药学学报  2022, Vol. 57 Issue (6): 1825-1831     DOI: 10.16438/j.0513-4870.2022-0326   PDF    
新型靶向HER3抗体偶联药物的抗肿瘤活性研究
耿晶1, 李新颖2     
1. 中国医学科学院医药生物技术研究所, 北京 100050;
2. 军事医学研究院毒物药物研究所, 毒理学与医学对策国家重点实验室, 北京 100850
摘要: 作为人表皮生长因子受体(epidermal growth factor receptor, EGFR, HER1, ERBB) 家族重要成员, 人表皮生长因子受体3 (HER3, ERBB3) 是PI3K/AKT信号通路中关键的激活因子。近期研究发现, HER3与多种类型肿瘤的发生发展以及对EGFR和人表皮生长因子受体2 (HER2, ERBB2) 疗法的获得性耐药密切相关; 但利用靶向HER3的中和抗体治疗肿瘤的效果并不理想, 这很可能是由于靶向HER3的中和抗体并不能完全阻断异源二聚体形成。抗体-化学药物偶联物(antibody-drug conjugates, ADCs) 可通过抗体特异性结合靶细胞, 从而定向发挥高细胞毒性化学药物对癌细胞高度杀伤的效果, 已被广泛应用于临床治疗中。本研究通过计算机辅助分子模拟技术对HER3与前期获得的抗体LmAb3的复合物结构进行模拟优化, 利用距离几何学、计算机图形学技术预测了LmAb3中参与抗原结合的关键位点, 利用点突变技术获得了新型抗HER3高亲和力抗体FD001。亲和力测定结果显示, FD001、LmAb3与HER3结合的解离常数KD值分别为1.48E-11与2.46E-10, 表明FD001具有更强的靶向结合HER3的能力。通过赖氨酸偶联技术将FD001与美登素(DM1) 偶联获得抗体药物偶联物FD001-DM1。细胞实验结果显示, FD001-DM1能够有效抑制HER3阳性HT-29结肠癌细胞增殖, 半数有效浓度(median effective concentration, EC50) 为32.23 nmol·L-1。利用建立的小鼠肿瘤模型进行抗肿瘤活性评价, 实验结果显示FD001-DM1治疗组肿瘤体积约为对照组的25%, 且组内小鼠体重无明显下降, FD001-DM1具有良好的体内外抗肿瘤活性及安全性。本研究为探寻基于HER3的新型ADCs药物提供了有效的帮助。本研究中的小鼠按照国际实验室动物护理和使用准则进行使用和治疗, 并得到了军事医学研究院军事认知与脑科学研究所动物伦理委员会的批准。
关键词: 人表皮生长因子受体家族    HER3    单克隆抗体    抗体-药物偶联物    计算机辅助分子模建    
Antitumor activity of a novel HER3-targeting antibody-drug-conjugate
GENG Jing1, LI Xin-ying2     
1. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
2. State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
Abstract: As a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases, HER3 is an aberrantly activator of the PI3K/AKT pathway. Studies have indicated that HER3 is related to the progression of a variety of tumor types such as breast cancer, non-small cell lung cancer (NSCLC), ovary cancer and colon cancer, and in acquired resistance to EGFR and HER2 therapies. However, the attempts to target HER3 with neutralizing antibodies are not ideal previously. This is most likely due to the fact that the antibodies targeting HER3 fail to completely block the heterodimerization of HER3 and other receptors. Antibody-drug conjugates (ADCs) can specifically bind to target cells and exert the highly cytotoxicity effect on cancer cells through chemical drugs. ADCs have been widely used in clinical cancer therapies. We analyzed and optimized the structure of the antigen-antibody complex between HER3 and antibody LmAb3 by computer-aided molecular simulation technology, and the key sites involved in antigen binding in LmAb3 were predicted by distance geometry and computer graphics technology. Then a novel anti-HER3 antibody FD001 was obtained by point mutation technology. The affinity measurement by ForteBio results showed that the affinity of FD001 is much higher than LmAb3, the KD values of FD001 and LmAb3 with HER3 were 1.48E-11 and 2.46E-10, respectively. Antibody drug conjugate FD001-DM1 is obtained by coupling FD001 to DM1 [emtansine, N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine] by lysine coupling technology. The results of cell cytotoxicity experiments showed that FD001-DM1 could effectively inhibit the proliferation of HER3-positive HT-29 colon cancer cells, with EC50 value of 33.62 nmol·L-1. The in vivo xenografts therapy results showed that the tumor volume of the FD001-DM1 treatment group was about 25% of that of the control group, and there was no significant weight reduction of the mice. These results reveal that FD001-DM1 had good in vivo and in vitro anti-tumor activity with high safety, which may provide effective help for further exploration of HER3-targeted ADCs drugs. The mice in this study were used and treated in accordance with international laboratory animal care and use guidelines and approved by the Animal Ethics Committee of the Military Cognitive and Brain Science Institute of the Military Medical Research Institute.
Key words: human epidermal growth factor receptor family    HER3    monoclonal antibody    antibody-drug conjugate    computer-molecular modeling    

