西南石油大学学报(自然科学版)  2019, Vol. 41 Issue (4): 144-151
上倾管内油水两相流流型实验研究    [PDF全文]
朱珊珊1, 牟星洁2, 李旺3, 宋晓琴1 , 古丽3    
1. 西南石油大学石油与天然气工程学院, 四川 成都 610500;
2. 中国石化西南石油工程有限公司井下作业分公司, 四川 德阳 618000;
3. 中国石油天然气股份有限公司西南管道分公司, 四川 成都 610041
摘要: 国内多条成品油输送管道在投产和运行过程中,采用“水联运”投产方式所造成的上倾管道低洼处积水现象引起了严重的管道内腐蚀问题。利用上游来油将低洼处积水携出管道能有效缓解内腐蚀。采用0#柴油、去离子水在内径100 mm的上倾管道内观察油水两相流流型并测量油携水临界流速。结果表明,随油流黏性力增大和管道倾角增大,油水两相流依次呈现波状分层流、有水滴的波状分层流和油相占主导的分散流3种流型;同一流型下,油相能将水相携入上倾段的最低临界流速随倾角增大而增大;倾角从20°增大到25°使流型从波状分层流转化为有液滴的波状分层流时,油相能将水相携入上倾段的临界流速从0.203 m/s减小为0.187 m/s;倾角从30°增大至35°时,使初始流型从有液滴的波状分层流转换为水相在油相中的分散流,油相能将水相携入上倾段的临界流速从0.205 m/s减小为0.194 m/s;油相能将水相完全携出上倾段的临界流速随倾角增大而略有增大;发生流型转化的流速随倾角增大而减小。
关键词: 油水两相流     上倾管道     流型     临界流速    
An Experimental Study on the Flow Patterns of Oil-water Two-phase Flow in an Upwardly Inclined Pipe
ZHU Shanshan1, MOU Xingjie2, LI Wang3, SONG Xiaoqin1 , GU Li3    
1. ?School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
2. Downhole Operation Company, Xinan Oilfield Service Corporation, SINOPEC, Deyang, Sichuan 618000, China;
3. Southwest Pipeline Company, CNPC, Chengdu, Sichuan 610041, China
Abstract: During the commissioning and operation of a large number of refined oil pipelines in China, it was found that water accumulation at low points in upwardly inclined pipelines caused by the adoption of water circulation for commissioning resulted in serious corrosion problems within these pipelines. Inflows of oil from the upstream sections can be used to carry away the water from the low points and effectively alleviate internal corrosion. In the present study, 0# diesel fuel and deionized water were used to observe oil-water two-phase flow patterns in an upwardly inclined pipeline with an internal diameter of 100 mm and the measurement of the critical water-carrying velocity of oil. The results show that as the oil viscosity and upward inclination angle of the pipeline increases, three types of flow patterns are sequentially induced in the oil-water two-phase flow, namely, stratified wavy flow, stratified wavy flow with water droplets, and oil-dominated dispersed flow. Within the same flow pattern, the minimum critical velocity for the oil phase to carry the water phase into the upwardly inclined section increases with an increase in inclination angle. When the inclination angle increases from 20° to 25°, the flow pattern transitions from stratified wavy flow to stratified wavy flow with liquid droplets, and the minimum critical velocity for the oil phase to carry the water phase into the upwardly inclined section decreases from 0.203 m/s to 0.187 m/s. When the upward inclination angle increases from 30° to 35°, the initial flow pattern transitions from stratified wavy flow with liquid droplets to water-in-oil dispersed flow, and the minimum critical velocity for the oil phase to carry the water phase into the upwardly inclined section decreases from 0.205 m/s to 0.194 m/s. An increase in the inclination angle causes a slight increase in the minimum critical velocity for the oil phase to fully carry the water phase away from the upwardly inclined section, while causing a reduction in the velocity at which flow pattern transitions occur.
Keywords: oil-water two-phase flow     upwardly inclined pipeline     flow pattern     critical velocity    
引言

