxy-16-nor-3-oxodolabr-1, 4(18)dien-15-oic acid (217) C. tagal stems and twigs 38
(5S*, 8S*, 9S*, 1R*, 13S*)-dolabr-3-ene-15-, 16-diol(220) C. tagal stems and twigs 38
(5S*, 8S*, 9S*, 10R*, 13S*)-dolabr-4(18)-ene-15, 16-diol (216) C. tagal stems and twigs 38
erythroxydiol Y (222) C. tagal stems and twigs 38
dolabr-4(17), 15(16)-dien-3-one (238) C. tagal roots 39
7-glycoloyl-2-hydroxy-1, 4b, 7, 10a-tetramethyl-4a, 4b, 5, 6, 7, 8, 8a, 9, 10, 10a-decahydrohenanthren-3(4H)-one (239) C. tagal roots 40
Dimeri diterpenoids
tagalsns Ⅰ (244) C. tagal stems and twigs 41
C. tagal roots 36
tagalsins J (245) C. tagal stems and twigs 41
tagalsin L (241) C. tagal roots 42
tagalsin M (242) C. tagal roots 42
tagalsin N (243) C. tagal roots 42
8(14)-enyl-pimar-2'(3')-en-4'(18')-en-15'(16')endolabr-16, 15, 2', 3'-oxoan-16-one (240) C. tagal roots 36
Beyranes (Diterpenoids)
ceropsin A (137) C. tagal roots 30
ceiopsin B (138) C. tagal roots 30
criopsin G (139) C. tagal roots 31
isosteviol (140) C. tagal roots 31
Auranes (Diterpenoids)
cerioprin E (112) C. tagal roots 32
ceriopsin F (113) C. tagal roots 31
steviol (120) C. tagal roots 31
methyl-ent-16β, 17-dihydroxy-9(11)-kauren-19-oate(118) C. tagal roots 31
ent-16β, 17-dihydroxy-9(11)-kauren-19-oic acid(114) C. decandra roots 31
Dammarane (Triterpenoids)
cereotagalol A (78) C. tagal hypocotyls and fruits 43
cereotagalol B (79) C. tagal hypocotyls and fruits 43
cereotagaloperoxide (80) C. tagal hypocotyls and fruits 43
dammarenediol Ⅱ (81) C. tagal hypocotyls and fruits 43
fouquierol (82) C. tagal hypocotyls and fruits 43
isofouquierol (83) C. tagal hypocotyls and fruits 43
ocotillol Ⅱ (84) C. tagal hypocotyls and fruits 43
Oleananes (Triterpenoids)
oleanolic acid (70) C. tagal hypocotyls and fruits 43
ursane (Triterpenoid)
ursolic acid (73) C. decandra leaves 33
Lupanes (Triterpenoids)
28-hydroxylup-20(29)-en-3-one (27) C. tagal aerial parts 44
C. tagal roots 36
3-epi-betulin (28) C. tagal aerial parts 44
30-nor-lup-3β-ol-2-one (29) C. decandra leaves 33
3-epi-betulinic acid (30) C. tagal aerial parts 44
3-oxo-lup-20(29)-en-28-oic acid (31) C. tagal roots 36
3α-betulinic acid (33) C. tagal hypocotyls and fruits 43
C. decandra leaves 33
3α-O-trans-coumaroylbetulinic acid (35) C. tagal aerial parts 44
3α-O-trans-feruloylbetulinic acid (36) C. tagal aerial parts 44
3β-E-caffeoyllupeol (44) C. decandra leaves 33
3β-O-cis-coumaroylbetulin (39) C. tagal aerial parts 44
3β, 20-dihydroxylupane (40) C. decandra leaves 33
3β-acetylbetulinic acid (41) C. tagal hypocotyls and fruits 43
3β-E-caffeoylbetulin (42) C. tagal hypocotyls and fruits 43
3β-E-caffeoylbetulinic acid (43) C. tagal hypocotyls and fruits 43
3β-E-coumaroyllupeol (45) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
3β-E-feruloylbetulin (46) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
3β-E-feruloylbetulinic acid (47) C. tagal hypocotyls and fruits 43
3β-E-feruloyllupeol (48) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
3β-hydroxylupan-29-oic acid (49) C. decandra leaves 33
3β-O-cis-coumaroylbetulinic acid (50) C. tagal aerial parts 44
3β-O-trans-feruloylbetulin (51) C. tagal aerial parts 44
3β-O-cis-feruloylbetulin (52) C. tagal aerial parts 44
3β-O-trans-coumaroylbetulinic acid (53) C. tagal aerial parts 44
3β-O-trans-coumaroylbetulin (54) C. tagal aerial parts 44
3β-Z-coumaroyllupeol (55) C. decandra leaves 33
3β-Z-feruloyllupeol (56) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
betulin (57) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
C. tagal aerial parts 44
betulinaldehyde (58) C. decandra leaves 33
betulinic acid (59) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
betulonic acid (60) C. tagal hypocotyls and fruits 43
lup-20(29)-en-3β, 28-diol (61) C. tagal roots 39
C. tagal roots 36
lup-20(29)-en-3β, 30-diol (62) C. decandra leaves 33
lup-20(29)-en-3β-hydroxy-28-oic (63) C. tagal roots 39
lupenone (64) C. decandra leaves 33
lupeol (65) C. decandra leaves 33
C. tagal hypocotyls and fruits 43
C. tagal aerial parts 44
C. tagal roots 39
Pimaranes (Diterpenoids)
8, 15-repoxypimaran-16-ol (125) C. decandra roots 31
ceriopsin C (126) C. decandra roots 30
ceriopsin D (127) C. decandra roots 30
ent-8(14)-pimarene-15R, 16-diol (128) C. tagal roots 45
C. tagal stems and twigs 38
isopimar-8(14)-en-15, 16-diol (131) C. tagal roots 39
isopimar-8(14)-en-16-hydroxy-15-one (132) C. tagal roots 39
methoxy-ent-8(14)-pimarenely-15-one (133) C. tagal roots 45
Abietane (Triterpenoid)
abieta-8, 11, 13-trien-18-oic acid (246) C. tagal stems and twigs 38
Steroids
stigmasterol (99) C. tagal roots 45
β-sitosterol (96) C. tagal roots 45

