药学学报  2016, Vol. 51 Issue (9): 1472-1475   PDF    
空气湿度溶解度测定法
黄宇, 詹先成, 吕芳君     
四川大学华西药学院, 靶向药物与释药系统教育部重点实验室, 四川 成都 610041
摘要: 药物的溶解度数据作为考察药物以及药物制剂的基本参数之一,在药物研发以及相关的工业领域有着重要的意义。现有的溶解度测定基本方法主要有平衡法和动态法等,然而这些传统方法在实际应用中会出现费时费力,样品消耗量大,普遍适用性差等缺点。本文报道了一种测定药物溶解度的新方法——空气湿度法,即采用湿度计测定与药物饱和溶液呈平衡的空气的相对湿度,再用物理化学模型计算出药物的溶解度。以NaCl为模型,在20~50℃内采用新方法测定其溶解度,并与重量分析法测定值及文献报道值进行比较。结果表明空气湿度法测得的溶解度值与重量分析法测定值及文献报道值基本一致。此法测定药物溶解度弥补了现有方法存在的局限性,简便易行,结果可靠,对大多数药物普遍适用。
关键词: 溶解度     平衡法     动态法     空气湿度溶解度测定法     重量分析法     电解质NRTL模型    
Air humidity solubility assay
HUANG Yu, ZHAN Xian-cheng, LÜ Fang-jun     
Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
Abstract: Measurement of drug solubility is one of the key elements of compound characterization during the drug discovery and development process. A broad variety of solubility assay methods have been developed, including equilibrium method which requires analysis of the equilibrium composition and kinetic method which monitors the concentration of a compound dynamically at the time when a precipitate first appears or disappears in the solution. Despite the numerous experimental methods, precise drug solubility values are hard to obtain for time-consuming, sample size and manual work. In this article, we reported a new method, namely air humidity solubility assay, which measures the relative humidity of the air in equilibrium with the solution at a given temperature, and then calculates solubility from the relative humidity according to extended-non random two liquid (NRTL) model. NaCl was used as a model drug, and the solubility was measured at the temperature of 20-50℃. The results indicate that the solubility of NaCl determined with the new method is generally comparable to that determined by gravimetry that is reported in literature. The new method has a relative error of less than 2%. Although the accuracy is lower than that of gravimetry, air humidity solubility assay is more convenient, practical, operational and universal. This method provides a supplement to the existing methods.
Key words: solubility     equilibrium method     kinetic method     air humidity solubility assay     gravimetry     electrolyte NRTL model    

固体药物的溶解度在制药行业中起着重要作用,常常会直接影响到药物的生物活性,溶解度数据可以为药物制剂的配伍变化研究提供一定的理论依据,并作为筛选新药的标准[1],有助于解决药物研究和生产过程中的许多问题。

目前,测定溶解度的方法主要有通过配制饱和溶液,利用不同的分析手段分析体系固液平衡后上清液组成的平衡法[2, 3],以及在预先精确称量样品中溶质和溶剂的条件下,不断改变温度或加入定量的溶质或溶剂,观察体系中固体的产生或消失来确定溶解度的动态法[4, 5]等。平衡法因其设备简单、易操作、对体系平衡速率没有限制,是较常用的溶解度测定方法。然而该方法耗时长[6],在高温或一定压力下取样困难,对不同药物需采用特定的分析手段,如化学滴定法、分光光度法[7]和HPLC法等,故当测定药物种类较多、数量较少时,会造成分析方法各异,操作繁琐,资源浪费,为实际的科研工作带来不便。动态法通常由组合的激光监测系统代替人眼观察固体的溶解状况,并判断测定终点,平衡时间相对较短,不易达到真正的平衡,需要加强搅拌,严格控制升温速度。对于溶解过程缓慢的药物,不易使用此法。

针对上述方法的局限性,作者提出了一种对大多数药物普遍适用的溶解度测定方法。采用湿度传感器直接测定与药物饱和溶液呈平衡的空气的相对湿度[8],避免了平衡法中对饱和溶液的取样分析过程,大大简化了测定步骤。作者用空气湿度法测定了NaCl在20~50 ℃内的溶解度,并与重量分析法及文献报道值进行了比较。

