有色金属科学与工程  2022, Vol. 13 Issue (1): 27-37
文章快速检索     高级检索
铸态共晶高熵合金的研究进展[PDF全文]
孙元昊 , 韩露娜 , 高睿盈 , 熊志平     
北京理工大学材料学院,北京 100081
摘要:铸态共晶高熵合金在室温下的力学性能受到其化学成分、相组成和微观组织形貌的影响,是选用恰当的共晶高熵合金以适应于复杂服役环境的重要判据。文中通过调研近年来共晶高熵合金的相关文献,概述了共晶高熵合金的研究现状,按化学元素和共晶组织的相组成特点对共晶高熵合金进行了分类,即主要由FCC相+B2/BCC相组成的AlCoCrFeNi系、主要由FCC相+Laves相组成的CoCrFeNi-M系(M=Nb、Ta、Hf、Zr等)和其他相组成的共晶高熵合金。探讨了化学元素对微观组织的影响及其对力学性能的影响,并对共晶高熵合金的成分设计和组织性能优化进行了展望。
关键词共晶高熵合金    化学成分    相组成    力学性能    
Research progress of as-cast eutectic high-entropy alloys
SUN Yuanhao , HAN Luna , GAO Ruiying , XIONG Zhiping     
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract: The mechanical properties of as-cast eutectic high-entropy alloys (EHEAs) at room temperature are affected by chemical compositions and microstructures, which are quite helpful to choose suitable EHEAs for the complicated service conditions. The research status of cocrystal high-entropy alloys was summarized through investigating the relevant literature of cocrystal high-entropy alloys in recent years. According to chemical compositions and phase constituents, the as-cast EHEAs were divided into three categories, namely AlCoCrFeNi system predominantly consisting of FCC and BCC phases, CoCrFeNi-M system (M=Nb, Ta, Hf and Zr) compromising FCC and Laves phases, and other alloy systems. The effect of those chemical compositions on microstructure evolution and, in turn, on mechanical properties was systematically discussed. Finally, the composition design and optimization of the tissue properties of cocrystal high entropy alloys were prospected.
Keywords: eutectic high-entropy alloy    chemical composition    phase constituent    mechanical property    
0 引言

对于高强度、高塑性、高熔点等优异性能材料的需求,推动了新材料的研发与制备。2004年叶均蔚教授和CANTOR教授分别提出了高熵合金的概念[1-2],区别于传统金属材料,高熵合金一般由4种以上合金元素作为主元素[3-11]。高熵合金多形成一种固溶体,单一FCC(face-centered cubic)固溶体虽然塑性高,但强度低;单一BCC(body-centered cubic)固溶体虽然强度高,但塑性差。同时,单一固溶体因流动性差而导致可铸造性差。直到2014年,大连理工大学卢一平教授等提出了共晶高熵合金(Eutectic high-entropy alloys, EHEAs)的概念,并设计出FCC与B2结构的AlCoCrFeNi2.1 EHEA[12]。EHEAs的铸造性能较好,并且在强度、塑性等力学性能的匹配上比单相高熵合金更有优势,使其工业应用前景更为广阔,引发了广泛的研究[13-22]。研究不同化学成分的EHEAs在铸态时的力学性能与微观组织的关系,是设计满足服役要求的EHEAs的重要依据。

本文调研了近年来关于EHEAs的相关文献,按化学元素组成和相组成进行了分类,即AlCoCrFeNi系、CoCrFeNi-M系和其他类别的EHEAs。从化学组成出发,探讨了微观组织的演化机制及其对力学性能的影响。最后,对EHEAs未来的发展趋势和前景进行了展望。

1 共晶高熵合金的化学成分、微观组织和力学性能

EHEAs化学组成复杂,常见的组成元素有Co、Al、Cr、Fe、Ni、Mo、Ta和Hf等。其中,Co、Cr、Fe和Ni因混合焓几乎为零和原子半径相差不大而可以形成FCC结构的固溶体,而Al、Mo、Ta和Hf等与Cr/Fe/Ni之间具有较大的混合焓,并且它们原子半径相差较大,混合在一起容易促进BCC、HCP或Laves等相的形成。

表 1列举出了近年来报道的EHEAs的化学成分、相组成和力学性能。可以看出,化学组成不同,导致共晶组织的相组成不同,进而使得力学性能也各不相同。如何通过设计化学成分来调控微观组织和优化力学性能,是当前研究的难点和热点。根据相组成的特点,将表 1中的EHEAs分为3类分别介绍,即主要由FCC相+B2/BCC相组成的AlCoCrFeNi系、主要由FCC相+Laves相组成的CoCrFeNi-M系(M=Hf、Ta、Nb等)和其他相组成的EHEAs。

