2. 中国科学院南海海洋研究所, 热带海洋生物资源与生态重点实验室, 广东 广州 510301
2. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
海洋真菌遗传背景复杂、代谢产物种类多、产量高, 目前已成为新天然产物的主要来源, 研究最多的真菌是曲霉(Aspergillus)和青霉(Penicillium), 而来源主要有海底泥、海绵、藻类、珊瑚等[1]。链格孢属(Alternaria)是分布很广泛的一类子囊菌, 因其能产生毒素, 通常被人们称作植物病原菌。然而, 并非所有的链格孢属物种都是病原体, 他们中有些已经显示出作为生物防治剂对抗入侵物种的前景, 有些菌种也被报道产生了多种生物活性代谢物[2]。本课题组从海绵中分离到一株链格孢属真菌, 在活性测试实验中, 发现其粗提物有较强的抗菌活性和卤虫致死活性。为了寻找结构新颖的活性分子, 对这株真菌的大米发酵产物进行了提取分离, 并从中得到1个新化合物(2)和15个已知化合物。通过核磁共振、质谱等方法并结合文献数据鉴定了这些化合物的结构(图 1), 分别为: 3S, 5S-(+)-talaroflavone (1)[3-5]、3R, 5R-(-)-talaroflavone (2)、S-(-)-isoochracinicacid (3)[6]、R-(+)-isoochracinic acid (4)[6]、2, 5-dimethyl-7-hydroxychromone (5)[7]、5α, 8α-epidioxy-(22E, 24R)-ergosta-6, 22-dien-3β-ol (6)[8]、tenuissimasatin (7)[9]、tyrosol (8)[10]、methyl phydroxybenzeneacetate (9)[11]、tyrosol acetate (10)[12]、stemphyperylenol (11)[13]、altenuene (12)[14]、2-(2'S-hydroxypropyl)-5-methyl-7-hydroxychromone (13)[15]、rubralactone (14)[16]、alternariol (15)[17]和altenuisol (16)[18]。通过X-单晶衍射、圆二色谱等手段确定了化合物1、2的绝对构型; 化合物6、8~10首次从该属真菌(Alternaria)中分离出来; 化合物16展示出中等的COX-2酶抑制活性, 其IC50为7.3 μmol·L-1。
|
Figure 1 The chemical structures of compounds 1−16 |
化合物Ⅰ 无定形固体, 氢谱给出10个信号: 2个苯环氢信号、1个双键氢信号、1个连氧的次甲基氢信号、3个甲氧基信号和3个甲基氢信号。碳谱给出14个信号: 2个羰基信号、1个苯环、1个双键、1个连氧的季碳、1个连氧的次甲基、1个甲氧基和1个甲基。这些数据(表 1)都与talaroflavone的数据完全一致, 但之前的文献只报道了该化合物的平面结构和正的旋光数据[3-5]。为了确定该化合物的构型, 本研究培养了单晶(DMSO-MeOH = 1:9), 经晶体学检测及旋光数据分析:该化合物为外消旋体。根据单晶数据(CCDC 1502322)确定其消旋体构型为3R*, 5′R* (图 2)。用手性柱将该化合物拆分, 得到一对对应异构体(1、2)。化合物1、2的[α]D25分别为+143.5 (c 0.19 MeOH)和-144.0 (c 0.05, MeOH)。为了确定1、2的绝对构型, 采用spartan程序, 对化合物的各个构型进行构象分析, 采用MMFF94力场计算构象能量, 采用Gaussian 09在B3LYP/6-311G (d, p)水平下在甲醇溶剂中进行能量优化, 最后采用TD-DFT方法B3LYP/6-311G (d, p)水平下计算。通过对比实测ECD和计算ECD曲线, 将1确定为3S, 5S-(+)-talaroflavone; 将2确定为3R, 5R-(-)-talaroflavone (图 3), 化合物2为新化合物。
| Table 1 The 1H and 13C NMR data for 1-2(500/125 MHz, respectively in DMSO-d6) |
|
Figure 2 HPLC spectrum of compounds 1 and 2 on a chiral phase |
|
Figure 3 X-ray crystal structure and CD spectra of Ⅰ |
化合物Ⅱ (3、4) 黄色油状物, HR-ESI-MS给出相对分子质量为m/z 209.0439 [M + H]+, 推测分子式为C10H9O5。氢谱、碳谱并结合HSQC谱给出1个苯环、2个酯羰基、1个连氧的次甲基和1个亚甲基信号。这些数据与化合物isoochracinic acid的数据完全一致[6]。文献报道isoochracinic acid是以外消旋体存在的, 而所测得该化合物的旋光确实为0, 为了进一步研究该化合物的立体结构, 将其进行了手性拆分, 得到了1:1的对映异构体(3和4) (图 4), 3和4的[α]D25分别为: -11.0 (c 0.329 MeOH)和+11.0 (c 0.317 MeOH)。将旋光数据与文献比对确定了2个化合物各自的构型[6]。最后将化合物3定为S-(-)-isoochracinicacid, 化合物4定为R-(+)-isoochracinic acid。