中国的成品油管道采用“水联运”的方式投产,管道内不可避免地存在水,从而导致管道的内腐蚀[1]。由于油水密度差较大,在地势复杂、起伏较大的大落差地带,可能出现油品已越过高点而水仍沉积在管道低洼处形成积水的情况。若利用上游来油将管道低洼处积水携出,既可减轻管道的内腐蚀,又能减少阻塞事故。而管内油水两相流流型对于混油量和管内积水形态具有极大影响[2-3]。因此,研究油水两相流流型对保障成品油管道的安全运营具有重要的工程应用价值[4]

很多学者对油水两相流在管道中的流动特性进行了实验研究。徐广丽等在50 mm内径起伏管道中实验研究了不同含水率、不同倾角、不同油相表观流速下倾斜管道内的流型,但该实验架管径较小、倾角变化范围较小,故而无法广泛说明倾角对流型变化规律的影响[5]。Pedram等用内径20 mm,长6 m,倾角分别为0°,$\pm$5°,$\pm$15°,$\pm$30°及$\pm$45°的实验架研究了倾角对两相流压降的影响,但未研究不同工况参数对两相流流型和油携水条件的影响[6]。Chakrabarti等研究了管径25.4 mm的水平导管里的分层流,得出了实验工况下的流型图谱,但由于管径较小,只能对分层流进行辨识,未研究各工况参数对流型的影响[7]。Pedram等用内径22.5 mm,长8 m的实验架对不同含油量下的压降、流型进行了研究,得出压降和转相点的关系,但实验未研究多种工况参数对流型及油流携水条件的影响[8]。Lovick、Angeli和Lum等用38.1 mm的水平管对水相表观流速1.09~3.60 m/s,油相表观流速0.6~2.0 m/s的油水两相流流型、压降进行了研究,但未研究倾角对流型的影响[9-10]。Flores和Vielma等用50.8 mm竖直管道对表观流速0.05~1.30 m/s的水相和表观流速0.05~1.30 m/s的白油形成的油水两相流的压降和流型进行了研究,但没有考虑倾角对流型的影响且管道直径较小[11-12]。Wang等用25.4 mm管道对表观流速0.1~1.2 m/s水相和同样流速重油形成的油水两相流的压降和流型进行了研究,但研究并不针对油携水工况,所以未研究流型对油携水临界条件的影响[13]。Grassi等用21 mm管径,水平、倾角为15°和5°的3种管道研究了油水两相流的压降、持水率和流型[14]。Poesio等用20.3 mm管道研究了管内流体流型和压降,但研究内容较为局限。Sotgia等在内径21~40 mm选用7组不同内径的管道进行实验,研究了水平管道油水两相流,得出了不同管径水平管道内的流型图谱,以及管内压降随流型的变化规律[15]。但由于实验架仅为水平管道,流型受重力影响较小,研究结论不适用于上倾管道工况。Rodriguez和Zong等研究了水平管道和$-$5°~5°轻微倾斜管道内油水管道流型,得出了不同倾角下的流型图谱[16-17]。但现场管道倾角相对较大,实验工况对生产实际指导意义较小。Al-Wahaibi等在25.4 mm内径的管道中实验研究了流速、油相黏度等多种因素对水平管内分层流向非分层流转化的影响[18],但实验工况未考虑管道倾角对流型转化的影响,且管道直径较小,无法将此管道直径与现场管径相关联。Kumara等用管径56 mm的水平管道和$-$5°~5°轻微倾斜管道进行了实验研究,结果表明倾角对混油量影响较大,但实验倾角较小且未研究各工况参数对流型的影响[19]。Du等在内径20 mm的实验架中研究了垂直向上管流,观察到了5种流型,得出了实验工况下的流型图谱,总结出了关于含水率的流型转变边界[20],但垂直管道在油气输送管道中极少出现,而文章未研究该管径下倾角对流型的影响。Jana等研究了垂直管路中的液液两相流流型,在高油速低水速的工况下发现了环状流,并对泡状流和环状流的过渡区域进行了研究[21]。Jin等通过波长分析法和时间序列法定义了管内油水两相流流型[22-23]