表 1 铸态共晶高熵合金的微观组织和力学性能 Table 1 As-cast microstructures and mechanical properties of selected EHEAs
点击放大

1.1 FCC+BCC AlCoCrFeNi系共晶高熵合金

自2014年大连理工大学卢一平教授等提出AlCoCrFeNi2.1 EHEA以来,AlCoCrFeNi系EHEAs得到了最为广泛的研究[12]。通过改变Al、Co、Cr、Fe和Ni 5种元素的相对化学计量比,可以获得不同的共晶成分,如Al16Co41Cr15Fe10Ni18[26]、Al17Co14.3Cr14.3Fe14.3Ni40.1[27]、Al17Co28.6Cr14.3Fe14.3Ni25.8[27]和Al17Co14.3Cr14.3Fe28.6Ni25.8[27]等。同时,在共晶成分的基础上添加微量的过渡族元素,如Mo、W、Ti等,不仅可以保持原有的共晶组织,而且可以调整微观组织形态并改善力学性能。图 1所示为AlCoCrFeNi系的EHEAs的拉压屈服强度和断裂应变的关系图,可以看出,EHEAs的压缩屈服强度和断裂应变普遍比拉伸时高,其中Al18Co30Cr10Fe10Ni30W2具有较好的拉伸屈服强度和塑性的匹配,而Al16Co41Cr15Fe10Ni18具有较好的压缩屈服强度和塑性的匹配。

图 1 AlCoCrFeNi系EHEAs的拉压屈服强度和断裂应变关系 Fig. 1 The compressive or tensile yield stress as a function of fracture strain of AlCoCrFeNi EHEAs

1.1.1 AlCoCrFeNi化学计量比的影响

图 2(a)图 2(d)所示依次为AlCoCrFeNi2.1[24]、Al19.3Co15Cr15Ni50.7[34]、Al16Co41Cr15Fe10Ni18[26]和Al1.2CrFeNi[31]EHEAs在扫描电子显微镜(scanning electron microscope,SEM)下的背散射电子图。如图 2(a)所示,AlCoCrFeNi2.1具有明显的层片状结构,且两相具有明显的对比度。通过透射电子显微镜(transmission electron microscope,TEM)和能谱仪(energy dispersive spectrometer,EDS)的分析,可知浅色区域为L12相(FCC结构,富含Co、Cr和Fe元素),深色区域为B2相(有序BCC结构,富含Al和Ni元素),其中FCC相占比约71%,B2相占比约29%[24],此外,CHEN等研究表明,在AlCoCrFeNi2.1的共晶组织中,FCC相与B2相形成严格的K-S位相关系,即{011}FCC//{111}B2,< 111 > FCC//< 011 > B2[25]。FCC相和B2相在强度和塑性上的互补,使其具有较好的强度和塑性匹配,拉伸时的屈服强度为750 MPa,伸长率为18%[24];压缩时的屈服强度为517 MPa,断裂应变为0.34[24]。此外,熊婷等通过多尺度地表征指出,AlCoCrFeNi2.1的两相中均存在纳米析出相[63],这也可能是其具有较好强塑性的原因。

图 2 4种EHEAs的SEM微观组织 Fig. 2 SEM microstructure of four EHEAs

在AlCoCrFeNi2.1的基础上,减少Fe并增加Ni的含量同样可以获得共晶组织,如Al19.3Co15Cr15Ni50.7为FCC+B2的层片相间结构(图 2(b))。但由于Ni含量的增加,NiAl型的B2相比例大幅度提高,其体积分数达到了约90%;同时由于Fe的去除,FCC相的含量只有约10%。通过对比图 2(a)图 2(b)可以发现,虽然两相的含量变化张大,但仍未改变共晶的形貌特点,却对力学性能影响较大,压缩时的屈服强度提高到924 MPa,而压缩应变减小至0.29[34]

相比于增加Ni的含量,增加Co的含量对组织性能的影响大为不同。Al16Co41Cr15Fe10Ni18的组织形貌如图 2(c)所示,浅色区域依然为FCC相,而深色区域则由B2相转变为无序BCC相。由于Co含量较多,富含Co、Al、Fe的FCC相体积分数达到61%,而BCC相仅占39%。可能是由于两相的体积分数相差较少,导致其晶粒比AlCoCrFeNi2.1更为细小。从而使得强塑性均优于AlCoCrFeNi2.1,其压缩时的屈服强度约800 MPa,压缩应变约0.40[26]