原理 1 空气湿度法

根据物理化学基本原理,与溶液呈平衡的空气的相对湿度 (Hr) 即为溶液中水的活度 (${\alpha _{{H_2}O}}$)[8-10]${\alpha _{{H_2}O}}$可表达为水的摩尔分数 (${x_{{H_2}O}}$) 与水的活度系数 (${\gamma _{{H_2}O}}$) 的乘积:

${\alpha _{{H_2}O}} = {x_{{H_2}O}}{\gamma _{{H_2}O}}$ (1)

故可得:

${x_{{H_2}O}} = {{{H_r}} \over {{\gamma _{{H_2}O}}}}$ (2)

其中,${\gamma _{{H_2}O}}$可由活度系数模型拟合得出。故由式 (2) 可见,若能测出空气Hr值,则可计算得出水的摩尔分数,从而求得溶质的溶解度。

2 活度系数模型——电解质NRTL模型

目前有多种物理化学理论模型可用于计算${\alpha _{{H_2}O}}$。Sadeghi等[11]从局部组成模型推衍得到Extended- NRTL模型,该模型考虑了溶液中各质点分子之间的相互作用,与实际溶液较为接近。作者采用此模型计算了不同温度下NaCl饱和溶液中${\alpha _{{H_2}O}}$,并由此计算了NaCl的溶解度。

在Extended-NRTL模型中,${\gamma _{{H_2}O}}$由其长程静电作用项 ($\gamma _{_{{H_2}O}}^{LR}$) 和短程非静电作用项 ($\gamma _{_{{H_2}O}}^{SR}$) 组成:

$In{\gamma _{{H_2}O}} = In\gamma _{_{{H_2}O}}^{LR} + In\gamma _{_{{H_2}O}}^{SR}$ (3)

在水溶液中,$\gamma _{_{{H_2}O}}^{LR}$$\gamma _{_{{H_2}O}}^{SR}$可分别表达为:

$\eqalign{ & In\gamma _{{H_2}O}^{LR} = - 7.4494 \cdot \left\{ - \right.61.4453\exp \left[ {\left( {T - 273.15} \right)/273.15} \right] + \cr & 2.864468\left( {\exp {{\left[ {\left( {T - 273.15} \right)/273.15} \right]}^2}} \right) + 183.5379 \cr & In\left( {T - 273.15} \right) - 0.6282022\left( {T - 273.15} \right) + 0.00078756 \cr & \left( {{T^2} - {{273.15}^2}} \right) + 58.95788\left. {\left( {273.15/T} \right)} \right\} \cdot {{I_x^{1.5}} \over {1 + 14.9I_x^{0.5}}} \cr} $ (4)
$\eqalign{ & In\gamma _{{H_2}O}^{SR} = {{ - 3.094In\left[ {{{{x_{{H_2}O}} + 4.805\left( {{z_ + }{x_ + } + {z_ - }{x_ - }} \right)} \over {{x_{{H_2}O}} + {z_ + }{x_ + } + {z_ - }{x_ - }}}} \right]} \over {RT}} + \cr & {{ - 3.094{x_{{H_2}O}}\left[ {1 - {{{x_{{H_2}O}} + 4.805\left( {{z_ + }{x_ + } + {z_ - }{x_ - }} \right)} \over {{x_{{H_2}O}} + {z_ + }{x_ + } + {z_ - }{x_ - }}}} \right]} \over {RT\left[ {{x_{{H_2}O}} + 4.805\left( {{z_ + }{x_ + } + {z_ - }{x_ - }} \right)} \right]}} + \cr & {{ - 10.245{z_ - }{x_ - }\left( {0.106 - {{{z_ + }{x_ + } + 0.106{x_{{H_2}O}}} \over {{x_{{H_2}O}} + {z_ + }{x_ + }}}} \right)} \over {RT\left( {{z_ + }{x_ + } + 0.106{x_{{H_2}O}}} \right)}} + \cr & {{22.968{x_{{H_2}O}}} \over {RT}}\left[ {{{{z_ + }{x_ + }} \over {{{\left( {{z_ + }{x_ + } + {x_{{H_2}O}}} \right)}^2}}} + {{{z_ - }{x_ - }} \over {{{\left( {{z_ + }{x_ + } + {x_{{H_2}O}}} \right)}^2}}}} \right] + \cr & {{ - 10.245{z_ + }{x_ + }\left( {0.106 - {{{z_ - }{x_ - } + 0.106{x_{{H_2}O}}} \over {{x_{{H_2}O}} + {z_ - }{x_ - }}}} \right)} \over {RT\left( {{z_ - }{x_ - } + 0.106{x_{{H_2}O}}} \right)}} - \cr & {{22.968{x_{{H_2}O}}} \over {RT}}\left( {{{{z_ + }{x_ + }} \over {{z_ - }{x_ - } + {x_{{H_2}O}}}} + {{{z_ - }{x_ - }} \over {{z_ + }{x_ + } + {x_{{H_2}O}}}}} \right) \cr} $ (5)