人类表皮生长因子受体家族(human epidermal growth factor receptor family) 的成员与多种类型肿瘤的发生发展高度相关, 因此成为热门的治疗靶点之一。尽管小分子酪氨酸激酶抑制剂(TKI)、抗人表皮生长因子受体(EGFR、HER1、ERBB1) 抗体cetuximab和抗人表皮生长因子受体2 (HER2、ERBB2) 抗体pertuzumab和trastuzumab在临床上取得了相对的成功, 但肿瘤经常产生耐药性, 患者复发时有发生。最近有研究表明, 人表皮生长因子受体3 (HER3、ERBB3) 在癌症病发过程中也发挥了关键的作用[1, 2]。HER3在多种侵袭性肿瘤中异常过表达, 包括乳腺肿瘤[3]、非小细胞肺癌(NSCLC)[4]、转移性结肠癌[5]、头颈部癌[6]、胰腺癌[7]、卵巢癌[8]、透明细胞肉瘤[9]、胃癌[10]和皮肤癌[11]等。与其他的家族成员不同, HER3缺乏完整功能的酪氨酸激酶结构域, 从而并不具备酪氨酸激酶活性[12], 但是它有两个天然配体, 神经调节蛋白1 (neuregulin-1, NRG1, 又称HRG) 和神经调节蛋白2 (neuregulin-2, NRG2)[13]。很多实验结果证明, HER3的非催化功能极为重要, 其能够与EGFR或HER2形成异源二聚体, 是PI3K/AKT信号通路中关键的激活因子[14], 促进多种肿瘤的发生发展。在使用EGFR和HER2抑制剂治疗时, 多种肿瘤中HER3的表达上调, 其磷酸化水平也随之上调[15], 与肿瘤的进展以及抗EGFR和抗HER2治疗的获得性耐药相关。随着研究进展, HER3受体抗肿瘤中的作用已经引起广泛关注, 被视为治疗癌症的潜在新靶标[16, 17]。目前已有多种抗HER3的单克隆抗体在开发中, 它们或是阻断配体与HER3的结合, 或是阻断HER3与其他HER家族成员形成异二聚体, 进而阻断HER3下游信号通路的激活, 达到治疗肿瘤的目的。目前, 靶向HER3相关抗体药物duligotuzumab[18]、patritumab[19]均已进入Ⅱ期临床阶段, LJM716[20]已进入Ⅰ期临床阶段。在研药物还包括DL11[21]、seribantumab[22]、RG7116[23]等。尽管HER3在EGFR或HER2激活过程中具有关键作用, 但目前尝试用中和抗体靶向HER3治疗肿瘤的临床效果并不理想, 这很可能是由于不能完全阻断其异二聚作用机制所致。