图 2(c)正好相反,图 2(d)去除Co元素,制备了Al1.2CrFeNi EHEA。Co的缺失使得FCC相难以生成,取而代之的是FeCr型的无序BCC相,与AlNi型的B2相一起构成共晶组织。虽然BCC和B2相均为强度较高的脆性组织,但塑性并未有太大的损失,其压缩屈服强度达到907 MPa,压缩应变仍保持0.31[31]。相比于典型的片层状结构,Al1.2CrFeNi的组织不具有明显的方向性,BCC和B2较为随机的取向分布使得其在变形过程中受力均匀,不易导致应力集中,使其可以承受较大的变形。

由此可见,改变Al、Co、Cr、Fe、Ni的比例可以改变相的结构、相的比例和组织形貌,进而影响到力学性能。如Al19.3Co15Cr15Ni50.7[34],Ni含量的增加可以使得NiAl型的B2相含量增加,导致强度提高和塑性下降。因此,通过设计不同成分的AlCoCrFeNi系EHEAs,对组织性能的调控具有重要意义。Jin等提出了伪二元法,利用价电子浓度(VEC)和混合焓(ΔHmix)来计算Al、Co、Cr、Fe、Ni这5种元素的配比,成功制备出3个由B2相和FCC相组成的EHEAs[27]。如图 3(a)图 3(c)所示,富Ni的Al17Co14.3Cr14.3Fe14.3Ni40.1和富Co的Al17Co28.6Cr14.3Fe14.3Ni25.8的微观组织具有明显的取向性,而富Fe的Al17Co14.3Cr14.3Fe28.6Ni25.8微观组织均匀。

图 3 伪二元法设计的EHEAs的微观组织和拉伸应力-应变曲线[27] Fig. 3 Microstructures and tensile stress-strain curves of EHEAs designed by pseudo-binary method[27]

此外,WU等利用机器学习来设计AlCoCrFeNi系的共晶成分,设计制备的Ni30Co30Fe10Cr10Al18W2、Ni36Co24Fe10Cr10Al18W2和Ni40Co20Fe10Cr10Al18W2具有共晶组织的特点[64]。而张仰庆等通过去除Cr元素和改变Al的含量,制备得到Al0.95FeCoNi2.05同样具备共晶高熵合金的特点[65]

1.1.2 微量过渡族元素的影响

除了Al、Co、Cr、Fe、Ni这5种基础元素外,过渡族元素如Ti[25]、Nb[30]、Mo[28]和W[29]等也被微量添加来调控共晶组织,从而改善力学性能。Ti的引入使得AlCoCrFeNi1.2Ti0.15 EHEA[25]的B2相和FCC相并非层片耦合生长,而是呈现出由FCC相近似连续地包围B2相的花瓣状形貌特点(图 4(a))。相比于AlCoCrFeNi1.2,AlCoCrFeNi1.2Ti0.15 EHEA的拉伸屈服强度可达到800 MPa,断裂应变达到0.129,均有所提高,这是由于组织形貌的变化和Ti固溶强化导致的。W和Mo的引入也会引起组织性能的变化,Al17.8(Co40Cr10Fe5Ni40Mo582.2 EHEA[28]和Al18Co30Cr10Fe10Ni30W2 EHEA[29],Mo和W的引入也没有改变原本FCC+B2的相组成,如图 4(b)图 4(c)所示,但Mo的引入使原本层片状结构不再明显,而W的引入也使得原本层片状结构中多出一些不规则的共晶组织。Mo和W元素主要固溶于FCC软相中,引起晶格畸变,从而使得强度提高,而对塑性影响不大。

图 4 3种EHEAs的SEM微观组织 Fig. 4 SEM microstructures of three EHEAs

由此可见,引入微量的过渡族金属元素,可以在保持共晶组织的前提下,对组织形貌起到一定的调控作用。微量元素的添加不会使强塑性发生特别大的变化,但可以牺牲较少的塑性使强度有较大的提升,甚至使得强度和塑性均有所改善。因此,选择恰当的、适量的过渡族元素进行添加,也是一种有效的调控EHEAs组织性能的方式。

1.2 FCC+Laves CoCrFeNi-M系共晶高熵合金

在AlCoCrFeNi系共晶高熵合金的基础上,用另外一种金属元素M(M=Nb、Ta、Zr、Hf等IVB或VB族元素)取代Al的位置并控制其化学计量比,也可获得共晶组织,如CoCrFeNiNb0.45[43]、CoCrFeNiTa0.43[51]、CoCrFeNiHf0.4[52-54]和CoCrFeNiZr0.5[56]等。