Table 4

Chemical constituents of the bark of Kandelia candel

Compound Class Compound Name
afzelechin-(4α→8)-afzelechin (180)
Propelargonidin dimers afzelechin-(4α→8)-catechin (181)
afzelechin-(4α→8)-epicatechin (182)
Procyanidin trimers epicatechin-(4β→6)-epicatechin-(4β→6)-epicatechin (188)
epicatechin-(4β→6)-epicatechin-(4β→8)-catechin (189)
epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin (190)
cinchonain Ⅰa (184)
cinchonain Ⅰb (185)
Proanthocynadins cinchonain Ⅱa (186)
cinchonain Ⅱb (187)
kandelins A-1, A-2, B-1, B-2, B-3, B-4 (193198)
proanthicyanidin B-1, B-2, C-1 (201203)
proanthicyanidin trimer (204)
(–)-epicatechin (172)
(+)-afzeleczhin (173)
Flavan-3-ols (+)-catechin (174)
(+)-gallocatechin (176)

2.3 Kandelia

There are two species in the mangrove genus Kandelia: K. candel and K. obovata. Only one report is available regarding the chemical constituents of plants of this genus. A few tannin compounds have been reported from K. candel. Investigation of K. obovata for its chemical constituents remains to be observed. 24 phenolic compounds including three propelargonidin dimmers, three procyanidin trimers, fourteen proanthocyanidins and four flavan-3-ols have been isolated from the bark of K. candel Druce46.

2.4 Rhizhophora

The mangrove genus Rhizophora has ten species: R. apiculata, R. harrisonii, R. lamarckii, R. mangle, R. mucronata, R. racemosa, R. samoesis, R. selala, R. stylosa and R. annamalayana. Of these ten species, chemical constituents have only been reported in R. apiculata, R. mangle, R. mucronata, and R. stylosa. These reports reveal a total of 34 metabolites from R. apiculata, two metabolites from R. mangle, 23 metabolites from R. mucronata and 25 metabolites from R. stylosa, thus a total of 81 different metabolites from the genera Rhizophora, with details shown in Table 5.

