岩性油气藏  2024, Vol. 36 Issue (5): 145-155       PDF    
×
鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律
尹虎1,2, 屈红军1, 孙晓晗1, 杨博1, 张磊岗1, 朱荣幸1    
1. 西北大学地质学系, 大陆动力学国家重点实验室, 西安 710069;
2. 延长油田股份有限公司 富县采油厂, 陕西 富县 727500
摘要: 以沉积学理论为指导,利用野外露头、钻井岩心、测井等资料,对鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征包括相标志、沉积微相类型等进行了研究,并揭示了其沉积演化规律。研究结果表明:①鄂尔多斯盆地东南部三叠系长7油层组深水沉积的相标志包括:岩石中常见水平层理、鲍马序列、槽模沟模、滑动与滑塌构造、撕裂屑、泥包砾等沉积构造,含有深水双壳类和鱼类动物化石,粒度概率曲线中悬浮总体含量大且分选差,测井曲线上可见锯齿状、齿化箱形-钟形-指形、泥岩基线等特征。②研究区长7物源主要来自东北和南部2个方向,发育深湖—半深湖、湖底扇、浅湖沉积,湖底扇包括浊流和砂质碎屑流2种重力流类型,可进一步划分为重力流主水道、溢流沉积、重力流分支水道、分支水道间、朵叶体等微相。湖底扇主水道主要为砂质碎屑流沉积,分支水道和朵叶体主要为浊流沉积。③研究区长7沉积期,中南部主体发育深湖—半深湖、湖底扇沉积,东北部发育浅湖沉积;其中,东北方向发育4个湖底扇体,南部发育2个湖底扇体,半深湖/浅湖界线呈北西向延伸于延安—甘泉一带。长73亚段沉积期,深湖—半深湖范围最大,仅局部发育湖底扇;长72、长71亚段沉积期,湖底扇逐步增多,深湖—半深湖范围有所缩小,整体呈深湖—半深湖与湖底扇交互沉积态势。
关键词: 相标志    深水沉积    浊流    砂质碎屑流    湖底扇    长7    三叠系    鄂尔多斯盆地东南部    
Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin
YIN Hu1,2, QU Hongjun1, SUN Xiaohan1, YANG Bo1, ZHANG Leigang1, ZHU Rongxing1    
1. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China;
2. Fuxian Oil Production Plant, Yanchang Oilfield Co., Ltd., Fuxian 727500, Shaanxi, China
Abstract: Guided by the theory of sedimentology, the data of outcrops, drilling cores and logging were used to study the characteristics of deep-water deposits, including facies markers and sedimentary microfacies types, of Triassic Chang 7 reservoir in southeastern Ordos Basin, and the evolution law was revealed. The results show that: (1)Facies markers of deep-water deposits of Triassic Chang 7 reservoir in southeastern Ordos Basin include sedimentary structures such as horizontal bedding, Bouma sequence, trough mode, sliding and slump structure, tearing debris, mud-clad gravel, containing deep-water bivalves and fish fossils. The total suspended content in the grain size probability curve is large and the sorting is poor, and the features of zigzag, teethed box-bell-finger shaped and mudstone baseline can be seen on the logging curve.(2)The provenance of Chang 7 reservoir in the study area mainly comes from the northeast and south, with the development of deep to semi-deep lake, sublacustrine fan and shallow lake, and shallow lake sediment. The sublacustrine fan includes two types of gravity flow: turbidity flow and sandy debris flow. It can be further divided into microfacies such as gravity flow main channels, overflow deposits, gravity flow branch channels, inter branch channels, and lobes. The main channels of the sublacustrine fan mainly developed sandy debris flow deposits, while the branch channels and lobes are mainly developed turbidite deposits.(3)The sedimentary evolution law of Chang 7 reservoir in the study area is as follows: deep to semi-deep lake and sublacustrine fan deposits were developed in the central and southern parts of the study area, and shallow lake deposits were developed in the northeastern part. Four sublacustrine fans from the northeast direction were developed in the study area and two sublacustrine fans from the south were developed. The boundary between semi-deep lake and shallow lake extends along Yan'an-Ganquan belt from northwest direction. During the sedimentary period of Chang 73, the range of deep to semi-deep lake was the largest, and the sublacustrine fan was locally developed. During the sedimentary period of Chang 72 and Chang 71, the development of sublacustrine fan gradually increased, while the range of deep lake to semi-deep lake gradually lessened, showing an overall trend of interactive sedimentation between deep lake to semi-deep lake and lacustrine fans.
Key words: facies mark    deep water sedimentation    turbidity current    sandy debris flow    sublacustrine fan    Chang 7 reservoir    Triassic    southeastern Ordos Basin    
0 引言