1.2.1 Nb、Ta、Hf、Zr的引入

在Co、Cr、Fe和Ni相对化学计量比均为1的基础上,添加不同量的Nb、Ta、Hf和Zr,可以获得不同的EHEAs。如图 5所示,4种共晶组织均为典型的层片状结构,深色区域为FCC相(富含Cr和Fe),浅色区域为Laves相(富含Ni和Nb、Ta、Hf或Zr等)。Huo等指出,C14型的Laves相和FCC相的共格关系为[1210]Laves//[011]FCC[50],C15型的Laves相和FCC相的共格关系为(111)Laves//(111)FCC,[011]Laves//[211]FCC[56]。区别于AlCoCrFeNi2.1 FCC+B2的相组成,在Nb/Ta/Hf/Zr置换Al后, 虽然未改变层片状的形貌特点,但B2相被Laves相所取代。

图 5 CoCrFeNiM EHEAs的SEM微观组织 Fig. 5 SEM of CoCrFeNiM EHEAs

Nb、Ta、Hf、Zr的原子半径较大,分别为0.148、0.148、0.159、0.160 nm;与Ni的混合焓分别为-30、-29、-42、-49 kJ/mol。当加入Nb和Ta时,FCC相中富含Cr、Fe,同时也含有少量的Nb和Ta;当加入Hf和Zr时,FCC相中依然富含Cr、Fe,但几乎不存在Hf或者Zr元素[56]。这是由于Hf和Zr比Nb和Ta具有更大的混合焓,也使得Laves相主要由Ni和M(M=Nb、Ta、Hf或Zr)组成,如表 2所示,同时可以看出Co在FCC相和Lave相中具有较为均匀的分布。TSAI等指出CoCrFeNiM中金属间化合物的种类,主要与M的原子半径(rM)和Co、Cr、Fe、Ni原子的加权平均半径(rQ)的比值有关[66]rQ按式(1)进行计算:

(1)
表 2 共晶高熵合金中Laves相Co、Cr、Fe、Ni、M元素的占比 Table 2 Proportion of Co, Cr, Fe, Ni and M in Laves phase of different EHEAs
点击放大

其中,ri为第i种原子的半径,xi为第i种元素所占比例。基于表 2的4种EHEAs中Laves相的化学成分,计算得到rQrM/rQ表 3)。当M原子半径rM/rQ的比值大于1.156时,倾向于形成Laves C14、C15和C36相等;当比值小于1.156时,倾向于形成A15、μσ相等[66]。由表 3可以看出,rM/rQ比值均大于1.156,与观察到的Laves相一致,CoCrFeNiNb0.45和CoCrFeNiTa0.4的Laves相为C14型,CoCrFeNiHf0.4为C36型[53],CoCrFeNiZr0.5为C15型[66]

表 3 共晶高熵合金中Laves相的rMrQ比值 Table 3 The ratio of rM/rQ of Laves phase in different EHEAs
点击放大

与由FCC+BCC组成的AlCoCrFeNi系EHEAs相比,由FCC+Laves相组成的CoCrFeNiM系(M=Nb、Ta、Hf和Zr)具有较高的压缩屈服强度和较低的塑性,这是由于Laves为脆性较大的金属间化合物导致的。CoCrFeNiNb0.45的压缩屈服强度为1 475 MPa,压缩应变为0.231[42];CoCrFeNiTa0.43的压缩屈服强度为1 250 MPa,压缩应变约0.24[51]。两者的压缩性能相近,这是由于两者的Laves相的晶格参数相似导致的。即,在CoCrFeNiNb0.65中,a=0.484 9 nm,c=0.790 7 nm[44];在CoCrFeNiTa0.43中,a=0.479 7 nm,c=0.782 7 nm[51]。这也说明了Ta和Nb在一定程度上具有可替代性。CoCrFeNiHf0.4 的压缩屈服强度可达1 501 MPa,比Nb和Ta更高,但压缩应变仅有0.116[53]。而CoCrFeNiZr0.5则由于脆性太大而无法进行拉伸试验[56]

由此可见,M原子半径大小对EHEAs组成相的类型有重要的影响,因此,在一定程度上可以通过M原子与其他原子(Co、Cr、Fe、Ni)半径比的大小来判断CoCrFeNi-M系EHEAs在铸态下力学性质的好坏,如Nb、Ta最优,Hf次之,Zr最差。

