药学学报  2018, Vol. 53 Issue (7): 1036-1041   PDF    
山茱萸环烯醚萜苷对冈田酸拟阿尔茨海默病细胞模型PP2A催化亚基C磷酸化及其调节酶Src的影响
杨翠翠1, 郐学先1,2, 张丽1, 李雅莉1, 李林1, 张兰1     
1. 首都医科大学宣武医院药学部, 北京市神经药物工程技术研究中心, 北京脑重大疾病研究院, 神经变性病教育部重点实验室, 北京 100053;
2. 天津中医药大学第一附属医院分子生物学实验室, 天津 300193
摘要: 微管相关蛋白tau的异常过度磷酸化是阿尔茨海默病(Alzheimer's disease, AD)的重要发病机制之一, 蛋白磷酸酯酶2A (protein phosphatases 2A, PP2A)能够促进tau蛋白的去磷酸化。山茱萸环烯醚萜苷(CIG)是本室从山茱萸中提取的主要有效部位。本实验的目的是研究CIG对PP2A活性及其相关调节酶的影响, 应用PP2A抑制剂冈田酸(okadaic acid, OA)与人神经母细胞瘤细胞株(SK-N-SH细胞)孵育制备拟AD细胞模型; 采用PP2A试剂盒测定细胞内PP2A的活性; 应用Western blot方法检测tau蛋白磷酸化、PP2A催化亚基C (PP2Ac)和Src的表达。结果显示:OA与SK-N-SH细胞孵育6 h后, 显著增高tau蛋白的磷酸化水平, 降低PP2A活性, 增高PP2Ac和Src的磷酸化水平。CIG与细胞预孵育24 h能够明显抑制OA模型细胞tau蛋白在Ser 199/Ser 202位点和Ser 396位点的过度磷酸化, 恢复PP2A活性, 抑制PP2Ac在Tyr 307位点的过度磷酸化和Src在Tyr 416位点的过度磷酸化。提示CIG通过抑制Src在Tyr 416位点的磷酸化降低其活性而抑制PP2Ac的磷酸化, 从而恢复PP2A活性, 促进tau蛋白的去磷酸化, 最终抑制tau蛋白异常过度磷酸化。结果说明CIG可能有利于治疗AD。
关键词: 山茱萸环烯醚萜苷     tau蛋白     蛋白磷酸酯酶2A     Src     阿尔茨海默病    
Effect of cornel iridoid glycoside on PP2Ac phosphorylation in okadaic acid-induced neurotoxicity cells
YANG Cui-cui1, KUAI Xue-xian1,2, ZHANG Li1, LI Ya-li1, LI Lin1, ZHANG Lan1     
1. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China;
2. Laboratory of Molecular Biology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
Abstract: Alzheimer's disease (AD) is the most common neurodegenerative disease in the aging population.Abnormal hyperphosphorylation of tau is the main cause of AD.Protein phosphatases 2A (PP2A) can increase the hyperphosphorylation of tau.Cornel iridoid glycoside (CIG) is one of the main components extracted from Cornus of ficinalis.The aim of the present study was to investigate the effects and the underlying mechanisms of CIG on enhancing PP2A activity.SK-N-SH cells were exposed to 20 nmol·L-1 okadaic acid (OA, an inhibitor of PP2A) for 6 h to induce the hyper-phosphorylation of tau, in order to define the effect of CIG on the activity of PP2A and posttranslational modification of PP2A catalytic subunit C (PP2Ac).We found that OA significantly decreased PP2A activity, increased the phosphorylation of PP2Ac, and enhanced tau hyper-phosphorylation.Pre-incubation of CIG significantly attenuated the OA-induced tau hyper-phosphorylation at Ser 199/202 and Ser 396, and recovered the activity of PP2A.CIG inhibited PP2Ac phosphorylation at Tyr 307 and increased Src phosphorylation.In conclusion, the mechanism of CIG inhibition of tau hyper-phosphorylation was activation of PP2A to reduce the level of p-Src for a reduction of PP2Ac phosphorylation at Tyr307.
Key words: cornel iridoid glycoside     tau protein     protein phosphatase 2A     Src     Alzheimer's disease    