近年来,深水沉积成为油气勘探的热点领域[1-2],在巴西、墨西哥湾、西非等地区均发现了大量油气资源[3-5]。自Kuenen等[6]提出浊流概念、Bouma[7]提出浊积岩沉积鲍马序列之后,有些学者进行了深水沉积机理和深水扇模式研究[8-10],Shanmugam[11]提出砂质碎屑流、砂质块体搬运沉积等多种深水重力流沉积类型[12-14],同期多种水道型、朵叶体型海底扇模式也相继建立[15-16]。近年来异重流[17-19]、超临界流[20-22]等概念的提出更加丰富了对深水重力流的理解。深水重力流沉积是中国陆相湖盆多年来研究的重要对象,由于与优质烃源岩紧邻,利于油气的富集,是我国陆相湖盆致密油气最重要的发育场所[23-25],因此,确定深水沉积类型及发育规律,具有重要实践价值。

近十年来,鄂尔多斯盆地西南部陇东地区三叠系长7油层组页岩油勘探开发取得了巨大突破[26-28],在长7油层组页岩及致密砂岩中发现了庆城大油田,探明储量为10×108 t[29],关于鄂尔多斯盆地长7油层组深水重力流沉积,有些学者对浊积岩进行了系统研究,逐步建立起完整的浊积岩沉积体系[30-32];有些学者根据岩心、露头观察与分析测试及地震层序解释资料提出并阐述了砂质碎屑流、砂质块体流沉积[33-35];李相博等[36]依据薄片鉴定、露头观察认为泥包砾结构是确定延长组深水厚层块状砂岩为砂质碎屑流成因的最有意义的标志性证据;杨仁超等[37]通过岩心观察、薄片鉴定等手段及综合研究提出了异重流沉积;田荣恒等[38]通过剖面实测、水道形态参数统计及岩相、粒度等分析对重力流水道的类型与形态进行描述;有些学者认为研究区发育浊流、砂质碎屑流等多种类型的重力流沉积[39-41]。针对长7油层组深水重力流发育类型与湖底扇展布规律,以沉积学理论为指导,根据野外露头、22口岩心资料及300余口钻井、测井资料,结合长7油层组相标志研究,对鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及沉积微相类型进行研究,明确其沉积演化规律,以期为该区长7油层组勘探开发提供依据。

1 地质概况

鄂尔多斯盆地可分为北部伊盟隆起、南部渭北隆起、东部晋西挠褶带、西部西缘冲断带、天环坳陷及中部的伊陕斜坡(亦称陕北斜坡)6个构造单元。研究区位于鄂尔多斯盆地东南部伊陕斜坡及部分渭北隆起(图 1a),北至延安,南至铜川,东至宜川,西至合水、华池一线,面积约4.4×104 km2。研究区有出露非常好的8个野外露头剖面:延长县延河剖面、延安市云岩河剖面、宜川县仕望河剖面、韩城市薛峰川剖面、黄龙县红石崖剖面、铜川市金锁关剖面、耀州区瑶曲剖面、旬邑县三水河剖面等(图 1a)。同时研究区有钻穿长7油层组的300余口钻井,为盆地东南部长7油层组沉积演化规律研究提供了保障。

下载原图 图 1 鄂尔多斯盆地研究区构造位置(a)及三叠系延长组岩性地层综合柱状图(b) Fig. 1 Tectonic location (a) and stratigraphic columnt of Triassic Yanchang Formation (b) of the study area, Ordos Basin

根据自下而上K0—K9共10个含凝灰质泥岩标志层,将鄂尔多斯盆地东南部延长组分为长10—长1共10个油层组。长7油层组位于延长组中下部,主体发育一套源储共生的细粒岩系,主要岩性为页岩、泥岩夹粉砂岩夹细砂岩,局部夹薄层凝灰质泥岩,在盆地中南部地区为一套半深湖—深湖-湖底扇沉积组合(图 1b)。根据沉积旋回、电测曲线特征及岩性不同,长7油层组自下而上可分为长73、长72和长71共3个亚段,长73亚段一般由一套纯灰黑色泥页岩、油页岩夹薄层粉砂质泥岩和泥质粉砂岩组成,电性特征总体表现为高伽马、高电阻和高声波,地层厚度为30~60 m;长72亚段岩性为深灰色—灰黑色泥岩、粉砂质泥岩夹中—薄层粉—细砂岩,以1~2个正旋回或一个正旋回和一个逆旋回组成,地层厚度为30~55 m;长71亚段岩性与长72亚段类似,由1~2正旋回组成,地层厚度为30~55 m。