|
Figure 4 CD spectra of Ⅱ |
核磁共振波谱仪: BruckerAvance DRX500型(500/125 MHz, TMS为内标)。高分辨质谱: Bruker micro TOF-QII mass spectrometer (Bruker, F llanden, Switzerland)。X-单晶衍射仪(Smart 1000 CCD)。高效液相色谱仪: Agilent 1200 (泵型号: G1212C, 紫外检测器型号: G1315D), YMC-Pack (250 mm × 10 mm I.D. S-5 μm, 12 nm), Chiralpak IC (250 mm × 4.6 mm I.D. S-5 μm, 12 nm)。TLC:高效薄层色谱板(HPTLC)为德国Merck公司产品和烟台江友硅胶开发有限公司产品。显色剂: 10%硫酸香兰素溶液。常用有机试剂均为国产的分析纯产品。
真菌Alternaria sp. F49分离自海绵Callyspongoa sp., 由中国科学院南海海洋研究所林秀萍博士鉴定, 菌种保存于福州大学食品与海洋生物资源研究所。
1 发酵培养与提取分离Alternaria sp.F49在25 ℃的MB培养基上培养7天。将其接种到种子培养基中(麦芽浸膏15 g, 海盐2.5 g, 蒸馏水1 L, pH 7.4~7.8), 并在25 ℃的摇床中摇72 h (170 r·min-1)。将10 mL种子悬浮液接种到1 L的大米培养基中(大米200 g, 海盐2.5 g, 蒸馏水200 mL)放大发酵, 培养30天。
粗浸膏用硅胶柱、LH-20凝胶柱和高效液相得到化合物化合物1~16。具体过程为:发酵物切成小块浸泡到丙酮中1天, 然后过滤蒸干(A), 滤渣用乙酸乙酯提取3次(B)。将A、B合并后分别用石油醚、乙酸乙酯萃取, 最后得到乙酸乙酯相(24.4 g)。粗浸膏首先用中压硅胶柱进行分离, 流动相为石油醚(petroleum ether)/乙酸乙酯(EtOAc)梯度洗脱(V/V, 50:1, 30:1, 20:1, 10:1, 5:1, 1:1, 0:1)。洗脱下来的馏分用TLC检测并合并为7个馏分(Fraction 1~7)。Fraction 1 (2.2 g)用ODS柱(MeOH/H2O)及常压硅胶柱(petroleum ether/EtOAc)进行分离, 得到化合物6 (22.1 mg)。Fraction 2 (1.0 g)用ODS柱及HPLC [SP-RP HPLC, C18柱(YMC-Pack, ODS-A, S-5 μm × 12 nm 250 mm × 20 mm I.D.), 4 mL·min-1; 50% CH3CN/H2O + 0.1% TFA]分离得到化合物5 (5.3 mg)。Fraction 3 (4.1 g)用ODS柱得到5个馏分(Fr. 3.1~3.5)。Fr.3.1用HPLC纯化(13% CH3CN/H2O)得到化合物8 (17.0 mg)。Fr.3.2用HPLC纯化(30% CH3CN/H2O)得到化合物7 (4.3 mg)、9 (6.6 mg)。Fr.3.3用HPLC纯化(20% CH3CN/H2O)得到化合物10 (4.7 mg)。Fr.3.5用HPLC纯化(38% CH3CN/H2O + 0.1% TFA)得到化合物11 (3.4 mg)。Fraction 5 (2.5 g)用Sephadex LH-20 (MeOH)进行分离得到4个馏分(Fr. 5.1~5.4)。Fr. 5.2用HPLC纯化(50% CH3CN/H2O)及手性拆分(90% hexane/isopropanol, 70% hexane/ isopropanol)得到化合物1 (3.8 mg)、2 (1.0 mg)和化合物3 (6.58 mg)、4 (6.34 mg)。Fr.5.1用ODS柱及HPLC (90% CH3CN/H2O)得到化合物15 (12.1 mg)、16 (7.2 mg)。Fraction 7 (1.1 g)用ODS柱(MeOH/H2O)进行分离得到5个馏分(Fr. 7.1~7.5)。Fr. 7.2用HPLC纯化(15% CH3CN/H2O + 0.1% TFA)得到化合物12 (7.8 mg), Fr. 7.3用HPLC纯化(30% CH3CN/H2O)得到化合物13 (4.5 mg), Fr. 7.4用HPLC纯化(40% CH3CN/H2O)得到化合物14 (9.0 mg)。