阿尔茨海默病(Alzheimer's disease, AD)是老年人中最常见的中枢神经系统退行性疾病, 全世界超过3 700万人罹患AD[1]。阿尔茨海默病中β-淀粉样蛋白(β-amyloid, Aβ)理论在过去的20年一直受到科学界的认可和关注, 不断开发出许多的药物来消除Aβ斑块, 抑制Aβ聚集和沉积, 或通过抑制γ-分泌酶和β-分泌酶来降低脑内Aβ的生成, 但这些治疗策略在临床试验中均以失败而告终[2]。目前, 以拮抗tau蛋白磷酸化为靶点的药物研究越来越引起关注[3-5]

Tau蛋白是脑内一种微管相关蛋白, 其磷酸化受蛋白激酶和蛋白磷酸酯酶的调节维持平衡。蛋白磷酸酯酶2A (protein phosphatase 2A, PP2A)是促进tau蛋白去磷酸化的主要调节酶, 在抑制AD患者脑中tau蛋白过度磷酸化方面起关键作用, 研究发现, 在AD患者脑中PP2A活性明显下降[6, 7]。研究PP2A激活剂成为目前AD药物研究的新策略[8, 9]

山茱萸环烯醚萜苷(cornel iridoid glycoside, CIG)是我室从山茱萸中提取的主要有效部位。在前期研究中发现, CIG能够改善拟AD大鼠模型的学习记忆功能[10, 11], 并且在PP2A抑制剂冈田酸(okadaic acid, OA)拟AD细胞模型上能够抑制tau蛋白过度磷酸化, 保护微管结构, 减少细胞凋亡, 能够通过抑制PP2A催化亚基C (PP2Ac)的去甲基化而恢复PP2A的活性[12, 13]

有研究报告, PP2Ac的翻译后修饰除了甲基化以外, 还包括磷酸化[14]。酪氨酸激酶Src的活化能够促进PP2Ac的磷酸化[15]。本实验的目的是研究CIG对OA拟AD细胞模型PP2Ac磷酸化及其调节酶Src的影响, 以进一步明确CIG恢复PP2A活性的机制。

材料与方法

药物  CIG由本室自行研制。山茱萸为市售(产地:浙江), 经提取和分离获得CIG, 纯度为70% (其中主要成分为莫诺苷和马钱苷), 达到国家中药、天然药物5类新药的要求。CIG为棕黄色粉末, 水溶性好。实验中采用干粉剂量, 溶解于蒸馏水, 制成药液应用。

试剂  OA、aprotinin、leupeptin、多聚赖氨酸和Triton X-100 (美国Sigma-Aldrich公司); DMEM基础培养液、胎牛血清(FBS)和胰蛋白酶(美国Gibco BRL公司); Opti-MEM (美国Invitrogen公司); RC-DC蛋白测定试剂盒(500-0122-MSDS, 美国Bio-Rad公司); PP2A活性测定试剂盒(美国Promega公司)。主要抗体详见表 1

Table 1 Primary antibodies used in this study. Poly-: Polyclonal; Mono-: Monoclonal; PP2Ac: Protein phosphatases 2A catalytic subunit C; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase

主要仪器  二氧化碳培养箱(Tc2323型, 美国SHELL/JB公司); 全波长酶标仪(Multiskan Spectrum, 法国巴德斯公司); 低温高速台式离心机(Beckman 22R, 美国Beckman公司); 电泳仪、垂直型电泳槽、转膜仪和凝胶电泳分析系统(美国Bio-Rad公司)。

细胞培养  人神经母细胞瘤细胞株(SK-N-SH细胞)在5% CO2、37 ℃培养箱内进行培养, 每2~3天更换1次培养基。细胞生长至60%~70%丰度时, 传代或用于实验。细胞接种于12孔、24孔或96孔培养板中, 备用。

细胞模型的制备及药物处理  将不同浓度CIG (50、100、200 μg·mL-1)与SK-N-SH细胞预孵育24 h后弃去药液, 加入OA (20 nmol·L-1)处理6 h后, 收集细胞并进行裂解。