2 深水沉积特征及类型 2.1 深水沉积相标志 2.1.1 深水沉积构造标志

鄂尔多斯盆地东南部三叠系长7油层组发育有多种深水沉积构造,包括深水、静水悬移沉积构造及多种深水重力流构造。①水平层理:深灰色/灰黑色页岩、泥岩,连续几十米发育水平层理,反映稳定连续的低能还原环境(图 2a),研究区发育的深灰色泥岩、炭质页岩、油页岩是半深湖—深湖相沉积的重要标志。②鲍马序列:该构造序列以灰色和深灰色细砂岩、粉砂岩组成的鲍马序列AB段(图 2b)、ABC段(图 2c)、BC段(图 2d)不完整组合,A段是因重力分异作用形成的正粒序砂岩,B段为牵引流成因的平行层理,C段为牵引流成因的沙纹层理,鲍马序列是浊流沉积存在的直接标志。③槽模、沟模:通常为重力流底面印模构造,虽然不是重力流沉积的独有产物,但却是判断重力流最明显的标志,由于重力流流体在下伏未固结泥质沉积物上冲刷后期印模所形成的,在研究区最多见的是槽模(图 2e)、沟模(图 2f)。④滑动与滑塌构造:滑动构造表现为灰色厚层块状砂岩,无其他沉积构造,底面见火焰状构造(图 2g),由砂质块体向前滑动,底部泥岩呈火焰状向上侵入砂体内部所形成。滑塌构造表现为灰色厚层块状砂岩,内部砂球构造、包卷层理构造、变形层理等同生变形构造,砂球构造外貌呈椭球状或枕状,砂球构造内部是细砂岩、粉砂岩,外部是粉砂质泥岩,由于沉积物沿着滑动面运移,经历旋转变形而造成了内部形变(图 2h)。⑤撕裂屑、泥包砾:该构造为灰色厚层块状砂岩夹漂浮的撕裂屑(图 2i)和泥包砾结构(图 2j),漂浮泥屑由浮力支撑,泥包砾结构表现为砾石外包有一层泥岩外套,是砂质碎屑流侵蚀下伏未固结泥质沉积物而被包裹悬浮搬运沉积而形成的,有学者认为泥包砾构造是砂质碎屑流沉积的直接鉴别标志[32]

下载原图 图 2 鄂尔多斯盆地东南部三叠系长7油层组深水沉积构造标志 (a)水平层理,金锁关剖面,铜川市;(b)鲍马序列,红石崖剖面,黄龙县;(c)鲍马序列,仕望河剖面,宜川县;(d)鲍马序列,三水河剖面,旬邑县;(e)槽模,庄24井,长72;(f)沟模,耀县剖面,铜川市;(g)火焰状构造,槐25井,长71;(h)液化变形构造,新55井,长72;(i)撕裂屑,新41井,长72;(j)泥包砾,新99井,长71;(k)双壳类化石,延河剖面,长7;(l)鱼化石,槐31井,长71 Fig. 2 Deep water sedimentary structure marks of Triassic Chang 7 reservoir in southeastern Ordos Basin
2.1.2 古生物标志

研究区长7油层组中常见的动物化石有双壳类(图 2k)和鱼化石(图 2l),发育深水动物化石指示着还原性质的较深水环境。

2.1.3 粒度特征

沉积物的粒度大小受搬运介质、搬运方式和搬运营力强度的控制,在一定程度上可以反映环境的水动力和流动体制,与沉积环境密切相关。常用粒度分析法判断当时的沉积相及沉积古环境。研究区长7油层组砂岩粒度概率累计曲线显示为一段式或部分两段式(图 3a3b),一般不发育滚动、跳跃粒度总体,悬浮总体含量大,分选差,显示重力流粒度概率特征。在C-M图上点的分布表现为平行于C-M基线的平行线(图 3c3d),属于粒序悬浮区,也反映以递变悬浮沉积为主的特点,显示了明显的重力流沉积特征。

下载原图 图 3 鄂尔多斯盆地东南部三叠系长7油层组碎屑颗粒概率累计曲线及C-M (a)碎屑颗粒概率累计曲线,新43井,长72,1 044.97 m;(b)碎屑颗粒概率累计曲线,富西6井,长72,1 104.03 m;(c)C-M图,新43井;(d)C-M图,富西6井。 Fig. 3 Probability cumulative curve and C-M diagram of debris particles of Triassic Chang 7 reservoir in southeastern Ordos Basin
2.1.4 测井相标志