Table 5

Chemical constituents of the genus Rhizophora

Compound Class and Name Plant Plant Part References
D-Friedooleananes (Triterpenoids)
3β-O-E-coumaroyl-taraxerol (15) R. stylosa stems and twigs 48
3β-E-caffeoyltaraxerol (16) R. mucronata fruits 49
3β-O-Z)coumaroyl-taraxerol (19) R. stylosa stems and twigs 48
3β-taraxerol acetate (20) R. stylosa stems and twigs 48
3β-taraxerol formate (21) R. stylosa stems and twigs 48
3β-Z-caffeoyltaraxerol (22) R. mucronata fruits 49
3β-Z-p-coumaroyltaraxerol (24) R. mucronata fruits 49
3β-E-p-coumaroyltaraxerol (18) R. mucronata fruits 49
careaborin-(3β-E-p-coumaroyltaraxerol) (18) R. apiculata leaves 47
R. stylosa leaves 50
R. stylosa leaves 50
taraxerol (28) R. apiculata leaves 47
R. mangle leaves and stems 51
R. stylosa leaves 50
R. stylosa stems and twigs 48
R. mucronata fruits 49
taraxerone (26) R. stylosa leaves 50
taraxeryl-cis-p-hydroxycinnamate (24) R. apiculata leaves 47
Lupanes (Triterpenoids)
trans-hydroxycinnamoyllupeol (66) R. mangle leaves and stems 51
lupeol (65) R. apiculata stem 52
R. mucronata leaves 17
R. mucronata stem bark 53
Oleananes (Triterpenoids)
15α-hydroxy-β-amyrin (67) R. stylosa stems and twigs 48
3β-O-(E)-(4-methoxy)-cinnamoyl-15α-hydroxyl-β-amyrin(68) R. mucronata stem bark 53
3β-O-(E)-coumaroyl-15α-hydroxy-β-amyrin (69) R. stylosa stems and twigs 48
oleanolic acid (70) R. mucronata leaves 17
β-amyrin (71) R. mucronata root bark 54
R. mucronata leaves 17
Ursanes (Triterpenoids)
ursolic acid (73) R. mucronata leaves 17
α-amyrin (74) R. mucronata root bark 54
Aliphatic alcohols
dotriacontanol (247) R. apiculata heartwood 55
hentriacontanol (248) R. apiculata heartwood 55
nonacosanol (249) R. apiculata heartwood 55
octacosanol (250) R. apiculata heartwood 55
triacontanol (251) R. apiculata heartwood 55
Aliphatic saturated carboxylic acids
doicosanoic (252) R. apiculata heartwood 55
henicosanoic (253) R. apiculata heartwood 55
hentriacontanoic (254) R. apiculata heartwood 55
heptacosanoic (255) R. apiculata heartwood 55
hexatriacontanoic (256) R. apiculata heartwood 55
octacosanoic (257) R. apiculata heartwood 55
pentacosanoic (258) R.a apiculata heartwood 55
tetracosanoic (259) R. apiculata heartwood 55
tetratriacontanoic (260) R. apiculata heartwood 55
triacontanoic (261) R. apiculata heartwood 55
tritriacontanoic (262) R. apiculata heartwood 55
Steroids
campesterol (92) R. apiculata heartwood 55
daucosterol (94) R. mucronata root bark 54
R. stylosa leaves 50
ergosta-7, 22-dien-3-ol (95) R. apiculata stem 52
sitosterol (96) R. apiculata heartwood 55
R. mucronata root bark 54
R. stylosa leaves 50
sitosteryl-3-glucoside (97) R. apiculata heartwood 55
stigmasterol (99) R. apiculata heartwood 55
Aromatic compound
syringaldehyde (160) R. apiculata heartwood 55
Benzoquinone
2, 6-dimethoxy-p-benzoquinone (162) R. apiculata heartwood 55
Labdanes(Diterpenoids)
apiculol (263) R. apiculata roots 56
rhizophorin A (264) R. mucronata roots 57
R. mucronata roots 58
Beyeranes (Diterpenoids)
rhizophorin B (141) R. mucronata roots 58
rhizophorin C (142) R. mucronata roots 58
rhizophorin D (143) R. mucronata roots 58
Pimaranes (Diterpenoids)
15(S)-isopimar-7-en-1-oxo-15, 16-diol (124) R. apiculata stem 52
rhizophorin E (134) R. mucronata roots 58
Kauranes (Diterpenoids)
13, 16α, 17-trihydroxy-ent-9(11)-kauren-19-oic acid (102) R. apiculata stem 52
16R-13, 17-epoxy-16-hydroxy-ent-kaur-9(11)-en-19-al(101) R. apiculata stem 52
ent-12, 17-epoxy-16β-hydroxy-9(11)-kauren-19-oate (112) R. apiculata stem 52
methyl-ent-16β, 17-dihydroxy-9(11)-kauren-19-oate (118) R. apiculata stem 52
methyl-ent-kaur-9(11)-ent-13, 17-expoxy-16-hydroxy-19-oate (119) R. apiculata stem 52
Sesquiterpene
mucronatone (265) R. mucronata fruits 49
Carbohydrate
1-d-O-methyl-muco-inositol (161) R. mucronata roots 7
Hopanoid
adian-5-en-3-ol (266) R. mucronata stem bark 53
Phenolic compounds
atranorin (165) R. mucronata root bark 54
protocatechuic acid (167) R. stylosa leaves 50
isovanillic acid (166) R. stylosa leaves 50
Xanthone(aromatic ketone)
lichixanthone (267) R. mucronata root bark 54
Aliphatic ketone
palmitone (268) R. mucronata root bark 54
Flavonoids
rutin (205) R. stylosa leaves 50
astilbin (183) R. stylosa leaves 50
(–)-3, 7-O-diacetyl-epicatechin (178) R. stylosa stems and twigs 59
(–)-epicatechin (172) R. stylosa stems and twigs 59
R. stylosa stems 60
(–)-3-O-acetyl-epicatechin (179) R. stylosa stems and twigs 59
(–)-3, 3′, 4′, 5, 7-O-pentaacetyl-epicatechin (177) R. stylosa stems and twigs 59
(+)-afzelechin (173) R. stylosa stems and twigs 59
(+)-catechin (174) R. stylosa stems and twigs 59
R. stylosa stems 60
proanthocyanidin B2 (202) R. stylosa stems and twigs 59
glabraoside A (191) R. stylosa stems 60
glabraoside B (192) R. stylosa stems 60
cinchonain Ⅱa (186) R. stylosa stems 60
cinchonain Ⅱb (187) R. stylosa stems 60
(+)-catechin-3-O-α-L-rhamnoside (175) R. stylosa stems 60
cinchonain Ⅰa (186) R. stylosa stems 60
R. stylosa stems 60
cinchonain Ⅰb (185) R. stylosa stems and twigs 59
R. stylosa stems 60

The chemical investigation carried out by Majumdar and Patra in 1976 resulted in the isolation of β-amyrin, β-amyrone, taraxerol, β-sitosterol, and triacantanol from R. apiculata47. Later in early nineties Kokpol and his team had identified three terpenoids, five long chain aliphatic alcohols, eleven long chain aliphatic saturated carboxylic acids, three steroids, 2, 6-dimethoxy-p-benzoquinone, syringaldehyde and sitosteryl 3-glucoside from this plant species. Also, five kauranes, one labdane and one pimarane diterpenoids and one lupane triterpenoid are reported so far from R. apiculata.