Western blot法检测蛋白质表达  SDS-PAGE电泳分离蛋白, 溴酚蓝到达分离胶底部时, 结束电泳。安装湿转装置, 在转移槽的阴极铺2层滤纸, 小心将胶平铺于滤纸上, 并在胶上铺硝酸纤维素膜, 将剩余2层滤纸铺在膜的上方。接通电源, 设定100 V, 90 min。转膜后, 硝酸纤维素膜用Tris buffered saline with Tween 20 (TBST)轻轻漂洗, 然后置于5%脱脂奶粉封闭液中, 4 ℃过夜; 弃去封闭液, TBST洗膜1次。加入适当浓度的第一抗体(抗特异蛋白质的抗体, 表 1), 置于摇床上摇动, 室温下2 h; 倾去一抗, TBST洗膜3次。加入相应的二抗, 置于摇床上摇动, 室温下1 h; 弃去二抗, TBST洗膜3次。在暗室将荧光剂A液和B液等量混合, 立即加到膜上, 每张膜1 mL, 滚匀液体, 反应1 min, 然后吸去多余荧光剂, 采用化学发光仪进行图像采集及分析。

PP2A活性测定  按照PP2A活性测定试剂盒说明书进行操作。在含有40 mmol·L-1 Tris-HCl (pH 8.5)、20 mmol·L-1 β-巯基乙醇(β-mercaptoethanol, β-ME)、0.2 mmol·L-1 CaCl2和15 mmol·L-1 MgCl2的缓冲液中, 用磷酸化酶b中和0.5 mmol·L-1 [γ-32P] ATP和10 mg·L-1磷酸化酶激酶, 经30 min孵育, 一部分被γ-32P ATP标记的、由磷酸化酶b转变的磷酸化酶a, 经Sephadex G-50柱层析出, 收集含γ-32P ATP标记的磷酸化酶a (标记率 > 70%), 作为PP2A底物, 根据PP2A催化的、γ-32P标记的磷酸化酶a所释放γ-32P的释放量, 判定PP2A的活性。反应总体积为20 μL, 含50 mmol·L-1 Tris-HCl (pH 7.0)、10 mmol·L-1 β-ME、0.1 mmol·L-1 EDTA、7.5 mmol·L-1 cafreine、7.5 mg·L-1 [γ-32P]磷酸化酶a、0.06 g·L-1细胞提取物和抑制因子-1 (PP-1的特异性抑制剂), 用20%三氯乙酸终止反应, 取7 μL反应混合物至层析纸上, 释放出γ-32P在5%三氯乙酸(0.2 mol·L-1 NaCl溶解)层析液中通过上行色谱法与底物分离, 经Cerenkov闪烁液进行闪烁计数分析。

统计学方法  用SPSS16.0软件分析实验数据, 数据以均数±标准误(x± s)表示, 组间样本比较应用单因素方差分析(one-way ANOVA), 以P < 0.05为差异有显著统计学意义。用Origin 8将数据转换为图表。

结果 1 CIG对OA拟AD细胞模型tau蛋白过度磷酸化的影响

OA是PP2A的特异性抑制剂。本实验将CIG与人神经母细胞瘤细胞株(SK-N-SH细胞)预孵育24 h后换液, 加入OA处理, 6 h后收集细胞, 应用Western blot法检测tau蛋白的磷酸化水平。结果显示, OA能够显著增高细胞内tau蛋白在Ser 199/Ser 202 (S 199/202)位点及Ser 396 (S 396)位点的磷酸化(P < 0.01); CIG (100和200 μg·mL-1)能够明显降低模型细胞内tau蛋白在S 199/202位点及S 396位点的磷酸化水平(P < 0.01); CIG (100 μg·mL-1)对正常细胞无明显影响(图 1)。

Figure 1 Effect of cornel iridoid glycoside (CIG) on tau hyper- phosphorylation in okadaic acid (OA)-induced cells, cells were exposed to OA for 6 h after incubation with CIG (50, 100, 200 μg·mL-1). A: The levels of tau phosphorylation at different sites were detected by Western blot. pS 199/202: Tau phosphorylation at Ser 199/Ser 202; pS 396: Tau phosphorylation at Ser 396; Tau 5: Total 5. B: Quantitative analysis of tau phosphorylation. n = 3, x± s. ##P < 0.01 vs control group; **P < 0.01 vs model group
2 CIG对OA拟AD细胞模型PP2A活性的影响