测井相是指能反映某一沉积物特征,并能使这个沉积物与其他沉积物区别开的一组测井响应。测井响应与沉积环境及沉积物之间具有密切的关系,不同的沉积相具有不同的测井曲线特征、岩性组合,其测井曲线的响应特征也不同。根据现场岩心描述、沉积构造等资料,总结出研究区测井相标志特征(表 1)。

下载CSV 表 1 鄂尔多斯盆地东南部三叠系长7油层组测井相标志特征 Table 1 Characteristics of logging facies markers of Triassic Chang 7 reservoir in southeastern Ordos Basin
2.2 深水沉积类型

根据对研究区钻井的岩心、测井、录井和野外露头剖面的详细观察研究,在上述相标志综合分析的基础上,总结出研究区延长组长7油层组的半深湖—深湖相、湖底扇相。

2.2.1 半深湖—深湖沉积

半深湖—深湖亚相主要发育于长7油层组中下部,颜色较均一且以灰黑色、深灰色为主,主要为一套悬浮质沉积的灰黑色泥页岩与油页岩,发育水平层理(图 2a);电性表现为高声波时差、高伽马值、高电阻,声波时差曲线形态呈梯形,是延长组长7油层组沉积时期湖泊兴盛时的产物,其中软体动物与浮游生物甚为发育,微体动物(介形虫)常密集成层(图 2k2l),是盆内最重要的优质油源岩发育的微相。

2.2.2 湖底扇沉积

湖底扇相又可分为重力流主水道、溢流、重力流分支水道、分支水道间及朵叶体等微相。①重力流主水道微相:重力流主水道充填沉积离物源区较近,包括主水道沉积与溢流沉积,主水道沉积物沿斜坡向下是搬运的主通道,以发育块状砂岩为特征,GR曲线一般呈齿化箱形与齿化钟形,单砂层厚度一般大于1 m,多层叠加砂体厚度大于10 m(图 4a)。主水道岩性以细砂岩为主,底部为冲刷构造,表现为砂质碎屑流沉积,其展布特征反映了地形、水流方向以及砂体运输的规模,透镜状主水道砂岩横向厚度变化较快(图 5a5b图 6)。②溢流微相:溢流沉积以深色粉砂岩与泥岩为主,主要发育沙纹交错层理、平行层理、水平层理(图 5a)。③重力流分支水道微相:分支水道充填沉积一般位于湖底扇的中上部,是主水道的延伸,其水动力相对主水道弱,单砂层较薄,为0.2~1.0 m,累计砂体厚度不等,岩性以细砂岩为主,表现为中厚层砂泥互层复合韵律(图 4b)。④分支水道间微相:分支水道是研究区砂岩储层的主要微相,表现为鲍马序列AB段和ABC段均呈韵律层理沉积,分支水道间以细粒沉积物为主,由不规则砂泥互层、泥质粉砂岩和粉质泥岩组成,表现为鲍马序列CDE或DE段(图 5b5c图 6)。⑤朵叶体微相:朵叶体为湖底扇沉积的末端,与深湖平原相交,在剖面上呈逆粒序,单层砂岩厚度一般为0.05~0.20 m,累计砂体厚度不等(图 4c)。野外露头表现为深色泥页岩夹薄层砂岩的韵律互层(图 5d图 6)。

下载原图 图 4 湖底扇不同微相类型测井曲线特征 Fig. 4 Characteristics of logging curves of different sedimentary facies of sublacustrine fan
下载原图 图 5 鄂尔多斯盆地东南部三叠系长7油层组湖底扇野外露头 (a)—(b)重力流主水道微相及上部溢流沉积微相,旬邑三水河剖面;(c)重力流分支水道微相,旬邑三水河剖面;(d)朵叶体微相,铜川聂家山剖面。 Fig. 5 Outcrops of sublacustrine fan of Triassic Chang 7 reservoir in southeastern Ordos Basin
下载原图 图 6 鄂尔多斯盆地东南部三叠系长7油层组沉积相交叉对比剖面(剖面线位置见图 1 Fig. 6 Cross sections showing sedimentary facies distribution of Triassic Chang 7 reservoir in southeastern Ordos Basin

沿物源方向北东侧受北东物源影响主要发育三角洲相,中部发育半深湖—深湖及湖底扇相,湖底扇砂体延伸较远,在三角洲歼灭区发育重力流主水道,主水道砂体测井曲线呈箱形,明显厚于分支水道砂体,南西侧受南西物源影响,以重力流分支水道与朵叶体为主(图 6a);在垂直物源方向主要发育透镜状湖底扇砂体,砂体之间延伸距离较近,多呈孤立状与叠加状,长73湖底扇发育较少,以半深湖—深湖相为主,长71湖底扇发育最多,长72湖底扇发育次之(图 6b)。