因此,本文对内径100 mm上倾管道中油水两相流系统的积水形态、临界携水参数等进行了实验研究。

1 实验系统 1.1 实验装置

实验装置为大型流动环道。油流由油罐供应,水由注入阀注入,油流经离心泵后将水推入实验管线,流经实验段后在油罐中利用两相密度差实现重力沉降分离后油循环使用。

油罐直径323.9 mm,高1.2 m。油罐下方为倒锥形并连有一排水阀以排出底部积水。油罐上方开有70 mm孔洞与橡胶软管相连,以循环实验介质。实验段为不同倾角($\alpha$)的100 mm内径透明亚克力弯管,弯管内径$D$为100 mm,曲率半径$R$为5$D$($R$= 500 mm)。水平段和上倾段长度均为1 m,倾角范围为10°~45°,间隔5°(总共8个)。弯管两头设置葫芦架调节弯管高度以适应不同倾角。

图1 实验装置示意图 Fig. 1 Schematic of experimental setup
1.2 实验介质

实验介质为柴油和去离子水,20 ℃、101 kPa下实验流体物理性质见表 1。为便于流型观察,在水中加入了高锰酸钾(颜色剂)以区别油水两相。

表1 实验流体物理性质 Tab. 1 Physical properties of the liquids used
1.3 实验过程

实验介质温度控制在19~21 ℃,出口压力为101 kPa。关闭阀门(7,9,11),打开阀门(10),油流从旁通管流过后,由阀门(8)加入8 L水,然后打开阀门(7,11),关闭阀门(10),利用低流速油流将水带至亚克力弯管处。然后以0.180 m/s为初始油流表观流速,以0.020 m/s为梯度开始增加,直至水平段积水被完全携出上倾段。实验现象通过透明实验段进行观察,由高清摄像仪进行拍摄。

2 实验结果与讨论

采用Song等和Izwan等的研究结果进行流型划分[24-25]。实验工况下,共观察到波状分层流(Stratified-Wavy flow, STW)、有液滴的波状分层流(Stratified-Wavy flow with Water Droplets, SW & WD)、分散流(Despersion of Water in Oil, DW/O)3种流型。

2.1 倾角10°

油相表观流速为0.168~0.308 m/s,管道倾角为10°时,流型均为如图 2所示的油水两相整体分层但界面有波动的波状分层流。上倾段水层厚度随油相表观流速的增大而减小。油流对水层的剪切作用力随油相表观流速的增大而增大,水相流动阻力随爬坡距离增加而增大,因此,在上倾段管道内形成了波状分层流。

图2 $\alpha$=10°流型 Fig. 2 Flow patterns at $\alpha$=10°
2.2 倾角15°

管道倾角为15°时,不同油相表观流速的流型如图 3所示。油相表观流速为0.198~0.218 m/s时,流型为波状分层流;油相表观流速为0.220~0.237 m/s时,流型为有液滴的波状分层流;油相表观流速为0.248~0.308 m/s时,流型为水在油中的分散流。重力沿管道轴向的分力随倾角增大而增大,由油水密度差形成的浮力沿管道轴向的分量减小,相同表观流速下,油流对水相的携带能力下降,因此,管道倾角为15°时,油流能将水相携入上倾段的临界表观流速比管道倾角为10°时大。在相对较高的流速下,部分水相被剪切为水滴,从油水界面处分离,流型转化为有液滴的波状分层流。随油相表观流速继续增加,上倾段几乎所有水相均被剪切为液滴分散在油中,流型转化为水在油中的分散流。在上倾管道顶端,部分液滴在重力作用下重新在管道下壁面处汇聚成较大的水团。水团比表面积较分散的水珠减小,导致水团所受黏性力与重力的比值减小,因此水团向下流动形成回流,导致水相无法被完全携出上倾段直至油相表观流速增加至能为水团提供足够黏性力。