The study conducted by Williams et. al51 reported the isolation and chemical characterisation of taraxerol and cinnamoyllupeol, two triterpenoids from the leaves and stems of Rhizophora mangle L. A variety of steroids, diterpenoids and triterpenoids were reported from the leaves and bark of R. mucronata. A few beyeranes (diterpenoids) were identified from this plant, and are unique to this species. Only triterpenoids of the classes oleananes and D-friedooleananes from R. stylosa are reported to date.

Fig. 2

D-friedooleananes (triterpenoids) from Rhizophoraceae mangroves

3 Bioactivities

3.1 Bioactivities of Compounds Identified

With stably transfected HepG2 cells, three new dammarane triterpenes; bruguierins A–C and a new cyclic 4-hydroxy-dithiosulfonatebruguiesulfurol as well as two known 4-hydroxydithiolane-1-oxides; brugierol and isobrugierol, were isolated from the flowers of Bruguiera gymnorrhiza. These phytochemicals activated an antioxidant response element (ARE luciferase activation) with EC50 values of 7.8, 9.4, 15.7, 56.7, 3.7 and 1.8 µM, respectively. Furthermore, bruguierin A, brugierol and isobrugierol also inhibited phorbol ester-induced NFκB (nuclear factor-κB) luciferase activation with an IC50 value of 1.4, 85.0 and 14.5 µM respectively, while bruguierin A and brugierol selectively inhibited cyclooxygenase-2 (COX-2) activity with an IC50 value of 0.37 and 6.1 µM respectively18, 26.

The compounds 16α-17, 19-ent-kauranediol; 13-hydroxy-16-ent-kaurene-19-ol and 16-ent-kaurene-19-ol showed promising activity against K-562 (human chronic myeloid leukemia) and L-929 (mouse fibroblasts) of which 16-ent-kaurene-19-ol showed the greatest selectivity for K-562 (IC50 6.8 µg/mL)22. (5R, 9S, 10R, 13S, 15S)ent-8(14)-pimarene-1-oxo-15, 16-diol showed moderate cytotoxic activities against L-92925.

The 15 membered macrocyclic polysulfide, gymnorrhizol, possesses an novel carbon skeleton which was isolated from B. gymnorrhiza and exhibited potent inhibitory activity against protein tryrosine phosphatase 1B (PTP1B). PTP1B is an enzyme involved in the regulation of insulin signaling and which is regarded as a key for treatment of type Ⅲ diabetes and obesity27. One of the aromatic compounds extracted from the stem of B. gymnorrhiza, bruguierol C showed moderate activity against gram-positive and gram-negative bacteria including mycobacteria and resistant strains (MICs 12.5 μg/mL)28.

The lupane caffeoyl ester, 3-(Z)-caffeoyllupeol extracted from B. parviflora exhibited antimalarial activity with an EC50 value of 8.6 µg/mL8. Sexangulic acid obtained from B. sexangula showed moderate in vitro cytotoxicity against human lung cancer (A-549) and human luekaemic (H-L60) cell lines at a concentration of 5 µg/ml10. Tagalsin C found in C. tagal was found to exhibit moderate cytotoxicity against HeLa human cervical carcinoma cell lines35. The dimeric diterpenoid, 8(14)-enyl-pimar-2'(3')-en-4'(18')-en-15'(16')-endolabr-16, 15, 2', 3'-oxoan-16-one and the other terpenoids; tagalsin C, tagalsin I, lup-20(29)-ene-3β, 28-diol, 3-oxolup-20(29)-en-28-oic acid and 28-hydroxy-lup-20(29)-en-3-one isolated from the roots of the mangrove plant Ceriops tagal exhibited antifouling activity against cyprid larvae of the barnacle without significant toxicity36. The other nontoxic antifouling compounds identified were ethoxy-ent-8(14)-pimarenely-15-one, ent-8(14)-pimarene-15R, 16-diol, stigmasterol and β-sitosterol45. Tagalsins Q, R and U showed moderate antifeedant activity against the third instar larvae of Brontispa longissima at a concentration of 1 mg/mL38. Dolabr-4(17), 15(16)-dien-3-one, isopimar-8(14)-en-15, 16-diol, isopimar-8(14)-en-16-hydroxy-15-one, lupeol, lup-20(29)-en-3β, 28-diol and lup-20(29)-en-3β-hydroxy-28-oic acid were isolated from the roots of marine mangrove C. tagal which were evaluated for the activation of caspase-3 enzyme using caspase-3 colourimetric assay. Caspase-3 enzyme was activated by all compounds in cleaving pNA from Ac-DEVD-pNA in the presence of caspase-3-inhibitor; Ac-DEVD-CHO39.

Fig. 3-1

Lupanes from Rhizophoraceae mangroves

2, 6-dimethoxy-p-benzoquinone isolated from R. apiculata was identified as an active constituent component against fungi, bacteria and boll weevils55. Taraxerol and cinnamoyllupeol, are two triterpenoids derived from the leaves and stems of Rhizophora mangle L, were found exhibit insecticidal activity towards Cylas formicarius: one of the most destructive pests of the sweet potato51.