1.2.2 CoCrFeNi-M系共晶高熵合金的化学成分调节

与AlCoCrFeNi系高熵合金一样,CoCrFeNiM系也可以通过调节化学成分,来获得不同的共晶点和微观组织。XIE等在引入Hf的基础上,通过改进的简单混合法来调控各主元化学计量比,成功制备了Co0.96Cr0.76Fe0.85Ni1.01Hf0.4和Co0.99Cr0.70Fe0.94Ni1.07Hf0.4 EHEAs[54]。由于化学成分的改变,使得微观组织和力学性能也得到了改变。如图 6(a)图 6(c)所示,三者均为FCC相和Laves相构成的层片状结构,和CoCrFeNiHf0.4一致,这两种共晶成分下的FCC相富含Cr、Fe,Laves相富含Ni、Hf[52-54]。这主要受合金元素间的混合焓影响,而受化学计量比影响较小。CoCrFeNiHf0.4在多边形共晶团内部包含不规则片层,Co0.99Cr0.70Fe0.94Ni1.07Hf0.4由直片层构成,而Co0.96Cr0.76Fe0.85Ni1.01Hf0.4的共晶组织居于前两者之间。不同于CoCrFeNiHf0.4含有约30%(体积分数)的FCC相,Co0.96Cr0.76Fe0.85Ni1.01Hf0.4和Co0.99Cr0.70Fe0.94Ni1.07Hf0.4分别具有45.7%和55.8%(体积分数)的FCC相结构[54],这导致它们具有不同的力学性能。从图 6(d)中可以看出,Co0.96Cr0.76Fe0.85Ni1.01Hf0.4的压缩屈服强度为1 213 MPa,压缩应变为0.26[54],相比于CoCrFeNiHf0.4而言,强度变化不大,但塑性得到极大改善,这是由于微观结构的变化导致的。而Co0.99Cr0.70Fe0.94Ni1.07Hf0.4的压缩屈服强度仅为852 MPa,压缩应变却可达到0.40[54],这种强度严重下降而塑性显著升高的现象可能是由于其共晶组织中FCC相比例较大导致的。

图 6 3种EHEAs的微观组织和压缩应力-应变曲线[54] Fig. 6 Microstructures and compressive stress-strain curves of three EHEAs[54]

由此可见,通过改变CoCrFeNiM系的化学成分相对含量,可以实现对FCC相和Laves相体积分数以及组织形貌特征的调控,进而改变力学性能。

1.3 其他共晶高熵合金

除了前述AlCoCrFeNi系和CoCrFeNiM(M=Nb、Ta、Hf、Zr等)系的EHEA被广泛研究外,JIAO等设计了FCC+σ相组成的Fe2Ni2CrMo1.25 EHEA[58],梁维中等设计出同样相组成的CrFeNiMo0.2 EHEA[67],而Rogal等设计了BCC+HCP相组成的Nb25Sc25Ti25Zr25 EHEA[62]。如图 7(a)所示,Fe2Ni2CrMo1.25具有细小的片层状结构,其中FCC相缺乏Mo元素,σ相(FeMo型)富含Mo元素,而Fe、Ni、Cr则按照化学计量数2∶2∶1分配在两相中[58],虽然Fe2Ni2CrMo1.25的共晶组织由塑性较好的FCC相和强度较高的σ相组成,但其整体的力学性能却不尽人意,其抗压极限仅为1 745 MPa,压缩应变也只有0.09[58],这可能是由于FCC相和σ相变形不协调导致的。如图 7(c)所示,Nb25Sc25Ti25Zr25不同于典型的层片状结构,并非两相协同生长,而是在成核位置向四周呈放射状生长,其中一相为HCP结构的α-(Sc,Zr)相,另一相为BCC结构的β-NbTiZr相(基体相)[62]。由于BCC相和HCP相可开动的滑移系较少,其屈服强度较高, 达到1 020 MPa,但断裂应变较低,仅有0.08[62]

图 7 EHEAs的微观组织和压缩应力-应变曲线 Fig. 7 Microstructures and compressive stress-strain curves of EHEAs

除上述共晶组织外,JIN等成功地设计了由FCC+B2+Laves三相组成的Al10Co18Cr18Fe18Nb10Ni26 EHEA[30],但遗憾的是文中并未提到其相关的力学性能特点;KIM等设计了双峰组织AlTa0.76CoCrFeNi2.1 EHEA,其中较粗的片层状共晶组织区域为B2和Laves相,较细的片层状共晶区域为FCC和Laves相[68]。虽然其他共晶组织报道较少,但是其力学性能特点和变形机理仍有待探究。

2 总结与展望

EHEAs因化学成分的可调节使得组织形态多样化,从而导致力学性能的差异化,有望满足各种各样的工程化应用的要求。塑性较好的FCC相和强度较高的BCC/B2相构成的共晶组织具有较好的强塑性匹配,如Al、Co、Cr、Fe、Ni这5种主要元素所构成的一系列EHEAs。类似的,在Co、Cr、Fe、Ni的基础上添加一定量IVB或VB族元素,可以构造出由FCC相和硬质Laves相构成的共晶组织,也具有较好的强塑性匹配。通过改变共晶成分,或在共晶成分的基础上添加某种微量元素,可以调控EHEAs的微观组织和力学性能。因此,如何快速准确地设计EHEAs的成分亟待研究;进一步,各元素对微观组织的调控机理尚需明晰,微观组织对强塑性的影响规律也需要深入研究。最终,实现以特定力学性能为目标的EHEAs的成分设计。