式中,${I_x} = {1 \over 2}\left( {z_ + ^2{x_ + } + z_ - ^2{x_ - }} \right)$是以摩尔分数表达的离子强度,其中x+xz+z分别为正、负离子的摩尔分数和离子电荷数。上述模型方程虽然看似繁杂,但却仅包含温度、摩尔分数等简单参数[12],实际计算过程较为简便。作者采用Excel模拟分析规划求解处理数据,在已知Hr值后通过逆运算求得${{x_{{H_2}O}}}$,进而得出溶质的溶解度。

材料与方法

仪器与试剂 Rotronic湿度计 (HydroPalm Hp22),探头型号: HygroClip HC2-S。相对湿度和温度的测 定范围分别为0~1和−50~100 ℃; 准确度分别为 ± 0.008和 ± 0.1 ℃,输出结果的时间间隔为1 s。FA2004型分析天平 (上海良平仪器仪表有限公司)。SDH401型恒温恒湿箱 (重庆试验设备厂)。NaCl为分析纯 (≥99.5 %,天津市瑞金特化学品有限公司)。

空气湿度法测定溶解度 取一定量的NaCl于锥形瓶中,加水,搅拌,使成饱和溶液。密闭插入湿度传感器于锥形瓶上方的空间 (图 1)。在测定温度下恒温2 h后,读取相对湿度值,根据式 (2)~(5) 计算溶解度值。

Figure 1 Assembly used in the determination of the relative air humidity in equilibrium with the solution

重量法测定溶解度 取上述已达固液平衡的NaCl饱和溶液适量,精密称定,在105 ℃下烘干至恒重后,再精密称定残留的溶质质量,计算出NaCl的溶解度[13]

结果 1 空气湿度法测定溶解度值

用空气湿度法和重量法测定的溶解度值及文 献[14]报道的溶解度值见表 1图 2,结果表明三者基本一致。

Table 1 Solubility of NaCl determined by air humidity solubility assay,gravimetry and reported by literature within the temperature range 20−50 ℃. n = 3,x± s

Figure 2 Comparison of NaCl solubility (S) determined by air humidity solubility assay (◇),gravimetriy (△) and reported by literature (错误!未指定书签。错误!未指定书签。) within the temperature range 20−50 ℃. n = 3,x± s
2 误差分析

为了解相对湿度测定值对溶解度计算值的影响,进行误差分析。以25 ℃时NaCl饱和溶液的相对湿度值0.754为例,用空气湿度法测得的溶解度为35.70 g/ 100 g H2O,若湿度测定值因误差而增加至0.764 (ΔHr = 0.01),则溶解度的计算值将减少为34.51 g/100 g H2O,由此得相对湿度测定误差 (DHr) 对溶解度计算值误差 (DS) 的影响为${{\Delta S} \over {\Delta {H_r}}} = {{ - 1.19g/100g} \over {0.01}} = - 1.19$。并计算在20~50 ℃ (Hr 0.746~0.755) 内的${{\Delta S} \over {\Delta {H_r}}}$值,结果见图 3

Figure 3 The impact of relative humidity (Hr) measurement error (ΔHr) on the calculated value for solubility (ΔS)

本实验中使用的湿度计用标准溶液标定后,在相对湿度0~1内湿度测定的绝对误差≤0.008,由此造成的溶解度计算值的绝对误差≤0.85 g/100 g H2O,相对误差≤2%。