治疗性抗体靶向性强, 但实体瘤的治疗效果欠佳, 抗体-化学药物偶联物(antibody-drug conjugates, ADCs)[24]综合了抗体和小分子细胞毒性药物的优点, 既解决小分子的化学药物由于其特异性差而误伤正常细胞引起严重不良反应的问题, 又可通过抗体特异性结合靶细胞, 从而定点发挥高细胞毒性化学药物对癌细胞的高度杀伤效力的效果。随着基因工程抗体制备技术的发展, 新型化学连接技术使用促使抗体-药物偶联物研制成功, 2013年首个ADC药物——KadcylaTM (简称T-DM1) 通过了美国食品和药物管理局(FDA) 的批准。KadcylaTM偶联靶向HER2的曲妥单抗(trastuzumab) 和细胞毒素美登素衍生物(DM1), 被批准用于治疗HER2阳性转移性乳腺癌, 并在临床应用中表现出更好的耐受性及更有效的治疗效果[25]。除T-DM1外, SGN-35 (brentuximab vedotin) 也已被批准用于临床治疗。2021年12月FDA已授予patritumab deruxtecan (U3-1402) 突破性药物资格, 用于治疗接受第三代酪氨酸激酶抑制剂(TKI) 和含铂方案期间或之后疾病进展的转移性或局部晚期EGFR突变阳性NSCLC患者。此外, 一些基于新型弹头的ADCs药物研究也在广泛开展, 如一种基于抗HER2抗体和力达霉素(LDM) 的新型ADC药物607-LDM, 在体内外均显示了对HER2阳性肿瘤的靶向性及良好的抗肿瘤活性[26]。目前, 共有100多个ADCs正处于临床或临床前研究中, 已成为当今肿瘤治疗方法的研究热点。

本文基于靶向HER3的全人单克隆抗体LmAb3[27], 通过计算机虚拟筛选技术, 获得全新高亲和力靶向HER3人源化单克隆抗体FD001, 并将该抗体与毒物小分子DM1进行偶联, 获得全新的靶向HER3的ADCs药物FD001-DM1, 并对其体内外抗肿瘤治疗效果进行初步研究。

材料与方法

试剂  DMEM培养基、RPMI-1640培养基(Hyclone公司); 胎牛血清(FBS, Gibco公司); 抗HER3-FITC流式抗体(BD Bioscience公司); Cell Counting Kits (CCK8, 上海碧云天生物技术有限公司); HER3抗原(北京义翘神州科技股份有限公司); FITC标记的羊抗人IgG (Thermofisher公司); TMB显色液(SureBlue公司); 雌性BALB/c裸鼠[17~19 g, 华阜康公司, 动物许可证号SCXK (京) 2012-0006]。

细胞  人结肠癌细胞HT-29、HCT116 (美国ATCC公司), 人乳腺癌细胞MCF-7 (本实验室保存)。HT-29和HCT116细胞用含10% FBS的RPMI-1640培养基, MCF-7细胞用含10% FBS的高糖DMEM培养基, 在37 ℃、5% CO2浓度的恒温细胞培养箱中培养。

流式细胞术  胰酶消化并收集处于对数生长期的细胞, FACS洗液[含2% FBS的磷酸盐缓冲液(PBS), pH 7.5] 洗2遍后计数, 调整细胞数至每毫升2×105个。取1 mL细胞, 7 000 r·min-1离心30 s后弃去上清。加入FACS洗液稀释的抗体或ADCs 100 μL, 混匀后室温避光放置于摇床上震荡孵育30 min。反应结束后加入FACS洗液1 mL, 7 000 r·min-1离心30 s, 重复3次后加入FACS洗液稀释的FITC标记的羊抗人荧光二抗100 μL, 室温避光摇床孵育30 min。FACS洗液再次洗涤细胞3次, 7 000 r·min-1离心30 s。每管加入500 μL多聚甲醛固定细胞, 转移至流式细胞管中上机检测。