参考文献
[1]
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
[2]
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375/376/377: 213–218.
[3]
HSU C Y, YEH J W, CHEN S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition[J]. Metallurgical and Materials Transactions A, 2004, 35(5): 1465–1469. DOI: 10.1007/s11661-004-0254-x.
[4]
TONG C J, CEHN Y L, YEH J W, et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005, 36(4): 881–893. DOI: 10.1007/s11661-005-0283-0.
[5]
SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20): 6043–6048. DOI: 10.1016/j.jallcom.2011.02.171.
[6]
MANZONI A, DAOUD H, VOLKL R, et al. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy[J]. Ultramicroscopy, 2013, 132: 212–215. DOI: 10.1016/j.ultramic.2012.12.015.
[7]
HE F, WANG Z, NIU S, et al. Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate[J]. Journal of Alloys and Compounds, 2016, 667: 53–57. DOI: 10.1016/j.jallcom.2016.01.153.
[8]
HE F, WANG Z, SHANG X, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures[J]. Materials & Design, 2016, 104: 259–264.
[9]
JIANG L, LU Y P, SONG M, et al. A promising CoFeNi2V0.5Mo0.2 high entropy alloy with exceptional ductility[J]. Scripta Materialia, 2019, 165: 128–133. DOI: 10.1016/j.scriptamat.2019.02.038.
[10]
HUO W, FANG F, ZHOU H, et al. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures[J]. Scripta Materialia, 2017, 141: 125–128. DOI: 10.1016/j.scriptamat.2017.08.006.
[11]
ZHU Z G, MA K H, WANG Q, et al. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys[J]. Intermetallics, 2016, 79: 1–11. DOI: 10.1016/j.intermet.2016.09.003.
[12]
LU Y P, DONG Y, JIANG H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187: 202–209. DOI: 10.1016/j.scriptamat.2020.06.022.
[13]
CHOUDHURI D, JANNOTTI P A, MUSKERI S, et al. Ballistic response of a FCC-B2 eutectic AlCoCrFeNi2.1 high entropy alloy[J]. Journal of Dynamic Behavior of Materials, 2019, 5(4): 495–503. DOI: 10.1007/s40870-019-00220-z.
[14]
WANI I S, BHATTACHARJEE T, SHEIKH S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing[J]. Materials Science and Engineering: A, 2016, 675: 99–109. DOI: 10.1016/j.msea.2016.08.048.
[15]
WANI I S, BHATTACHARJEE T, SHEIKH S, et al. Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2017, 84: 42–51. DOI: 10.1016/j.intermet.2016.12.018.
[16]
ZHANG L J, YU P F, FAN J T, et al. Investigating the micro and nanomechanical properties of CoCrFeNi-Cx high-entropy alloys containing eutectic carbides[J]. Materials Science and Engineering: A, 2020, 796: 140065. DOI: 10.1016/j.msea.2020.140065.
[17]
VO T D, TRAN B, TIEU A K, et al. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1[J]. Tribology International, 2021, 160: 107017. DOI: 10.1016/j.triboint.2021.107017.
[18]
GAO X, LU Y, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041.
[19]
WANG Y, CHEN W, ZHANG J, et al. A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Journal of Alloys and Compounds, 2021, 850: 156610. DOI: 10.1016/j.jallcom.2020.156610.
[20]
郭娜娜, 高绪杰, 李肖逸, 等. 共晶高熵合金的研究进展[J]. 稀有金属, 2021, 45(6): 728–739.
[21]
李肖逸, 高绪杰, 史程程, 等. 共晶高熵合金研究进展[J]. 特种铸造及有色合金, 2021, 41(1): 32–37.
[22]
杨恬, 许军锋, 李卓. 高强韧共晶高熵合金的研究进展[J]. 金属热处理, 2021, 46(2): 1–7.
[23]
LU Y P, DONG Y, GUO S, et al. A Promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4(1): 6200.
[24]
MUSKERI S, HASANNAEIMI V, SALLOOM R, et al. Small-scale mechanical behavior of a eutectic high entropy alloy[J]. Scientific Reports, 2020, 10(1): 2669. DOI: 10.1038/s41598-020-59513-2.
[25]
CHEN X H, XIE W Y, ZHU J, et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy[J]. Intermetallics, 2021, 128: 107024. DOI: 10.1016/j.intermet.2020.107024.
[26]
SHAFIEI A, RAJABI S. A cobalt-rich eutectic high-entropy alloy in the system Al-Co-Cr-Fe-Ni[J]. Applied Physics A, 2019, 125(11): 783. DOI: 10.1007/s00339-019-3084-9.
[27]