Among the compounds isolated from the leaves of Rhizophora stylosa, taraxerol has been confirmed to have growth inhibitory effects of Hela and BGC-823 with IC50 of 73.4 µmol/L and 73.3 µmol/L, respectively, while cis-careaborin may inhibit the growth of BGC-823 and MCF-7 with IC50 of 45.9 µmol/L and 116.0 µmol/L, respectively. Furthermore, the presence of astilbin and rutin were initially reported to stimulate the proliferation of mice splenic lymphocytes markedly in a dose-dependent manner50. The compounds, (–)-epicatechin, (–)-catechin, 3-O-acetyl-(–)-epicatechin, 3, 7-O-acetyl-(–)-epicatechin, (+)-afzelechin, cinchonain 1b and proanthocyanidin B2 were isolated from the same plant displayed DPPH radical scavenging activity which were comparable to that of the positive control butylated hydroxytoluene (BHT). Proanthocyaninidin B2 showed the strongest activity with IC50 4.3 µg/mL, being four fold greater than the positive control, BHT (IC50 18.0 µg/mL). The antioxidant flavan-3-ol glycosides from R. stylosa showed an increase in their radical scavenging activities with increase in number of catechol moieties present in the molecules60.

Fig. 3-2

Lupanes from Rhizophoraceae mangroves

3.2 Bioactivities of Mangrove Extracts

Various publications have reported the biological activities of mangrove extracts. The components of crude alkaloid mixtures from B. sexangula and B. exarista were identified as tumor inhibitors6. A polysaccharide extracted from the leaves of B. cylindrica, R. apiculata and R. mucronata of Rhizophoraceae along with some other mangrove plants exhibited positive activity against human immunodefiency viruses (HIV)61. All parts of Ceriops decandra have proven antiviral activity61. It also possess promising antibacterial62, antiinflammatory63, and antidiabetic activity64. The leaves and bark extract of C. tagal shows antibacterial activity65. Phenolics are important components of the leaf extract and hypocotyls of K. candel and show excellent antioxidant activities66, 67. Therefore, K. candel can be a good candidate for further development as an antioxidant medicine. During the study on the antibacterial activities of mangrove extracts against two antibiotic resistant pathogenic bacteria Staphylococcus aureus and Proteus sp., it was observed that the ethyl acetate extract of B. Sexangula and R. apiculata also possessed promising antibacterial activity68. This antibacterial activity was also reported in a study showing that gallic acid was extracted from hydrolysable tannin from the barks of R. apiculata. The gallic acid possessed a significant antiyeast (anticandidal) activity towards some yeast species of medical importance. It is anticipated that gallic acid from R. apiculata is a novel antiyeast agent which may be useful in the treatment of candidiasis69. Alcoholic extract of the leaves of Rhizophora apiculata from the mangrove forest of Sunderbans, West Bengal, India were prepared and displayed manglycemic/anti-hyperglycemic activity in streptozotocin induced diabetic rats fed a glucose bolus. The results of this study revealed that this plant extract had potential hypoglycemic action70. The cholinesterase inhibition activity of R. lamarckii was established by Natarajan et. al 2009. The antihyperglycaemic effect of R. mangle was studied71. The leaf extracts of three mangrove plants of Rhizophoraceae family; Rhizophora mucronata, R. apiculata and R. annamalayana were found to have potential antidiabetic capacity due to the presence of an insulin-like protein72. The various studies mentioned, provide scientific support for the use of the mangroves in folklore medicine for the treatment of diabetes.

Fig. 4

Oleananes, ursanes and dammaranes from Rhizophoraceae mangroves

Fig. 5

Triterpene alcohol, lanostane, squalene and fatty acids from Rhizophoraceae mangroves

Various mangrove plants were tested for their antioxidant capacity65, 73. It was found that the Rhizophoraceae mangroves showed comparatively higher antioxidant capacity which can be attributed to their higher phenolic content. Additionally, the mangrove plants of Rhizophoraceae family are the source of potent antiviral substances61.

4 Chemotaxonomy

The chemical constituents of mangrove plants of the three true mangrove genera (Rhizophoraceae); Bruguiera, Ceriops and Rhizophora, are the diterpenoid class kauranes exist in the genera Bruguiera and Ceriops, however kauranes are absent in the genus Rhizophora. The genus Bruguiera is characterised by the presence of disulphides and polydisulphides which are unique to the genus. Thus they can be considered as significant chemotaxonamic markers of this genus. Also, it was observed that ent-pimarane coexists with isopimarane in the genus Bruguiera. Interestingly, dolabranes only exist in the genus Ceriops making it a significant chemotaxonomic marker. Similarly, labdane was found only in the genus Rhizophora, making it a significant chemotaxonomic marker of that specific genus.

Furthermore, extensive investigation is needed to identify and classify the chemical constituents of mangrove plants to construct a thorough basis for the chemotaxonamic studies of these versatile plants.