ELISA  将HER3-ECD稀释至终浓度为0.5 μg·mL-1, 每孔100 μL包被酶标反应板, 4 ℃孵育过夜, 同时设立空白对照。然后用PBST [含1%牛血清白蛋白(BSA) 和0.1% Tween-20的PBS] 洗涤3次后, 每孔加入300 μL 1.5%酪蛋白37 ℃封闭2 h。PBST洗涤3次后, 加入10倍稀释的抗体或ADCs, 37 ℃孵育2 h。PBST洗涤3次后, 加入辣根过氧化物酶标记的羊抗人IgG抗体, 每孔100 μL 37 ℃孵育40 min。PBST洗涤3次后, 加入TMB检测过氧化物酶活性, 然后加入1 mol·L-1 H2SO4终止反应, 15 min内用酶标仪检测OD450 nm值。

蛋白相互作用的分子动力学检测  利用蛋白相互作用分子动力学检测仪ForteBio Octet Red 96e检测HER3与抗体FD001的亲和力, 将HER3蛋白使用PBS稀释至5 μg·mL-1, 每孔200 μL加入至生物感应器中, 其中以PBS作为对照组, 30 ℃反应5 min后, 用PBS洗涤结合了抗原的生物传感器120 s。将HER3抗体FD001使用PBS稀释为10、3和1 μg·mL-1三个不同的浓度, 分别加入结合了HER3蛋白的传感器中。30 ℃反应5 min后, 检测其与不同浓度的FD001抗体结合情况, 通过软件Octet Data Analysis Software计算解离常数KD、结合速率常数(Kon) 和解离速率常数(Koff)。

CCK8检测细胞抑制增殖  取处于对数期的细胞, 胰酶消化后计数, 调整细胞数至每毫升1×105个, 接种至96孔板中, 每孔100 μL。放置于37 ℃、5% CO2细胞培养箱培养24 h。用培养基将抗体或ADCs倍比稀释, 弃去96孔板上清, 加入稀释后的抗体, 每个浓度3个复孔。放置于37 ℃、5% CO2细胞培养箱培养72 h后加入CCK8 10 μL, 在37 ℃孵箱中孵育3 h后用酶标仪检测OD450 nm值。

HT-29小鼠荷瘤模型的建立及ADCs抑瘤活性检测  HT-29细胞培养至对数生长期, 胰酶消化收集细胞, 计数后调整细胞数至每毫升2×107个。选取6~8周龄雌性BALB/c裸鼠, 将收集的HT-29细胞100 μL接种至小鼠右侧脂肪垫处。当肿瘤生长至直径约3~4 mm, 将成瘤后的小鼠随机分为以下4组: 生理盐水(NC) 组、FD001组、FD001-DM1组和DM1组。通过尾静脉注射方式给药, 给药剂量为5 mg·kg-1, 每只100 μL, 每周给药1次, 共给药4次。期间监测小鼠体重和瘤体积变化, 每周2次。最后一次给药后1周, 称重并测量肿瘤体积后, 二氧化碳窒息法处死各组小鼠, 并剥离肿瘤称重, 肿瘤体积= 1/2肿瘤长(mm) × [肿瘤宽(mm)]2。动物实验符合中国实验动物护理和使用准则, 并经军事医学研究院军事认知与脑科学研究所实验动物伦理委员会批准。

统计学方法  所有分析均使用GraphPad Prism软件(版本7.0; GraphPad Software Inc.公司), 表示为x±s。两组间差异比较采用Student's检验, P < 0.05认为其有显著性差异。

结果 1 利用计算机辅助分子设计优化获得新型靶向HER3抗体FD001

利用同源模建(Insight Ⅱ 2005) 的方法搭建LmAb3可变区空间结构, 并通过分子对接构建LmAb3与HER3 (PDB数据库号: 1M6B) 作用复合物的空间结构。在CVFF力场下经过力学优化(最陡下降10 000步, 收敛判据0.05 kCal·mol-1; 共轭梯度20 000步, 收敛判据0.01 kCal·mol-1) 和动力学模拟后, 获得HER3与LmAb3相互作用的稳定复合物结构, 如图 1A所示。