3 沉积演化规律 3.1 地层厚度突变带揭示浅湖/半深湖界线

鄂尔多斯盆地东南部三叠系长7油层组地层厚度一般为100~160 m,研究区中部厚度最大,义正—直罗—黄陵地区长7油层组厚度为140~160 m,边缘区域厚度为100~110 m(图 7)。研究区存在2个地层厚度突变带,厚度等值线分别为110~120 m,130~140 m,反映出研究区长7油层组存在2个坡折带,揭示了高湖平面或低湖平面时的2个半深湖/浅湖界线。研究区西南部无明显坡折带,根据区域地质资料,合水一带是位于2个洼陷中间的低凸起,仍处于半深湖—深湖环境。

下载原图 图 7 鄂尔多斯盆地东南部三叠系长7油层组地层厚度 Fig. 7 Strata thickness of Triassic Chang 7 reservoir in southeastern Ordos Basin

根据以往的研究成果,结合相标志、地层厚度变化规律、单井沉积微相划分、连井剖面沉积相对比分析,通过对研究区长7油层组300余口井的地层厚度、砂层厚度、砂地比、测井相类型数据的统计,运用单因素分析、多因素综合作图法,绘制了长73亚段、长72亚段、长71亚段的沉积相图(图 8)。

下载原图 图 8 鄂尔多斯盆地东南部三叠系长7油层组沉积相平面图 Fig. 8 Sedimentary facies map of Triassic Chang 7 reservoir in southeastern Ordos Basin

(1)长73亚段沉积相平面展布特征:长73亚段沉积期,研究区深湖范围最大,东北方向深湖—浅湖界线移至盆地最北部,大致沿高桥—三十里铺—英旺—宜川一线展布,西南方向深湖—浅湖界线移至盆地最南部,位于旬邑与彬县之间,呈北西—南东向展布,2条深湖—浅湖界线所圈闭的区域为深湖亚相及浊湖底扇沉积(图 8a)。该时期研究区主体发育深湖相,湖底扇规模小,仅东北方向发育3个小型湖底扇沉积。

(2)长72亚段沉积相平面展布特征:长72亚段沉积期深湖范围较长73亚段沉积期有所缩小,三角洲略微向湖进积,东北方向深湖—浅湖界线有所南移,大致沿西河口—下寺湾—三十里铺—英旺南部—黄龙一线展布,西南方向深湖—浅湖界线北移至旬邑与彬县之间,2条深湖—浅湖界线所圈闭的区域为深湖亚相及湖底扇沉积(图 8b)。该时期研究区发育东北方向的4个湖底扇及西南方向的2个湖底扇。

(3)长71亚段沉积相平面展布特征:长71亚段沉积期深湖范围持续缩小,三角洲向湖进积,东北方向深湖—浅湖界线南移至永宁—下寺湾—劳山—富县—洛川—黄龙一线,西南方向深湖—浅湖界线在旬邑以北一线呈北西—南东向展布,2条浅湖—深湖线所圈闭的区域为深湖亚相及湖底扇沉积(图 8c)。长71亚段沉积期与长72亚段沉积期具有一定的继承性,该时期研究区发育东北方向的4个湖底扇及西南方向的2个湖底扇。

3.2 湖底扇沉积模式

研究区湖盆缓坡带与陡坡带均发育重力流湖底扇沉积,沉积类型受坡度和物源及一定的触发机制的控制。东北部坡度平缓,物源供应充足,深水区发育的湖底扇规模较大,砂体沿物源方向垂直或侧向叠加,并向湖盆中心延伸;湖盆南部坡度较陡,深水区也发育湖底扇,但规模相对有限,向湖盆中心延伸距离略短。湖底扇平面上呈朵叶状和舌状,扇体前缘较宽,纵向上呈透镜状,沉积物的粒度沿物源方向逐渐变细。延长期是鄂尔多斯盆地强烈坳陷期,印支二期构造运动引起的火山、地震、洪水等事件因素导致浅水区三角洲前缘的砂体丧失稳定性,诱发砂质碎屑流、浊流等重力流,这些流体将大量的沉积物搬运到湖盆深处,在湖盆相对低洼的区域形成湖底扇。搬运过程中,地形坡度变缓,主水道分叉形成多个分支水道,随着地形坡度的进一步减小,重力流泥沙对下伏泥质的侵蚀逐渐减弱,河道消失,在河道前方形成朵叶体,多为泥质粉砂岩和粉砂质泥岩,砂体较薄(图 9)。