JIN X, ZHOU Y, ZHANG L, et al. A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration[J]. Materials & design, 2018, 143: 49–55.
[28]
GASAN H, OZCAN A. New eutectic high-entropy alloys based on Co-Cr-Fe-Mo-Ni-Al: design, characterization and mechanical properties[J]. Metals and Materials International, 2020, 26(8): 1152–1167. DOI: 10.1007/s12540-019-00515-9.
[29]
WU Q F, WANG Z J, ZHENG T, et al. A casting eutectic high entropy alloy with superior strength-ductility combination[J]. Materials Letters, 2019, 253: 268–271. DOI: 10.1016/j.matlet.2019.06.067.
[30]
JIN X, BI J, LIANG Y X, et al. Triple-phase eutectic high-entropy alloy: Al10Co18Cr18Fe18Nb10Ni26[J]. Metallurgical and Materials Transactions A, 2021, 52(4): 1314–1320. DOI: 10.1007/s11661-021-06165-0.
[31]
CHEN X, QI J Q, SUI Y W, et al. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys[J]. Materials Science and Engineering: A, 2017, 681: 25–31. DOI: 10.1016/j.msea.2016.11.019.
[32]
JIANG H, QIAO D, JIAO W, et al. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy[J]. Journal of Materials Science & Technology, 2020, 61: 119–124.
[33]
JIN X, ZHOU Y, ZHANG L, et al. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties[J]. Materials Letters, 2018, 216: 144–146. DOI: 10.1016/j.matlet.2018.01.017.
[34]
LIU D J, YU P F, LI G, et al. High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system[J]. Materials Science and Engineering: A, 2018, 724: 283–288. DOI: 10.1016/j.msea.2018.03.058.
[35]
ZHANG X K, CHOU T H, LI W P, et al. Microstructure and mechanical properties of (FeCoNi)100-x(NiAl)x eutectic multi-principal element alloys[J]. Journal of Alloys and Compounds, 2021, 862: 158349. DOI: 10.1016/j.jallcom.2020.158349.
[36]
JIN X, BI J, ZHANG L, et al. A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties[J]. Journal of Alloys and Compounds, 2019, 770: 655–661. DOI: 10.1016/j.jallcom.2018.08.176.
[37]
DONG Y, QIAO D, ZHANG H, et al. Microstructure evolution and hardness of AlCrFeNixMo0.2 high entropy alloy[J]. Materials Sience Forum, 2016, 849: 40–44. DOI: 10.4028/www.scientific.net/MSF.849.40.
[38]
DONG Y, JIANG L, JIANG H, et al. Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy[J]. Materials & Design, 2015, 82: 91–97.
[39]
GUO S, NG C, LIU C T. Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys[J]. Journal of Alloys and Compounds, 2013, 557: 77–81. DOI: 10.1016/j.jallcom.2013.01.007.
[40]
YURCHENKO N, PANINA E, ZHEREBTSOV S, et al. Design and characterization of eutectic refractory high entropy alloys[J]. Materialia, 2021, 16: 101057. DOI: 10.1016/j.mtla.2021.101057.
[41]
ZHU M, YAO L J, LIU Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx(0.25≤x≤1.25) eutectic refractory high-entropy alloy[J]. Materials Letters, 2020, 272: 127869. DOI: 10.1016/j.matlet.2020.127869.
[42]
LU J L, WANG Z J, WANG W, et al. Superior slurry erosion behavior of a casting NiCoCrFeNb0.45 eutectic high entropy alloy[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1111–1116. DOI: 10.1007/s40195-020-01070-8.
[43]
JIANG H, JIANG L, QIAO D, et al. Effect of Niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys[J]. Journal of Materials Science & Technology, 2017, 33(7): 712–717.
[44]
HE F, WANG Z J, CHENG P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds, 2016, 656: 284–289. DOI: 10.1016/j.jallcom.2015.09.153.
[45]
JIANG H, HAN K, GAO X, et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Materials & Design, 2018, 142: 101–105.
[46]
XIE T B, XIONG Z P, XU Z Q, et al. Another eutectic point of Co-Cr-Fe-Ni-M (Hf, Ta, Nb) high-entropy system determined using a simple mixture method correlated with mixing enthalpy[J]. Materials Science and Engineering: A, 2021, 802: 140634. DOI: 10.1016/j.msea.2020.140634.
[47]