Figure 1 Computer modeling of antibody LmAb3 and human HER3 binding complex (A) and the variable region sequence of antibody FD001 (B). Due to the patent implications, the optimization sites and CDR are marked with an asterisk. HER3: Human epidermal growth factor receptor-3

在合理考察HER3与LmAb3相互作用复合物结构的基础上, 通过合理设计、优化, 获得新型高亲和力HER3抗体FD001, 可变区序列信息如图 1B所示。

2 新型HER3抗体FD001与HER3的亲和力

ELISA方法检测新型抗体FD001和HER3-ECD抗原的结合能力, 结果显示FD001与HER3-ECD抗原的结合能力优于LmAb3, 结果如图 2A所示。LmAb3与HER3-ECD结合的半数有效浓度(median effective concentration, EC50) 值为0.44 μg·mL-1, R2为0.992; FD001与HER3-ECD结合EC50值为0.05 μg·mL-1, R2为0.999。ForteBio方法检测FD001与HER3-ECD的亲和力, 图 2B为实时监测FD001与HER3的结合和解离曲线, KD值为1.48E-11, 而前期实验中获得LmAb3与HER3的亲和力为KD = 2.46E-10[27], 结果显示与LmAb3相比FD001抗体与HER3的亲和力更高。

Figure 2 The binding activity of novel anti-HER3 antibody FD001 with HER3-ECD. A: The binding activity of FD001 and LmAb3 with HER3-ECD by ELISA. n = 3, x±s; B: Kinetic analysis of FD001 binding to HER3-ECD analyzed by the ForteBio (Octet RED96) method. Sensorgrams are in blue. Fitting curves used for affinity calculation are in red, KD = 1.48E-11
3 FD001-DM1与HER3-ECD抗原的结合活性

使用DM1作为细胞毒性药物与FD001进行偶联, FD001-DM1标记结果药物/抗体比率(drug-to-antibody ratio, DAR) 为3.63, 质量浓度为2.00 mg·mL-1。溶剂缓冲液为10 mmol·L-1丁二酸钠, pH 5.0。ELISA方法检测FD001-DM1与HER3-ECD抗原的结合活性。结果显示, 偶联DM1后, FD001-DM1仍能够特异性与HER3-ECD结合, FD001与HER3-ECD结合的EC50值为0.25 μg·mL-1, FD001-DM1与HER3-ECD结合的EC50值为0.06 μg·mL-1。FD001-DM1与HER3-ECD的结合能力与FD001相比略有提高, 但两者间并无统计学差异, P = 0.79 (图 3)。推测这种差异可能是由于偶联小分子化合物DM1造成的, 但偶联DM1对FD001-DM1的特异性及抗原结合能力并无显著影响。

Figure 3 The binding activity of FD001 and FD001-DM1 with HER3-ECD by ELISA. DM1: Emtansine, N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine. n = 3, x±s
4 FD001-DM1抑制HER3阳性HT-29肿瘤细胞增殖

为进一步验证FD001-DM1的生物学效应, 利用流式细胞术检测HT-29及HCT116结肠癌细胞系表面HER3表达情况(图 4AB)。结果显示, HT-29细胞表面高表达HER3受体, 阳性率约为96.87%, HCT116细胞表面HER3受体低水平表达, 约4.09%。CCK8方法检测FD001-DM1对HT-29及HCT116细胞的抑制作用。结果如图 4C所示, FD001-DM1对HT-29细胞的抑制增殖效果明显好于FD001和DM1, EC50值为32.23 nmol·L-1。在高剂量下FD001-DM1对HT-29细胞的抑制率约为90%, 且具有剂量依赖性。虽然DM1最高浓度组对HT-29细胞的抑制率约为50%左右, 但是具有剂量依赖性, 可能为非特异性杀伤。而如图 4D所示, FD001和FD001-DM1对细胞表面HER3低表达的HCT116细胞均无特异性杀伤, 表明FD001和FD001-DM1的特异性较好。