下载原图 图 9 鄂尔多斯盆地东南部三叠系长7油层组深水沉积模式及3种沉积微相垂向沉积序列 Fig. 9 Sedimentary model of deep-water deposition and vertical sequence of the three sedimentary microfacies of Triassic Chang 7 reservoir in southeastern Ordos Basin

湖底扇沉积主要发育有浊流、砂质碎屑流2种重力流类型,砂质碎屑流沉积通常发育在湖底扇主水道微相,浊流沉积主要发育在分支水道微相、朵叶体微相。

4 结论

(1)鄂尔多斯盆地东南部三叠系长7油层组物源主要来自东北和南部2个方向,发育深湖—半深湖相、湖底扇相、浅湖相沉积,湖底扇沉积主要发育有浊流、砂质碎屑流2种重力流类型,微相类型可分为重力流主水道、溢流微相、重力流分支水道、分支水道间、朵叶体微相;湖底扇主水道微相主要发育砂质碎屑流沉积,分支水道微相、朵叶体微相发育浊流沉积。

(2)研究区长7油层组沉积期演化规律表现为:中南部主体发育深湖—半深湖、湖底扇沉积,东北部发育浅湖沉积;研究区东北方向发育4个湖底扇体,南部发育2个湖底扇体,半深湖/浅湖界线呈北西向延伸于延安—甘泉一带;长73亚段沉积期深湖—半深湖范围最大,仅局部发育湖底扇;长72、长71亚段沉积期湖底扇的发育逐步增强,深湖—半深湖范围有所缩小,从深湖—半深湖沉积转变为深湖—半深湖与湖底扇交互沉积。