图3 $\alpha$=15°流型 Fig. 3 Flow patterns at $\alpha$=15°
2.3 倾角20°

管道倾角为20°时,不同油相表观流速的流型如图 4所示。油相表观流速为0.200~0.211 m/s时,流型为波状分层流;油相表观流速0.220~0.223 m/s时,流型为有液滴的波状分层流;油相表观流速为0.230~0.308 m/s时,流型为水在油中的分散流。管道倾角为20°时,重力沿管道轴向的分量比管道倾角为15°时大,湍流程度加剧,因此,在较低流速时,流型即从有液滴的波状分层流转化为水在油中的分散流。对比倾角为10°、15°、20°工况可知,流型相同时,油流能将水相携入上倾段的临界表观流速与倾角正相关。

图4 $\alpha$=20°流型 Fig. 4 Flow patterns at $\alpha$=20°
2.4 倾角25°

管道倾角25°时,不同油相表观流速的流型如图 5所示。油相表观流速为0.187~0.198 m/s时,流型为有液滴的波状分层流;油相表观流速为0.211~0.312 m/s时,流型为水在油中的分散流。因为湍流程度随倾角增大而加剧,当倾角为25°时,在较低流速下进入上倾段的水相前端即被剪切为水珠,呈现出有液滴的波状分层流流型,而无单纯的波状分层流流型出现。水珠与油相的接触面积比波状分层流中相同体积的连续水相与油相接触面积大,受到的油相黏性力更大,因此,管道倾角为25°时,在有液滴的波状分层流流型下,油相能将水相携入爬坡管道上倾段的临界表观流速较管道倾角为20°时小。

图5 $\alpha$=25°流型 Fig. 5 Flow patterns at $\alpha$=25°
2.5 倾角30°

管道倾角为30°时,不同油相表观流速的流型如图 6所示。油相表观流速为0.205~0.211 m/s时,流型为有液滴的波状分层流;油相表观流速为0.212~0.312 m/s时,流型为水在油中的分散流。管道倾角为30°时各表观流速下流型变化规律与管道倾角为25°时相似。油相能将水相携带入上倾段的最低表观流速比倾角为25°时稍大。对比倾角为25°、30°工况可知,流型均为有液滴的波状分层流时,油相能将水相携入倾斜段的临界表观流速随倾角增大而增大。

图6 $\alpha$=30°流型 Fig. 6 Flow patterns at $\alpha$=30°
2.6 倾角35°

管道倾角为35°时,不同油相表观流速的流型如图 7所示。油相表观流速为0.194~0.314 m/s时,流型均为水在油中的分散流。由于管道倾角增大,重力沿管道轴向分力增大,油相无法将连续水相携入管道上倾段,所以在管道上倾段不会出现有液滴的波状分层流流型。在较低流速下,水相在重力、黏性力的共同作用下形成小水滴而被油相携带入管道上倾段,形成水在油中的分散流流型。随油相表观流速增大,湍流程度加剧,越来越多水珠被携入管道上倾段且爬坡距离增加,又在重力作用下在管壁处汇聚成大水团向下流动形成回流。直至油相表观流速上升至黏性力足以克服重力后,水相被完全携出管道上倾段。

图7 $\alpha$=35°流型 Fig. 7 Flow patterns at $\alpha$=35°
2.7 倾角40°

管道倾角为40°时,不同油相表观流速的流型如图 8所示。油相表观流速为0.198~0.315 m/s时,流型均为水在油中的分散流。管道倾角为40°时,流型随表观流速的变化规律与管道倾角为35°时相似。在分散流流型下,由于倾角增加,油相能将水相携入上倾段和将水相完全携出上倾段的临界表观流速均有所增大。

图8 $\alpha$=40°流型 Fig. 8 Flow patterns at $\alpha$=40°
2.8 倾角45°

管道倾角为45°时,油相表观流速为0.240 m/s对应的流型如图 9所示。管道倾角为45°时,流型随表观流速的变化规律与管道倾角为35°、40°时均相似,且油相将水相携入管道上倾段和将水相完全携出上倾段的临界流速均在倾角为40°的基础上略微增大。