Fig. 6

Steroids from Rhizophoraceae mangroves

Fig. 7

Kauranes, pimaranes and beyeranes (diterpenoids) from Rhizophoraceae mangroves

Fig. 8

Sulphur compounds from Rhizophoraceae mangroves

Fig. 9

Sulphur compounds from Rhizophoraceae mangroves

Fig. 10

Carbohydrate and benzoquione identified from Rhizophoraceae mangroves

Fig. 11

Phenolic compounds from Rhizophoraceae mangroves

Fig. 12

Flavonoids from Rhizophoraceae mangroves

Fig. 13

Lignans from Rhizophoraceae mangroves

Fig. 14

Dolabranes and dimeric diterpenoids from Rhizophoraceae mangroves

Fig. 15

Aliphatic alcohols and acids in Rhizophoraceae mangroves

Fig. 16

Terpenoids, abietane, labdanes, hopanoid, a sesquitepenoid, aromatic and aliphatic ketones in Rhizophoraceae mangroves

5 Conclusions

In this review, the chemistry and bioactivities of mangroves plants of Rhizophoraceae family have been summarised. Two types of diterpenoids; beyerane and pimarane, and three types of triterpenoids; lupane, oleanane and dammarane, are common chemical constituents ubiquitously found in this family, including 268 metabolites. To date, the chemical constituents from all the mangrove plants of this family have not been investigated. It is clear that mangrove plants can provide a new bank of phytochemical substances that are biologically active substances, with novel structures. It is essential to systematically conserve the biodiversity in the mangrove ecosystem and for the proper of this ecosystem for the future use of humanity.