参考文献
[1]
PETTINGILL S H, WEIMER P. Worldwide deepwater exploration and production: Past, present, and future. The Leading edge, 2002, 21(4): 371-376. DOI:10.1190/1.1471600
[2]
张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景. 天然气地球科学, 2017, 28(10): 1447-1477.
ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration. Natural Gas Geoscience, 2017, 28(10): 1447-1477.
[3]
张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征. 石油学报, 2011, 32(3): 369-378.
ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics. Acta Petrolei Sinica, 2011, 32(3): 369-378.
[4]
操应长, 金杰华, 刘海宁, 等. 中国东部断陷湖盆深水重力流沉积及其油气地质意义. 石油勘探与开发, 2021, 48(2): 247-257.
CAO Yingchang, JIN Jiehua, LIU Haining, et al. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gas geological significance in eastern China. Petroleum Exploration and Development, 2021, 48(2): 247-257.
[5]
张家强, 李士祥, 李宏伟, 等. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探: 以城页水平井区长73小层为例. 石油学报, 2021, 42(5): 570-587.
ZHANG Jiaqiang, LI Shixiang, LI Hongwei, et al. Gravity flow deposits in the distal lacustrine basin of the 7th reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: A case study of Chang 73 sublayer of Chengye horizontal well region. Acta Petrolei Sinica, 2021, 42(5): 570-587.
[6]
KUENEN P H, MIGLIORINI C I. Turbidity Currents as a cause of Graded Bedding. The Journal of Geology, 1950, 58(2): 91-127. DOI:10.1086/625710
[7]
BOUMA A H. A graphic presentation of the facies model of salt marsh deposits. Sedimentology, 1963, 2: 122-129. DOI:10.1111/j.1365-3091.1963.tb01206.x
[8]
MUTTI E, LUCCHI F R. Turbidites of the northern Apennines: Introduction to facies analysis. International Geology Review, 1972, 20(2): 125-166.
[9]
AALTO K R. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps. AAPG Bulletin, 1979, 63(5): 810-815.
[10]
LOWE D R. Sediment gravity flows: Ⅱ. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 1982, 52(1): 279-297.
[11]
SHANMUGAM G. The Bouma Sequence and the turbidite mind set. Earth-Science Reviews, 1997, 42(4): 201-229. DOI:10.1016/S0012-8252(97)81858-2
[12]
SHANMUGAM G. 50 years of the turbidite paradigm(1950-1990 s): Deep-water processes and facies models: A critical perspective. Marine and Petroleum Geology, 2000, 17: 285-342. DOI:10.1016/S0264-8172(99)00011-2
[13]
SHANMUGAM G. Ten turbidite myths. Earth-Science Reviews, 2002, 58(3): 311-341.
[14]
SHANMUGAM G. 深水砂体成因研究新进展. 石油勘探与开发, 2013, 40(3): 294-301.
SHANMUGAM G. New perspectives on deep-water sandstones: Implications. Petroleum Exploration and Development, 2013, 40(3): 294-301.
[15]
FUGELLI E M G, OLSEN T R. Risk assessment and play fairway analysis in frontier basins: Part 2-Examples from offshore mid-Norway. AAPG Bulletin, 2005, 89(7): 883-896. DOI:10.1306/02110504030
[16]
BROOKS H L, HODGSON D M, BRUNT R L, et al. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa. Geological Society of America Belletin, 2018, 130(1/10): 1723-1746.
[17]
MULDER T, SYVITSKI J P M, MIGEON S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 2003, 20: 861-882. DOI:10.1016/j.marpetgeo.2003.01.003
[18]
杨仁超, 金之钧, 孙冬胜, 等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现. 沉积学报, 2015, 33(1): 10-20.
YANG Renchao, JIN Zhijun, SUN Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
[19]
ZAVALA C, 潘树新. 异重流成因和异重岩沉积特征. 岩性油气藏, 2018, 30(1): 1-18.
ZAVALA C, PAN Shuxin. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics. Lithologic Reservoirs, 2018, 30(1): 1-18. DOI:10.3969/j.issn.1673-8926.2018.01.001
[20]
操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征. 石油学报, 2017, 38(6): 607-621.
CAO Yingchang, YANG Tian, WANG Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow. Acta Petrolei Sinica, 2017, 38(6): 607-621.
[21]
POSTMA G, LANG J, HOYAL D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channellobe transition zone of a deep-water delta(Sant Llorenc del Munt, north-east Spain, Eocene). Sedimentology, 2021, 68(4): 1674-1697. DOI:10.1111/sed.12735
[22]
YANG Tian, CAO Yingchang, LIU Keyu. Depositional elements and evolution of gravity-flow deposits on Lingshan Island(Eastern China): An integrated outcrop-subsurface study. Marine and Petroleum Geology, 2022, 138: 105566. DOI:10.1016/j.marpetgeo.2022.105566
[23]
杨田, 操应长, 王艳忠, 等. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 2015, 36(9): 1048-1059.
YANG Tian, CAO Yingchang, WANG Yanzhong, et al. Types, sedimentary characteristics and genetic mechanisms of deepwater gravity flows: A case study of the middle submember in member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 2015, 36(9): 1048-1059.
[24]
杨仁超, 何治亮, 邱桂强, 等. 鄂尔多斯盆地南部晚三叠世重力流沉积体系. 石油勘探与开发, 2014, 41(6): 661-670.
YANG Renchao, HE Zhiliang, QIU Guiqiang, et al. Late Triassic gravity flow depositional systems in the southern Ordos Basin. Petroleum Exploration and Development, 2014, 41(6): 661-670.