2 结构鉴定化合物Ⅰ(1、2) 无色结晶(DMSO-MeOH = 1:9), CCDC号: 1502322, 单晶数据:分子式C14H12O6, M = 276.24;正交晶系: a = 23.768 4 (3) Å (1 Å = 0.1 nm), b = 6.883 36 (9) Å, c = 14.872 22 (19) Å, α = 90°, β = 94.837 1 (11)°, γ = 90°; 体积: 2 424.53 (5) Å3;温度: 150 (2) K; 空间群: C2/c; Z = 8;反射光测量值: 15 692;独立反射值: 2 144 [R(int) = 0.035];最后的R1值: 0.034 8 (Ⅰ > 2σ (Ⅰ); 最后的wR (F2)值: 0.038 9 (all data); The goodness of fit on F2: 1.054;单晶尺寸: 0.410 × 0.350 × 0.210 mm3。紫外UV (MeOH) λmax: 218、258、296 nm。
化合物Ⅱ (3、4) 黄色油状物, 核磁数据如下: 1H NMR (DMSO, 500 MHz): δH 7.51 (1H, t, J = 7.8 Hz, H-5), 7.02 (1H, d, J = 7.2 Hz, H-4), 6.89 (1H, d, J = 8.1 Hz, H-6), 5.68 (1H, dd, J = 8.1, 4.0 Hz, H-3), 3.05 (1H, dd, J = 16.6, 4.1 Hz, H-8), 2.63 (1H, dd, J = 16.6, 8.3 Hz, H-8); 13C NMR (DMSO, 125 MHz): δC 170.9 (C, C-9), 167.7 (C, C-1), 156.7 (C, C-7), 151.4 (C, C-7a), 136.0 (CH, C-5), 115.8 (CH, C-6), 112.4 (CH, C-4), 111.2 (C, C-3a), 76.0 (CH, C-3), 39.6 (CH2, C-8)。
3 COX-2抑制活性将测试化合物溶于DMSO中, 并将终浓度设定为10 μmol·L-1。通过与对照孵育比较来计算抑制百分比, 实验流程参照Blobaum等[19]发表的文献。
| [1] | Zhao CY, Zhu TH, Zhu WM. New marine natural products of microbial origin from 2010 to 2013[J]. Chin J Org Chem (有机化学), 2013, 33: 1195–1234. DOI:10.6023/cjoc201304039 |
| [2] | Liu YY, Wu YN, Zhai R, et al. Altenusin derivatives from mangrove endophyticfungus Alternaria sp. SK6YW3L[J]. RSC Adv, 2016, 6: 72127–72132. DOI:10.1039/C6RA16214B |
| [3] | Naganuma M, Nishida M, Kuramochi K, et al. 1-Deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae[J]. Bioorg Med Chem, 2008, 16: 2939–2994. DOI:10.1016/j.bmc.2007.12.044 |
| [4] | Orfali RS, Ebrahim W, El-Shafae AM. Secondary metabolites from Alternaria. sp. a fungal endophyte isolated from the seeds of Ziziphus jujuba[J]. Chem Nat Compd, 2017, 53: 1031–1034. DOI:10.1007/s10600-017-2195-9 |
| [5] | Ayer WA, Racok JS. The metabolites of Talaromyces flavus:Part 1. Metabolites of the organic extracts[J]. Can J Chem, 1990, 68: 2085–2094. DOI:10.1139/v90-318 |
| [6] | Ulrich H, And JBG, Wicklow DT. Biologically active polyketide metabolites from an undetermined fungicolous hyphomycete resembling cladosporium[J]. J Nat Prod, 2002, 65: 876–882. DOI:10.1021/np020097y |
| [7] | Liang Y, Tian WX, Ma XF. Chemical constituents of caulis polygonimultiflori[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2009, 26: 536–538. |
| [8] | Ma BJ, Shen JW, Yu H, et al. Chemical composition of the fruiting bodies of Helvella elastic[J]. Acta Bot Borea1i-Occident Sin (西北植物学报), 2009, 29: 2115–2117. |