Figure 4 Cytotoxicity of different concentration of FD001 and FD001-DM1 in HER3 positive HT-29 cells. A, B: The HER3 expression level on HT-29 (A) and HCT116 (B) cells by FACS; C, D: Cytotoxicity of FD001 and FD001-DM1 in HT-29 (C) and HCT116 (D) cells by CCK8. n = 3, x±s
5 FD001-DM1对免疫缺陷小鼠HT-29结肠癌移植瘤的治疗作用

采用6周大的雌性BALB/c裸鼠皮下注射肿瘤细胞方法建立小鼠HT-29结肠癌荷瘤模型, 利用该模型, 对FD001-DM1的体内药效学进行初步评价。结果如图 5所示。FD001-DM1治疗组的动物瘤体积增长速度缓慢, 远低于生理盐水对照组和其他治疗组, FD001-DM1治疗组在进行4次治疗后, 肿瘤体积约为生理盐水对照组的25% (图 5A)。如图 5B所示, 小分子DM1治疗组动物体重下降迅速, 由22 g左右下降到15 g左右, 而FD001-DM1治疗组则体重并无明显下降, 维持在21 g左右。全部治疗结束后处死小鼠, 并剥离肿瘤。如图 6所示, 从剥离的瘤体形状可以看出DM1治疗组瘤体积大, 出现分化迁移的形态, 而FD001-DM1治疗组的肿瘤体积较小, 瘤体形态比较规则, 证明FD001-DM1对HER3阳性HT29移植瘤具有一定的治疗作用。

Figure 5 In vivo anti-tumor efficacy of FD001-DM1 against HT-29 cell xenograft tumors. A: The tumor growth curves of tumor-bearing mice after treatment with different drugs (NC was negative control); B: The body weight shifting in tumor bearing mice. n = 7, x±s. **P < 0.01

Figure 6 In vivo anti-tumor efficacy of FD001-DM1 against HT-29 cell xenograft tumors. A: The tumor weight after treatment with different drugs; B: The tumor after treatment with different drugs. n = 6, x±s
讨论

HER3表达上调和下游PI3K/AKT信号传导的代偿性上调被认为是肿瘤细胞逃逸靶向治疗最常见的机制之一[28, 29]。因此近年来, 以HER3为靶点的靶向治疗成为了研究的热点。但靶向HER3的治疗策略并未获得理想的效果。很多临床前研究表明, 抗HER3单克隆抗体的抗肿瘤效果取决于癌细胞中HRG的表达。一些抗HER3抗体与HRG竞争性结合HER3胞外域, 这些抗体的临床试验集中于表达HRG的癌症, 其抗癌功效取决于HRG的表达水平而非HER3表达水平[30]。抗HER3单克隆抗体的另一个局限性是它不一定能阻断HER3的活化, 这取决于肿瘤细胞是否存在突变的EGFR[30]。因此, 抗HER3的抗体可能需要与药物结合形成抗体偶联药物, 或者是对其糖链进行修饰以获得更佳的抗肿瘤效果。

本研究通过计算机分子模拟技术对抗HER3抗体LmAb3进行结构序列优化, 获得了新型抗HER3高亲和力抗体FD001。与母本抗体LmAb3相比, 新型抗HER3抗体FD001具有更强的靶向结合HER3的能力。选用具有细胞毒性的微管抑制剂DM1与FD001进行偶联后获得抗体偶联药物FD001-DM1, 能够特异结合HER3-ECD。FD001-DM1与FD001和DM1相比, 具有更强的抑制肿瘤细胞增殖功能及杀伤活性。FD001-DM1在小鼠体内同样能够发挥良好的抑制肿瘤生长功能且小鼠体重无明显下降。因此, FD001-DM1具有良好的体内外抗肿瘤活性及安全性。以上结果为进一步探寻靶向HER3的新型ADC药物提供了有效的帮助。