JIANG L, LU Y P, DONG Y, et al. Effects of Nb addition on structural evolution and properties of the CoFeNiV high-entropy alloy[J]. Applied Physics A: Materials Science & Processing, 2015, 119(1): 291–297. DOI: 10.1007/s00339-014-8964-4.
[48]
JIANG L, LU Y P, WU W, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions[J]. Journal of Materials Science & Technology, 2016, 32(3): 245–250.
[49]
JIANG H, HAN K M, QIAO D X, et al. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy[J]. Materials Chemistry and Physics, 2018, 210: 43–48. DOI: 10.1016/j.matchemphys.2017.05.056.
[50]
HUO W Y, ZHOU H, FANG F, et al. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys[J]. Journal of Alloys and Compounds, 2018, 735: 897–904. DOI: 10.1016/j.jallcom.2017.11.075.
[51]
AI C, HE F, GUO M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys[J]. Journal of Alloys and Compounds, 2018, 735: 2653–2662. DOI: 10.1016/j.jallcom.2017.12.015.
[52]
XU Z Q, MA Z L, XIA G H, et al. Microstructures and mechanical properties of CoCrFeNiHfx high-entropy alloys[J]. Materials Science and Engineering: A, 2020, 792: 139820. DOI: 10.1016/j.msea.2020.139820.
[53]
MA H, SHEK C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2020, 827: 154159. DOI: 10.1016/j.jallcom.2020.154159.
[54]
XIE T B, XIONG Z P, XU Z Q, et al. Varying the eutectic composition of Co-Cr-Fe-Ni-Hf high-entropy system using a modified simple mixture method[J]. Materials Science and Engineering: A, 2020, 786: 139420. DOI: 10.1016/j.msea.2020.139420.
[55]
XIE T B, XIONG Z P, LIU Z, et al. Excellent combination of compressive strength and ductility of (CoCrFeNi)x(Co0.26Cr0.07Fe0.16Ni0.31Hf0.4) high-entropy alloys[J]. Materials & Design, 2021, 202: 109569.
[56]
HUO W Y, ZHOU H, FANG F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys[J]. Materials & Design, 2017, 134: 226–233.
[57]
RAHUL M R, PHANIKUMAR G. Design of a seven-component eutectic high-entropy Alloy[J]. Metallurgical and Materials Transactions A, 2019, 50(6): 2594–2598. DOI: 10.1007/s11661-019-05210-3.
[58]
JIAO W N, JIANG H, QIAO D X, et al. Effects of Mo on microstructure and mechanical properties of Fe2Ni2CrMox eutectic high entropy alloys[J]. Materials Chemistry and Physics, 2021, 260: 124175. DOI: 10.1016/j.matchemphys.2020.124175.
[59]
HE F, WANG Z J, ZHU M, et al. The phase stability of Ni2CrFeMox multi-principal-component alloys with medium configurational entropy[J]. Materials & Design, 2015, 85: 1–6.
[60]
JIANG H, ZHANG H Z, HUANG T D, et al. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys[J]. Materials & Design, 2016, 109: 539–546.
[61]
XU Q, CHEN D Z, TAN C Y, et al. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure[J]. Journal of Materials Science & Technology, 2021, 60: 1–7.
[62]
ROGAL Ł, MORGIEL J, SWIATEK Z, et al. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy[J]. Materials Science and Engineering: A, 2016, 651: 590–597. DOI: 10.1016/j.msea.2015.10.071.
[63]
熊婷, 郑士建, 马秀良. 高熵合金AlCoCrFeNi2.1的共晶组织及析出相研究[J]. 电子显微学报, 2020, 39(5): 470–475. DOI: 10.3969/j.issn.1000-6281.2020.05.003.
[64]
WU Q F, WANG Z J, HU X B, et al. Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system[J]. Acta Materialia, 2020, 182: 278–286. DOI: 10.1016/j.actamat.2019.10.043.
[65]
张仰庆, 要玉宏, 侯永昌. AlxFeCoNi2.05近共晶高熵合金组织和力学性能研究[J]. 西安工业大学学报, 2020, 40(1): 88–94.
[66]
TSAI M H, FAN A C, WANG H A. Effect of atomic size difference on the type of major intermetallic phase in arc-melted CoCrFeNiX high-entropy alloys[J]. Journal of Alloys and Compounds, 2017, 695: 1479–1487. DOI: 10.1016/j.jallcom.2016.10.286.
[67]
梁维中, 吴万东, 陈永生, 等. 铌对铸态CrFeNiMo0.2Nbx共晶高熵合金微观组织的影响[J]. 黑龙江科技大学学报, 2021, 31(3): 373–377. DOI: 10.3969/j.issn.2095-7262.2021.03.018.
[68]
KIM M J, KANG G C, HONG S H, et al. Understanding microstructure and mechanical properties of (AlTa0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters[J]. Journal of Materials Science & Technology, 2020, 57: 131–137.