| [9] | Zhen FF, Shi SY, Wan QZ, et al. A new isocoumarin from metabolites of the endophytic fungus Alternaria tenuissima (Nees & T. Nees:Fr.) Wiltshire[J]. Chin Chem Lett, 2012, 23: 317–320. DOI:10.1016/j.cclet.2011.11.021 |
| [10] | Elbandy M, Shinde PB, Dang HT, et al. Furan metabolites from the sponge-derived yeast Pichia membranifaciens[J]. J Nat Prod, 2008, 71: 869–872. DOI:10.1021/np070605+ |
| [11] | Wu B, Wu LJ, Zhang L, et al. Studies on the antibacterial chemical constituents of Senecio cannabifolius Less (Ⅰ)[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2004, 21: 341–345. |
| [12] | Stella C, Photis D, Li HT, et al. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with post column solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR)[J]. J Agric Food Chem, 2005, 53: 4667–4679. DOI:10.1021/jf040466r |
| [13] | Gao SS, Li XM, Wang BG. Perylene derivatives produced by Alternaria alternata, an endophytic fungus isolated from Laurencia species[J]. Nat Prod Commun, 2009, 4: 1477–1480. |
| [14] | He JW, Chen GD, Gao H, et al. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp. Alternaria sp. and Phialophora sp[J]. Fitoterapia, 2012, 83: 1087. DOI:10.1016/j.fitote.2012.05.002 |
| [15] | Khamthong N, Rukachaisirikul V, Tadpetch K, et al. Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride, PSU-F95[J]. Arch Pharm Res, 2012, 35: 461–468. DOI:10.1007/s12272-012-0309-2 |
| [16] | Wang QX, Bao L, Yang XL, et al. Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp[J]. Fitoterapia, 2012, 83: 209–214. DOI:10.1016/j.fitote.2011.10.013 |
| [17] | Wang Y, Wang LP, Zhuang YB, et al. Phenolic polyketides from the co-cultivation of marine-derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007[J]. Mar Drugs, 2014, 12: 2079–2088. DOI:10.3390/md12042079 |
| [18] | Cai QX, Zhao JH, Wang JY, et al. Isolation and identification of endophytic fungus LM033 obtained from Moringa oleifera Lam. and biological activity of the metabolites[J]. Chin J New Drugs (中国新药杂志), 2013, 22: 2168–2173. |
| [19] | Blobaum AL, Uddin MJ, Felts A, et al. The 2'-trifluoromethyl analogue of indomethacin is a potent and selective COX-2 inhibitor[J]. ACS Med Chem Lett, 2013, 4: 486–490. DOI:10.1021/ml400066a |
2018, Vol. 53