References

  1. 1.
    W. M. Bandaranayake, Wetl. Ecol. Manag. 10, 421-452 (2002) CrossRef PubMed Google Scholar
  2. 2.
    J. Wu, Q. Xiao, J. Xu, M. Y. Li, J. Y. Pan, M. H. Yang, Nat. prod. Rep. 25, 955-981 (2008) CrossRef PubMed Google Scholar
  3. 3.
    K. Kathiresan, Environ. Ecol. 13, 240-241 (1995) PubMed Google Scholar
  4. 4.
    C. Sheue, H. Liu, J. W. H. Yong, Taxon 52, 287-294 (2003) CrossRef PubMed Google Scholar
  5. 5.
    C. Sheue, S. M. A. Rashid, J. W. H. Yong, Y. Yang, Taiwania 55, 72-77 (2010) PubMed Google Scholar
  6. 6.
    J. W. Loder, G. B. Russell, Aust. J. Chem. 22, 1271-1275 (1969) CrossRef PubMed Google Scholar
  7. 7.
    A. Richter, B. Thonke, M. Popp, Phytochemistry 29, 1785-1786 (1990) CrossRef PubMed Google Scholar
  8. 8.
    P. Chumkaew, S. Kato, K. Chantrapromma, Chem. Pharm. Bull. 53, 95-96 (2005) CrossRef PubMed Google Scholar
  9. 9.
    J. W. Loder, G. B. Russell, Tetrahedron Lett. 51, 6527-6529 (1966) PubMed Google Scholar
  10. 10.
    L. Li, C. G. Huang, C. Y. Wang, Y. W. Guo, Nat. Prod. Res. 24, 1044-1049 (2010) CrossRef PubMed Google Scholar
  11. 11.
    S. Bao, Z. Deng, H. Fu, P. Proksch, W. Lin, Helv. Chim. Acta 88, 2757-2763 (2005) CrossRef PubMed Google Scholar
  12. 12.
    B. SY, W. Lin, Zhongguo Zhong Yao Za Zhi 31, 1168-1171 (2006) PubMed Google Scholar
  13. 13.
    S. Bao, Y. Ding, Z. Deng, P. Proksch, W. Lin, Chem. Pharm. Bull. 55, 1175-1180 (2007) CrossRef PubMed Google Scholar
  14. 14.
    A. Katu, J. Takahashi, Phytochemistry 5, 220-221 (1975) PubMed Google Scholar
  15. 15.
    S. Laphookhieo, C. Karalai, C. Ponglimanont, K. Chantrapromma, J. Nat. Prod. 67, 886-888 (2004) CrossRef PubMed Google Scholar
  16. 16.
    C. Karalai, S. Laphookhieo, Aust. J. Chem. 58, 556-559 (2005) CrossRef PubMed Google Scholar
  17. 17.
    A. Ghosh, S. Misra, A. K. Dutta, A. Choudary, Phytochemistry 24, 1725-1727 (1985) CrossRef PubMed Google Scholar
  18. 18.
    S. Homhual, N. Bunyapraphatsara, T. Kondratyuk, A. Herunsalee, W. Chaukul, J. M. Pezzuto, H. H. S. Fong, H. J. Zhang, J. Nat. Prod. 69, 421-424 (2006) CrossRef PubMed Google Scholar
  19. 19.
    S. N. Ganguly, A. Sarkar, Indian J. Chem. B. 16, 742-744 (1978) PubMed Google Scholar
  20. 20.
    R. W. Hogg, F. T. Gillan, Phytochemistry 23, 93-97 (1984) CrossRef PubMed Google Scholar
  21. 21.
    S. Achamadi, G. Syahbirin, E. T. Choong, W. R. Hemingway, Phytochemistry 35, 217-219 (1994) PubMed Google Scholar
  22. 22.
    L. Han, X. Huang, I. Sattler, H. M. Dahse, H. Fu, W. Lin, S. Grabley, J. Nat. Prod. 67, 1620-1623 (2004) CrossRef PubMed Google Scholar
  23. 23.
    C. Subrahmanyam, B. V. Rao, R. S. Ward, M. B. Hursthouse, D. E. Hibbs, Phytochemistry 83, 83-90 (1999) PubMed Google Scholar
  24. 24.
    A. W. Salae, S. Chantrapromma, H. K. Fun, C. Ponglimanont, Acta Crystallogr. E. 63, 1899-1901 (2007) CrossRef PubMed Google Scholar
  25. 25.
    L. Han, X. Huang, I. Sattler, H. M. Dahse, H. Fu, S. Grabley, W. Lin, Pharmazie 60, 705-707 (2005) PubMed Google Scholar
  26. 26.
    S. Homhual, H. J. Zhang, N. Bunyapraphatsara, T. Kondratyuk, B. D. Santarsiero, A. D. Mesecar, A. Herunsalee, W. Chaukul, J. M. Pezzuto, H. H. Fong, Planta Med. 72, 255-260 (2006) CrossRef PubMed Google Scholar
  27. 27.
    X. Y. Huang, Q. Wang, H. L. Liu, Y. Zhang, G. R. Xin, X. Shen, M. L. Dong, Y. W. Guo, Phytochemistry 70, 2096-100 (2009) CrossRef PubMed Google Scholar
  28. 28.
    L. Han, X. Huang, I. Sattler, U. Moellmann, H. Fu, W. Lin, S. Grabley, Planta Med. 71, 160-164 (2005) CrossRef PubMed Google Scholar
  29. 29.
    L. Han, X. Huang, I. Sattler, U. Moellmann, H. Fu, W. Lin, S. Grabley, J. Asian Nat. Prod. Res. 9, 327-331 (2007) CrossRef PubMed Google Scholar
  30. 30.
    A. S. R. Anjaneyulu, V. L. Rao, Phytochemistry 60, 777-782 (2002) CrossRef PubMed Google Scholar
  31. 31.
    A. S. R. Anjaneyulu, V. L. Rao, Phytochemistry 62, 1207-1211 (2003) CrossRef PubMed Google Scholar
  32. 32.
    A. S. R. Anjaneyulu, V. L. Rao, E. Lobkovsky, J. Clardy, J. Nat. Prod. 65, 592-594 (2002) CrossRef PubMed Google Scholar
  33. 33.
    C. Ponglimanont, P. Thongdeeying, Aust. J. Chem. 58, 615-618 (2005) CrossRef PubMed Google Scholar
  34. 34.
    Y. Zhang, Z. Deng, T. Gao, P. Proksch, W. Lin, Phytochemistry 66, 1465-1471 (2005) CrossRef PubMed Google Scholar
  35. 35.
    X. W. Ouyang, X. C. Wang, Q. X. Yue, L. H. Hu, Nat. Prod. Commun. 5, 9-12 (2010) PubMed Google Scholar
  36. 36.
    J. D. Chen, R. Z. Yi, Y. M. Lin, D. Q. Feng, H. C. Zhou, Z. C. Wang, Int. J. Mol. Sci. 12, 6517-6528 (2011) CrossRef PubMed Google Scholar
  37. 37.
    H. K. Fun, C. Pakhathirathien, S. Chantrapromma, C. Karalai, K. Chantrapromma, Acta Crystallogr. E. 62, 5539-5541 (2006) CrossRef PubMed Google Scholar
  38. 38.
    W. M. Hu, M. Y. Li, J. Li, Q. Xiao, G. Feng, J. Wu, J. Nat. Prod. 73, 1701-1705 (2010) CrossRef PubMed Google Scholar
  39. 39.