讨论

在本实验中,空气湿度法测定的相对误差≤2%,虽然其准确度不及重量分析法,但操作简便、条件易控,对大多数药物普遍适用,弥补了现有的溶解度测定方法的局限性。

众所周知,高分子化合物由于黏度很大且难以结晶,又缺乏简便易行的含量分析方法,其溶解度是很难测定的。目前常用极性相似的原则[15]或通过比较高分子化合物与溶剂的“溶度参数”[16]来判断其溶解的难易程度。而作者提出的新方法只需测定在平衡条件下的空气相对湿度,避免了上述困难,因而具有潜在的测定高分子化合物溶解度的能力。在后续研究工作中,将对此进行验证。

参考文献
[1] Hu CY, Huang P. Recent research and development on determination of solid solubility[J]. Chin J Pharm Anal (药物分析杂志) , 2010, 30 :761–766.
[2] Joly J, Nicolau I, Armand M. Solubility of a-HgI2 in dimethylsulfoxide-methanol and dimethylsulfoxide-ethyl acetate mixtures[J]. J Chem Eng Data , 1979, 24 :283–285. DOI:10.1021/je60083a015
[3] Yan H, Li RY, Li Q, et al. Solubility of minoxidil in methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and water from (278.15 to 333.15) K[J]. J Chem Eng Data , 2011, 56 :2720–2722. DOI:10.1021/je1012839
[4] Yu OS, Black S, Wei HY. Solubility of butanedioic acid in different solvents at temperatures between 283 K and 333 K[J]. J Chem Eng Data , 2009, 54 :2123–2125. DOI:10.1021/je900021g
[5] Lin HM, Tien HY, Hone YT, et al. Solubility of selected dibasic carboxylic acids in water, in ionic liquid of[J]. Fluid Phase Equilib , 2007, 253 :130–136. DOI:10.1016/j.fluid.2007.02.011
[6] Chen ZG, Yang WG, Hu YH, et al. Measurement and correlation for the solubility of dimethyl 1,4-cyclohex-anedione-2,5-dicarboxylate in different solvents at tempera-tures from (278.15 to 323.15) K[J]. J Chem Eng Data , 2011, 56 :2726–2729. DOI:10.1021/je2000292
[7] Hou GY, Yin QX, Zhang MJ, et al. Solubility of indinavir sulfate in different solvents from (278.35 to 314.15) K[J]. J Chem Eng Data , 2009, 54 :2106–2108. DOI:10.1021/je800689a
[8] Zhan XC, Wang YL, Cao L, et al. Determining critical relative humidity by measuring air humidity in equilibrium directly[J]. Eur J Pharm Sci , 2010, 41 :383–387. DOI:10.1016/j.ejps.2010.07.002
[9] Zhan XC, Li H, Yu L, et al. Determining osmotic pressure of drug solutions by air humidity in equilibrium method[J]. Drug Dev Ind Pharm , 2014, 40 :758–761. DOI:10.3109/03639045.2013.782555
[10] Zhan XC, Xu A, Fu Q, et al. Air humidity cryoscopy[J]. Acta Pharm Sin (药学学报) , 2016, 51 :668–671.
[11] Sadeghi R. Simultaneous correlation of mean ionic activity coefficient and osmotic coefficient of electrolyte solutions by a new local composition model[J]. Fluid Phase Equilib , 2006, 243 :92–100. DOI:10.1016/j.fluid.2006.02.019
[12] Jaime-Leal JE, Bomlla-Petriciolet A, Bhargava V, et al. Nonlinear parameter estimation of e-NRTL model for quarter-nary ammonium ionic liquids using Cuckoo Search[J]. Chem Eng Res Des , 2015, 93 :464–472. DOI:10.1016/j.cherd.2014.06.014
[13] Ferreira LA, Macedo EA, Pinho SP. KCl effect on the solubility of five different amino acids in water[J]. Fluid Phase Equilib , 2007, 255 :131–137. DOI:10.1016/j.fluid.2007.04.004
[14] Liu GQ, Ma LX, Liu J. Handbook of Chemistry Data Physical Properties Inorganic Chemistry (化学化工数据物性手册: 无机卷)[M]. Beijing: Chemical Industry Press, 2002 : 477 .
[15] Miller-Chou BA, Koenig JL. A review of polymer dissolu-tion[J]. Prog Polym Sci , 2003, 28 :1223–1270. DOI:10.1016/S0079-6700(03)00045-5
[16] Wu SS. Study on solution parameter of styrene-butadiene rubber[J]. Polymer Mater Sci Eng (高分子材料科学与工程) , 2002, 18 :185–187.