作者贡献: 耿晶设计所有实验并完成了论文修改, 完成了FD001抗体设计、FD001体外亲和活性及FD001-DM1体外抗肿瘤活性研究; 李新颖完成了FD001抗体表达纯化、FD001-DM1体外亲和活性研究, 并完成了论文初稿; 耿晶、李新颖共同完成了FD001-DM1小鼠肿瘤模型抗肿瘤活性研究。

利益冲突: 所有作者均声明不存在利益冲突。

参考文献
[1]
Choi BK, Fan X, Deng H, et al. ERBB3 (HER3) is a key sensor in the regulation of ERBB-mediated signaling in both low and high ERBB2 (HER2) expressing cancer cells[J]. Cancer Med, 2012, 1: 28-38. DOI:10.1002/cam4.10
[2]
Sollome JJ, Thavathiru E, Camenisch TD, et al. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4)[J]. Cell Signal, 2014, 26: 70-82. DOI:10.1016/j.cellsig.2013.08.043
[3]
Bobrow LG, Millis RR, Happerfield LC, et al. c-ERBB-3 protein expression in ductal carcinoma in situ of the breast[J]. Eur J Cancer, 1997, 33: 1846-1850. DOI:10.1016/S0959-8049(97)00244-X
[4]
Yi ES, Harclerode D, Gondo M, et al. High c-ERBB-3 protein expression is associated with shorter survival in advanced non-small cell lung carcinomas[J]. Mod Pathol, 1997, 10: 142-148.
[5]
Kapitanovic S, Radosevic S, Slade N, et al. Expression of ERBB-3 protein in colorectal adenocarcinoma: correlation with poor survival[J]. J Cancer Res Clin Oncol, 2000, 126: 205-211. DOI:10.1007/s004320050034
[6]
Takikita M, Xie R, Chung JY, et al. Membranous expression of HER3 is associated with a decreased survival in head and neck squamous cell carcinoma[J]. J Transl Med, 2011, 9: 126. DOI:10.1186/1479-5876-9-126
[7]
Lemoine NR, Lobresco M, Leung H, et al. The ERBB-3 gene in human pancreatic cancer[J]. J Pathol, 1992, 168: 269-273. DOI:10.1002/path.1711680305
[8]
Tanner B, Hasenclever D, Stern K, et al. ERBB-3 predicts survival in ovarian cancer[J]. J Clin Oncol, 2006, 24: 4317-4323. DOI:10.1200/JCO.2005.04.8397
[9]
Schaefer KL, Brachwitz K, Braun Y, et al. Constitutive activation of neuregulin/ERBB3 signaling pathway in clear cell sarcoma of soft tissue[J]. Neoplasia, 2006, 8: 613-622. DOI:10.1593/neo.06238
[10]
Rajkumar T, Gooden CS, Lemoine NR, et al. Expression of the c-ERBB-3 protein in gastrointestinal tract tumours determined by monoclonal antibody RTJ1[J]. J Pathol, 1993, 170: 271-278. DOI:10.1002/path.1711700309
[11]
Buac K, Xu M, Cronin J, et al. NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation[J]. Pigment Cell Melanoma Res, 2009, 22: 773-784. DOI:10.1111/j.1755-148X.2009.00616.x
[12]
Guy PM, Platko JV, Cantley LC, et al. Insect cell-expressed p180ERBB3 possesses an impaired tyrosine kinase activity[J]. Proc Natl Acad Sci U S A, 1994, 91: 8132-8136. DOI:10.1073/pnas.91.17.8132
[13]
Burden S, Yarden Y. Neuregulins and their receptors: a versatile signaling module in organogenesis and oncogenesis[J]. Neuron, 1997, 18: 847-855. DOI:10.1016/S0896-6273(00)80324-4
[14]
Engelman JA, Janne PA, Mermel C, et al. ERBB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines[J]. Proc Natl Acad Sci U S A, 2005, 102: 3788-3793. DOI:10.1073/pnas.0409773102
[15]
Huang S, Li C, Armstrong EA, et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation[J]. Cancer Res, 2013, 73: 824-833. DOI:10.1158/0008-5472.CAN-12-1611