    M. Chacha, Int. J. Biol. Chem. Sci. 5, 402-409 (2011) PubMed Google Scholar
  40. 40.
    S. Chantrapromma, H. K. Fun, C. Pakhathirathien, C. Karalai, K. Chantrapromma, Acta Crystallogr. E. 63, 459-461 (2007) CrossRef PubMed Google Scholar
  41. 41.
    Y. Zhang, Y. Lu, L. Mao, P. Proksch, W. Lin, Org. Lett. 7, 3037-3040 (2005) CrossRef PubMed Google Scholar
  42. 42.
    J. D. Chen, Y. Qiu, Z. W. Yang, P. Lin, Y. M. Lin, Helv. Chim. Acta 91, 2292-2298 (2008) CrossRef PubMed Google Scholar
  43. 43.
    C. Pakhathirathien, C. Karalai, C. Ponglimanont, S. Subhadhirasakul, K. Chantrapromma, J. Nat. Prod. 68, 1787-1789 (2005) CrossRef PubMed Google Scholar
  44. 44.
    X. C. Wang, X. W. Ouyang, L. H. Hu, J. Asian Nat. Prod. Res. 12, 576-581 (2010) CrossRef PubMed Google Scholar
  45. 45.
    J. D. Chen, D. Q. Feng, Z. W. Yang, Z. C. Wang, Y. Qiu, Y. M. Lin, Molecules 13, 212-219 (2008) CrossRef PubMed Google Scholar
  46. 46.
    F. L. Hsu, G. I. Nonaka, I. Nishioka, Chem. Pharm. Bull. 33, 3142-3152 (1985) CrossRef PubMed Google Scholar
  47. 47.
    U. Kokpol, W. Chavasiri, J. Nat. Prod. 53, 953-955 (1990) CrossRef PubMed Google Scholar
  48. 48.
    D. L. Li, X. M. Li, B. G. Wang, Nat. Prod. Res. 22, 808-813 (2008) CrossRef PubMed Google Scholar
  49. 49.
    S. Laphookhieo, C. Karalai, C. Ponglimanont, Chem. Pharm. Bull. 52, 883-885 (2004) CrossRef PubMed Google Scholar
  50. 50.
    X. H. Yang, H. B. Li, H. Chen, P. Li, B. P. Ye, Yao Xue Xue Bao 43, 974-978 (2008) PubMed Google Scholar
  51. 51.
    L. Williams, Die Naturwissenschaften 86, 450-452 (1999) CrossRef PubMed Google Scholar
  52. 52.
    M. Z. Gao, X. Y. Yuan, M. C. Cheng, H. B. Xiao, S. X. Bao, J. Asian Nat. Prod. Res. 13, 776-779 (2011) CrossRef PubMed Google Scholar
  53. 53.
    R. M. Rohini, A. K. Das, Nat. Prod. Res. 24, 197-202 (2010) CrossRef PubMed Google Scholar
  54. 54.
    B. V. Rao, C. V. Rao, C. Subrahmanyam, M. A. J. Jairaj, Indian Chem. Soc. 82, 155-157 (2005) PubMed Google Scholar
  55. 55.
    U. Kokpol, W. Chavasiri, V. Chittawong, M. Bruce, G. N. Cunningham, D. H. Miles, Phytochemistry 33, 1129-1131 (1993) CrossRef PubMed Google Scholar
  56. 56.
    E. Saxena, H. S. Garg, Nat. Product Lett. 4, 149-154 (1994) CrossRef PubMed Google Scholar
  57. 57.
    A. S. R. Anjaneyulu, V. L. Rao, Nat. Product Lett. 15, 13-19 (2001) CrossRef PubMed Google Scholar
  58. 58.
    A. S. R. Anjaneyulu, V. Anjaneyulu, V. L. Rao, J. Asian Nat. Prod. Res. 4, 53-61 (2002) CrossRef PubMed Google Scholar
  59. 59.
    D. L. Li, X. M. Li, Z. Y. Peng, B. G. Wang, Molecules 12, 1163-1169 (2007) CrossRef PubMed Google Scholar
  60. 60.
    K. Takara, A. Kuniyoshi, K. Wada, K. Kinjyo, H. Iwasaki, Biosci. Biotech. Biochem. 72, 2191-2194 (2008) CrossRef PubMed Google Scholar
  61. 61.
    M. Premanathan, K. Kathiresan, H. Nakashima, South Pacific Study 19, 49-57 (1999) PubMed Google Scholar
  62. 62.
    M. Chandrasekaran, K. Kannathasan, V. Venkatesalu, K. Prabhakar, World J. Microb. Biotech. 25, 155-160 (2008) PubMed Google Scholar
  63. 63.
    H. Hossain, Sk. Moniruzzaman, I. Nimmi, H. Kawsar, A. Hossain, A. Islam, I. A. Jahan, Oriental Pharm. Exp. Med. 11, 215-220 (2011) CrossRef PubMed Google Scholar
  64. 64.
    M. A. Nabeel, K. Kathiresan, S. J. Manivannan, Diabetes 2, 97-103 (2010) CrossRef PubMed Google Scholar
  65. 65.
    N. Arivuselvan, D. Silambarasan, T. Govindan, K. Kathiresan, Adv. Biol. Res. 5, 251-254 (2011) PubMed Google Scholar
  66. 66.
    L. L. Zhang, Y. M. Lin, H. C. Zhou, S. D. Wei, J. H. Chen, Molecules 15, 420-31 (2010) CrossRef PubMed Google Scholar
  67. 67.
    S. D. Wei, H. C. Zhou, Y. M. Lin, Int. J. Mol. Sci. 11, 4080-4093 (2010) CrossRef PubMed Google Scholar
  68. 68.
    P. D. Abeysinghe, Indian J. Pharm. Sci. 72, 167-172 (2010) CrossRef PubMed Google Scholar
  69. 69.
    L. S. Hong, D. Ibrahim, J. Kassim, S. Sulaiman, J. Appl. Pharm. Sci. 1, 75-79 (2011) PubMed Google Scholar
  70. 70.
    T. K. Sur, T. Seal, S. Pandit, D. Bhattacharya, Nat. Prod. Sci. 10, 11-15 (2004) PubMed Google Scholar
  71. 71.
    F. J. Alarcon-Aguilara, R. Roman-Ramos, S. Perez-Gutierrez, A. Aguilar-Contreras, C. C. Contreras-Weber, J. L. Flores-Saenz, J. Ethnopharmacol. 61, 101-110 (1998) CrossRef PubMed Google Scholar
  72. 72.
    A. M. Nabeel, K. Kathiresan, M. Chinthamani, S. Manivannan, Nat. Prod. Res. 26, 1161-1166 (2012) CrossRef PubMed Google Scholar
  73. 73.
    G. Agoramoorthy, F. A. Chen, V. Venkatesalu, D. H. Kuo, P. C. Shea, Asian J. Chem. 20, 1311-1322 (2008) PubMed Google Scholar

Copyright information

© The Author(s) 2013

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Murukesh NEBULA
    • a
  • H.S. HARISANKAR
    • b
  • N. CHANDRAMOHANAKUMAR
    • a,b
  •     
  1. a. Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India
  2. b. Inter University Center for Development of Marine Biotechnology, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, Kerala, India