[25]
李相博, 刘化清, 潘树新, 等. 中国湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 2019, 37(5): 904-921.
LI Xiangbo, LIU Huaqing, PAN Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
[26]
杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 2013, 34(1): 1-11.
YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. Acta Petrolei Sinica, 2013, 34(1): 1-11.
[27]
付金华, 刘显阳, 李士祥, 等. 鄂尔多斯盆地三叠系延长组长7段页岩油勘探发现与资源潜力. 中国石油勘探, 2021, 26(5): 1-11.
FU Jinhua, LIU Xianyang, LI Shixiang, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin. China Petroleum Exploration, 2021, 26(5): 1-11. DOI:10.3969/j.issn.1672-7703.2021.05.001
[28]
李士祥, 郭芪恒, 周新平, 等. 鄂尔多斯盆地延长组7段3亚段页岩型页岩油储层特征及勘探方向. 石油学报, 2022, 43(11): 1509-1519.
LI Shixiang, GUO Qiheng, ZHOU Xinping, et al. Reservoir characteristics and exploration direction of pure shale-type shale oil in the 3rd sub-member, 7th member of Yanchang Formation in Ordos Basin. Acta Petrolei Sinica, 2022, 43(11): 1509-1519.
[29]
付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 2020, 47(5): 870-883.
FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological characteristics and exploration of shale oil in Chang 7 member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 2020, 47(5): 870-883.
[30]
冯娟萍, 李文厚, 欧阳征健. 鄂尔多斯盆地黄陵地区上三叠统延长组长7、长6油层组浊积岩沉积特征及地质意义. 古地理学报, 2012, 14(3): 295-302.
FENG Juanping, LI Wenhou, OUYANG Zhengjian. Sedimentary characters and geological implication of turbidite of the Chang 6 and Chang 7 intervals of upper Triassic Yanchang Formation in Huangling area, Ordos Basin. Journal of Palaeogeography (Chinese Edition), 2012, 14(3): 295-302.
[31]
庞军刚, 李文厚, 石硕, 等. 鄂尔多斯盆地长7段浊积岩沉积演化模式及石油地质意义. 岩性油气藏, 2009, 21(4): 73-77.
PANG Jungang, LI Wenhou, SHI Shuo, et al. Sedimentary evolution model and petroleum significance of Chang-7 member turbidite, Ordos Basin. Lithologic Reservoirs, 2009, 21(4): 73-77.
[32]
YANG Bo, QU Hongjun, SHI Jianchao, et al. The lithological features of sublacustrine fans and significance to hydrocarbon exploration: A case study of the Chang 7 interval of the Yanchang Formation, southeastern Ordos Basin, North China. Geofluids, 2021, 22: 5583191.
[33]
李相博, 刘化清, 完颜容, 等. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现. 岩性油气藏, 2009, 21(4): 19-21.
LI Xiangbo, LIU Huaqing, WANYAN Rong, et al. First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin. Lithologic Reservoirs, 2009, 21(4): 19-21.
[34]
孙宁亮, 钟建华, 王书宝, 等. 鄂尔多斯盆地南部三叠系延长组深水重力流沉积特征及其石油地质意义. 古地理学报, 2017, 19(2): 299-314.
SUN Ningliang, ZHONG Jianhua, WANG Shubao, et al. Sedimentary characteristics and petroleum geologic significance of deep-water gravity flow of the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 2017, 19(2): 299-314.
[35]
张倚安, 李士祥, 田景春, 等. 鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型. 沉积学报, 2021, 39(2): 297-309.
ZHANG Yian, LI Shixiang, TIAN Jingchun, et al. Sedimentation types of deep-water gravity flow, Chang 7 member, Upper Triassic Yanchang Formation, Ordos Basin. Acta Sedimentologica Sinica, 2021, 39(2): 297-309.
[36]
李相博, 刘化清, 张忠义, 等. 深水块状砂岩碎屑流成因的直接证据: "泥包砾"结构: 以鄂尔多斯盆地上三叠统延长组研究为例. 沉积学报, 2014, 32(4): 611-622.
LI Xiangbo, LIU Huaqing, ZHANG Zhongyi, et al. "Argillaceous parcel" structure: A direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation, Upper Triassic, the Ordos Basin. Acta Sedimentologica Sinica, 2014, 32(4): 611-622.
[37]
杨仁超, 尹伟, 樊爱萍, 等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 2017, 19(5): 791-806.
YANG Renchao, YIN Wei, FAN Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 2017, 19(5): 791-806.
[38]
田荣恒, 鲜本忠, 晁储志, 等. 湖相重力流水道沉积特征与沉积模式: 以鄂尔多斯盆地瑶曲铁路桥剖面三叠系延长组为例. 古地理学报, 2021, 23(5): 967-982.
TIAN Rongheng, Xian Benzhong, CHAO Chuzhi, et al. Sedimentary characteristics and model of lacustrine gravity flow channels: A case study of the Triassic Yanchang Formation of Yaoqu railway-bridge section in Ordos Basin. Journal of Palaeogeograpphy(Chinese Edition), 2021, 23(5): 967-982.
[39]
李相博, 陈启林, 刘化清, 等. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性. 岩性油气藏, 2010, 22(3): 16-21.
LI Xiangbo, CHEN Qilin, LIU Huaqing, et al. Three types of sediment gravity flows and their petroliferous of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2010, 22(3): 16-21.
[40]
刘显阳, 郭雯, 刘江艳, 等. 鄂尔多斯盆地湖盆中部长73亚段深水砂质沉积特征及勘探前景. 地球科学, 2023, 48(1): 279-292.
LIU Xianyang, GUO Wen, LIU Jiangyan, et al. Characteristics and exploration prospects of deep-water sandstone reservoir of Chang 73 sub-member, Ordos Basin. Earth Science, 2023, 48(1): 279-292.
[41]
李凤杰, 杨承锦, 代廷勇, 等. 鄂尔多斯盆地华池地区长6油层组重力流特征及控制因素. 岩性油气藏, 2014, 26(1): 18-24.
LI Fengjie, YANG Chengjin, DAI Tingyong, et al. Characteristics of gravity flow and controlling factors of Chang 6 oil reservoir set in Huachi area, Ordos Basin. Lithologic Reservoirs, 2014, 26(1): 18-24.