采用试剂盒检测各组细胞内PP2A活性。结果显示, OA与SK-N-SH细胞孵育6 h后, 细胞内PP2A活性显著降低(P < 0.05); CIG (50和100 μg·mL-1)预孵育24 h能够明显恢复OA模型细胞内PP2A活性(P < 0.05); CIG对正常对照细胞PP2A活性无影响(表 2)。

Table 2 The effect of CIG on protein phosphatases 2A (PP2A) activity. The PP2A activity of control group was set as 100%. n = 3, x± s. #P < 0.05 vs control group; *P < 0.05 vs model group
3 CIG对OA拟AD细胞模型PP2A催化亚基C磷酸化水平的影响

PP2Ac在Tyr 307位点的磷酸化水平增高能降低PP2A的活性[15-18]。为了明确CIG恢复PP2A活性的机制, 本实验采用Western blot方法检测磷酸化PP2Ac (p-PP2Ac)和总PP2Ac的表达。结果显示, SK-N-SH细胞经OA处理后, 细胞内PP2Ac在Tyr 307位点的磷酸化水平明显增高(P < 0.05); CIG (50和100 μg·mL-1)预孵育24 h能显著降低模型细胞PP2Ac的磷酸化水平(P < 0.05, 图 2)。

Figure 2 The effect of CIG on phosphorylation of PP2Ac in OA-induced cells, cells were exposed to OA for 6 h after the incubation with CIG (50, 100, 200 mg·mL-1). A: The levels of PP2Ac and phosphorylated PP2Ac (p-PP2Ac) at Tyr 307 site were detected by Western blot; B: Quantitative analysis of PP2Ac and p-PP2Ac. n = 3, x± s. #P < 0.05 vs control group; *P < 0.05 vs model group
4 CIG对OA拟AD细胞模型Src磷酸化水平的影响

酪氨酸激酶Src在Tyr 416位点的磷酸化能够使酶激活, 从而促进PP2Ac的磷酸化[14]。为了进一步探讨CIG抑制PP2Ac磷酸化的作用机制, 本实验采用Western blot方法测定细胞内Src在Tyr 416位点的磷酸化(p-Src-tyr 416)及总Src的表达。结果显示, SK-N-SH细胞经OA处理后, Src在Tyr 416位点的磷酸化水平明显增高(P < 0.05); CIG (100和200 μg·mL-1)预孵育24 h能够显著降低模型细胞Src在Tyr 416位点的磷酸化水平(P < 0.05, P < 0.01), 见图 3

Figure 3 The effect of CIG on phosphorylation of Src in OA-induced cells, cells were exposed to OA for 6 h after the incubation with CIG (50, 100, 200 mg·mL-1). A: The levels of Src and phosphorylated Src (p-Src) at Ser 416 site were detected by Western blot; B: Quantitative analysis of Src and p-Src. n = 3, x± s. #P < 0.05 vs control group; *P < 0.05, **P < 0.01 vs model group
讨论

AD患者主要病理特征之一是在脑中出现大量由过度磷酸化tau蛋白聚集形成的神经原纤维缠结, 其含量与AD患者的痴呆严重程度密切相关[19], 表明过度磷酸化的tau蛋白在AD的发病机制中起重要作用。正常微管相关蛋白tau主要分布于细胞轴突及树突中, 具有促进管蛋白聚集成微管和维持微管结构的功能[20, 21]。本实验发现, CIG能够抑制OA诱导的tau蛋白过度磷酸化, 提示CIG可能通过保护微管而起到改善AD认知障碍的作用。

PP2A能够很大程度地使tau蛋白去磷酸化, 并能恢复tau蛋白促进微管组装的能力[22, 23]。为了明确CIG拮抗tau蛋白过度磷酸化的机制, 本实验采用PP2A特异性抑制剂OA制备拟AD细胞模型[24-26], 观察CIG对PP2A的影响。结果发现, CIG能够明显恢复OA模型细胞内PP2A的活性, 这可能是CIG拮抗tau蛋白异常过度磷酸化的重要机制。