[16]
Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3[J]. Nat Rev Cancer, 2009, 9: 463-475. DOI:10.1038/nrc2656
[17]
Campbell MR, Amin D, Moasser MM. HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy[J]. Clin Cancer Res, 2010, 16: 1373-1383. DOI:10.1158/1078-0432.CCR-09-1218
[18]
Hill AG, Findlay MP, Burge ME, et al. Phase Ⅱ study of the dual EGFR/HER3 inhibitor duligotuzumab (MEHD7945A) versus cetuximab in combination with FOLFIRI in second-line RAS wild-type metastatic colorectal cancer[J]. Clin Cancer Res, 2018, 24: 2276-2284. DOI:10.1158/1078-0432.CCR-17-0646
[19]
Pascual T, Oliveira M, Ciruelos E, et al. SOLTI-1805 TOT-HER3 study concept: a window-of-opportunity trial of patritumab deruxtecan, a HER3 directed antibody drug conjugate, in patients with early breast cancer[J]. Front Oncol, 2021, 11: 638482. DOI:10.3389/fonc.2021.638482
[20]
Jhaveri K, Drago JZ, Shah PD, et al. A phase Ⅰ study of alpelisib in combination with trastuzumab and LJM716 in patients with PIK3CA-mutated HER2-positive metastatic breast cancer[J]. Clin Cancer Res, 2021, 27: 3867-3875. DOI:10.1158/1078-0432.CCR-21-0047
[21]
Schaefer G, Haber L, Crocker LM, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies[J]. Cancer Cell, 2011, 20: 472-486. DOI:10.1016/j.ccr.2011.09.003
[22]
Odintsov I, Lui AJW, Sisso WJ, et al. The anti-HER3 mAb seribantumab effectively inhibits growth of patient-derived and isogenic cell line and xenograft models with oncogenic NRG1 fusions[J]. Clin Cancer Res, 2021, 27: 3154-3166. DOI:10.1158/1078-0432.CCR-20-3605
[23]
Meneses-Lorente G, Friess T, Kolm I, et al. Preclinical pharmacokinetics, pharmacodynamics, and efficacy of RG7116: a novel humanized, glycoengineered anti-HER3 antibody[J]. Cancer Chemother Pharmacol, 2015, 75: 837-850. DOI:10.1007/s00280-015-2697-8
[24]
Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies[J]. Bioconjug Chem, 2010, 21: 5-13. DOI:10.1021/bc9002019
[25]
Lambert JM, Chari RV. Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer[J]. J Med Chem, 2014, 57: 6949-6964. DOI:10.1021/jm500766w
[26]
Yu Q, Yuan JL, Zhai XT, et al. Preparation and anti-tumor activity of a novel antibody-drug conjugate 607-LDM[J]. Acta Pharm Sin (药学学报), 2021, 56: 496-502.
[27]
Li X, Duan Y, Qiao C, et al. Anti-HER3 monoclonal antibody inhibits acquired trastuzumab-resistant gynecologic cancers[J]. Technol Cancer Res Treat, 2016, 15: 573-582. DOI:10.1177/1533034615588422
[28]
Mishra R, Patel H, Alanazi S, et al. HER3 signaling and targeted therapy in cancer[J]. Oncol Rev, 2018, 12: 355.
[29]
Gaborit N, Lindzen M, Yarden Y. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3[J]. Hum Vaccin Immunother, 2016, 12: 576-592. DOI:10.1080/21645515.2015.1102809
[30]
Yonesaka K, Hirotani K, et al. Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib[J]. Oncogene, 2016, 35: 878-886. DOI:10.1038/onc.2015.142