PP2A由结构亚基A、调节亚基B及催化亚基C构成, C亚基独具PP2A的催化活性[27]。PP2Ac翻译后修饰异常可造成PP2A活性下降, PP2Ac的翻译后修饰主要包括磷酸化和甲基化[14]。作者前期研究发现, CIG能通过抑制PP2Ac的去甲基化而恢复PP2A的活性, 进而拮抗tau蛋白异常过度磷酸化[13]。本实验通过研究CIG对PP2Ac的磷酸化影响进一步揭示CIG恢复PP2A活性的机制。有研究报告, PP2Ac在Tyr 307位点的磷酸化增高能够抑制PP2A的活性[18]。AD脑中PP2Ac在Tyr 307位点的磷酸化明显增高, 且在皮层及海马的神经原纤维缠结中有大量磷酸化PP2Ac存在[16], 提示PP2Ac的磷酸化和tau蛋白磷酸化与AD密切关系。本实验发现, OA诱导PP2Ac在Tyr 307位点的磷酸化水平增高, 而CIG能够抑制模型细胞内PP2Ac在Tyr 307位点的过度磷酸化, 这可能是CIG增高PP2A活性的另一机制。

Src是一种位于细胞质的非受体酪氨酸蛋白激酶, 是Src家族中的一员[17, 28, 29]。Src在Tyr 416位点的磷酸化能够增加Src的活性, 从而促进PP2Ac的磷酸化[15]。本实验结果显示, OA诱导Src在Tyr 416位点的磷酸化水平增高, 而CIG能够抑制模型细胞内Src在Tyr 416位点的过度磷酸化, 提示可能减低Src的活性, 这可能是CIG抑制PP2Ac磷酸化的机制。

综上所述, CIG能够抑制OA诱导的tau蛋白异常过度磷酸化; 其作用机制为CIG通过抑制Src在Tyr 416位点的磷酸化减低其活性而降低PP2Ac的磷酸化, 从而恢复PP2A活性, 促进tau蛋白的去磷酸化(图 4)。本研究进一步阐明了CIG拮抗tau蛋白过度磷酸化的作用机制, 也为研发有效治疗AD的药物提供了实验数据。

Figure 4 Schematic diagram of CIG inhibiting tau hyper-phosphorylation. PP2A consists of a dimeric core enzyme composed of the structure A and catalytic subunit C, and a regulatory subunit B
参考文献
[1] Mullane K, Williams M. Alzheimer's therapeutics:continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond?[J]. Biochem Pharmacol, 2013, 85: 289–305. DOI:10.1016/j.bcp.2012.11.014
[2] Yin M. Full-scale setback and thinking in R & D of Alzheimer's disease drug[J]. Acta Pharm Sin (药学学报), 2014, 49: 757–763.
[3] Del Carmen Cárdenas-Aguayo M, Gómez-Virgilio L, DeRosa S, et al. The role of tau oligomers in the onset of Alzheimer's disease neuropathology[J]. ACS Chem Neurosci, 2014, 5: 1178–1191. DOI:10.1021/cn500148z
[4] Mullard A. BACE inhibitor bust in Alzheimer trial[J]. Nat Rev Drug Discov, 2017, 16: 155.
[5] Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer's disease[J]. Biochem Pharmacol, 2014, 88: 529–539. DOI:10.1016/j.bcp.2013.12.008
[6] Avila J, Pallas N, Bolós M, et al. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies[J]. Expert Opin Ther Targets, 2016, 20: 653–661. DOI:10.1517/14728222.2016.1131269
[7] Pachima YI, Zhou LY, Lei P, et al. Microtubule-tau interaction as a therapeutic target for Alzheimer's disease[J]. J Mol Neurosci, 2016, 58: 145–152. DOI:10.1007/s12031-016-0715-x
[8] Suzuki K, Iwata A, Iwatsubo T. The past, present, and future of disease-modifying therapies for Alzheimer's disease[J]. Proc Jpn Acad Ser B, 2017, 93: 757–771. DOI:10.2183/pjab.93.048
[9] Wu XL, Piña-Crespo J, Zhang YW, et al. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer's disease[J]. Chin Med J, 2017, 130: 2978–2990. DOI:10.4103/0366-6999.220313
[10] Ding YX, Zhang L, Ye CF, et al. Effect of cornel iridoid glycoside on learning-memory ability and synaptophysin in fimbria-fornix transacted rats[J]. Chin J New Drugs (中国新药杂志), 2010, 19: 133–138.
[11] Ma D, Zhu Y, Li Y, et al. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages[J]. Behav Brain Res, 2016, 312: 20–29. DOI:10.1016/j.bbr.2016.06.008
[12] Chu YQ, Li W, Zhang L, et al. Effects of cornus officinalis iridoid glycoside on cellular model of Alzheimer disease induced by protein phosphatase inhibitor okadaic acid[J]. Chin Pharmacol Bull (中国药理学通报), 2006, 22: 960–963.
[13] Yang CC, Kuai XX, Li YL, et al. Cornel iridoid glycoside attenuates tau hyperphosphorylation by inhibition of PP2A demethylation[J]. Evid Based Complement Alternat Med, 2013. DOI:10.1155/2013/108486
[14] Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin:a triple threat in the regulation of the neuronal cytoskeleton[J]. Mol Cell Neurosci, 2017, 84: 119–131. DOI:10.1016/j.mcn.2017.01.005
[15] Yang W, Wang X, Duan C, et al. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex[J]. Neurochem Int, 2013, 63: 180–194. DOI:10.1016/j.neuint.2013.06.010
[16] Liu R, Zhou XW, Tanila H, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology[J]. J Cell Mol Med, 2008, 12: 241–257.
[17] Liu R, Zhou XW, Wang JZ. Effect of blocking tyrosine kinase Src expression on protein phosphatase 2A and tau phosphorylation[J]. Neural Injury Funct Reconstr (神经损伤与功能重建), 2007, 2: 203–206.
[18] Xiong Y, Jing XP, Liu R, et al. Zinc ions inhibits PP2A and promotes tau protein hyperphosphorylation by regulating the SRC[J]. Chin J Phathopysiol (中国病理生理杂志), 2010, 26: 2052.
[19] Yang X, Yang Y, Luo Y, et al. Hyperphosphorylation and accumulation of neurofilament proteins in transgenic mice with Alzheimer presenilin 1 mutation[J]. Cell Mol Neurobiol, 2009, 29: 497–501. DOI:10.1007/s10571-008-9341-7
[20] Haass C, Mandelkow E. Fyn-tau-amyloid:a toxic triad[J]. Cell, 2010, 142: 356–358. DOI:10.1016/j.cell.2010.07.032
[21] Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models[J]. Cell, 2010, 142: 387–397. DOI:10.1016/j.cell.2010.06.036
[22] Martin L, Latypova X, Wilson CM, et al. Tau protein phosphatases in Alzheimer's disease:the leading role of PP2A[J]. Ageing Res Rev, 2013, 12: 39–49. DOI:10.1016/j.arr.2012.06.008
[23] Taleski G, Sontag E. Protein phosphatase 2A and tau:an orchestrated 'Pas de Deux'[J]. FEBS Lett, 2018, 592: 1079–1095. DOI:10.1002/feb2.2018.592.issue-7
[24] Ikehara T, Imamura S, Yoshino A, et al. PP2A inhibition assay using recombinant enzyme for rapid detection of okadaic acid and its analogs in shellfish[J]. Toxins (Basel), 2010, 2: 195–204. DOI:10.3390/toxins2010195
[25] Messner DJ, Romeo C, Boynton A, et al. Inhibition of PP2A, but not PP5, mediates p53 activation by low levels of okadaic acid in rat liver epithelial cells[J]. J Cell Biochem, 2006, 99: 241–255. DOI:10.1002/(ISSN)1097-4644
[26] Rahman MM, Rumzhum NN, Morris JC, et al. Basal protein phosphatase 2A activity restrains cytokine expression:role for MAPKs and tristetraprolin[J]. Sci Rep, 2015, 5: 10063. DOI:10.1038/srep10063
[27] Hu Y, Guo J. PP2A regulation subunits and their substrates[J]. J Med Mol Biol (医学分子生物学杂志), 2008, 5: 169–173.
[28] Ding MQ. Advances in research of non-receptor tyrosine kinase Src in brain ischemia[J]. Chin Contin Med Edu (中国继续医学教育), 2015, 7: 169–170.
[29] Liu R, Zhou XW, Wang JZ. Effect of Blocking Tyrosine Kinase Src Expression on Protein Phosphatase 2A and Tau Phosphorylation[C]//Proceedings of Hubei province and Wuhan pathophysiological association's 14th annual seminar. Wuhan: Hubei Science and Technology Association, 2008.