图9 $\alpha$=45°流型 Fig. 9 Flow patterns at $\alpha$=45°
3 实验结果分析 3.1 流型图谱

根据各工况流型,得到实验工况对应流型图谱如图 10所示。由图 10可知,波状分层流只在倾角小于20°时出现;当管道倾角在15°~30°时,低流速下管道上倾段为有液滴的波状分层流流型,随流速增大,流型从有液滴的波状分层流逐渐转化为水在油中的分散流流型;当管道倾角在35°~45°时,一旦水相被携入上倾段,即呈现水在油中的分散流流型。

图10 实验工况流型图谱 Fig. 10 Flow pattern map in experimental conditions
3.2 临界流速

各工况下柴油将水相携入管道上倾段的临界流速和将水相携出管道的临界流速如表 2所示。油相能将水相携入管道上倾段和完全携出管道上倾段的临界流速随倾角的变化规律如图 11所示。

表2 临界流速 Tab. 2 Critical velocity
图11 临界流速随倾角的变化规律 Fig. 11 Variation of critical velocity with inclination angle

图 11可知,随倾角增大,水相进入上倾段的初始流型从波状分层流转化为有液滴的波状分层流,最终转化为水在油中的分散流。初始流型相同时,油相能将水相携入上倾段的临界流速随倾角增大而增大。倾角从20°增大至25°时,流型从波状分层流转化为有液滴的波状分层流,由于湍流程度加剧,油相能将水相携入管道上倾段的临界流速略有减小,流型从有液滴的波状分层流转化为水在油中的分散流时油相能将水相携入管道上倾段的临界流速略有减小。油相能将水相完全携出管道上倾段的临界流速随倾角增大总体呈缓慢上升趋势。

4 结论

(1) 在油流剪切作用下,水相刚被携入上倾段的初始流型随管道倾角增大由波状分层流转化为有液滴的波状分层流,最终转化为分散流。

(2) 倾角从20°增大到25°使初始流型从波状分层流转化为有液滴的波状分层流时,油相能将水相携入上倾段的临界流速从0.203 m/s减小为0.187 m/s;倾角从30°增大至35°使初始流型从有液滴的波状分层流转换为分散流时,油相能将水相携入上倾段的临界流速从0.205 m/s减小为0.194 m/s。

(3) 初始流型相同时,油相能将水相携入管道上倾段的临界流速随倾角增大而增大。

(4) 上倾管段内湍流程度从波状分层流、有液滴的波状分层流到分散流依次增大。流型转化流速随倾角增大而降低。

参考文献
[1]
王剑波, 陈振友, 窦志宽. 成品油管内腐蚀的危害分析及对策[J]. 石油规划设计, 2008, 19(2): 39-41.
WANG Jianbo, CHEN Zhenyou, DOU Zhikuan. Analysis and countermeasures of the hazard caused by internal corrosion in product oil pipeline[J]. Petroleum Planning & Engineering, 2008, 19(2): 39-41. doi: 10.3969/j.issn.1004-2970.2008.02.015
[2]
GHOSH S, DAS G, DAS P K. Pressure drop analysis for liquid-liquid downflow through vertical pipe[J]. Journal of Fluids Engineering, 2011, 133(1): 011202. doi: 10.1115/1.4003354
[3]
PEDDU A, CHAKRABORTY S, DAS P K. Visualization and flow regime identification of downward air-water flow through a 12 mm diameter vertical tube using image analysis[J]. International Journal of Multiphase Flow, 2018, 100: 1-15. doi: 10.1016/j.ijmultiphaseflow.2017.11.016
[4]
SONG Xiaoqin, YANG Yuexin, YU Dongliang, et al. Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines[J]. Journal of Petroleum Science and Engineering, 2016, 146: 803-812. doi: 10.1016/j.petrol.2016.07.035
[5]
徐广丽, 张鑫, 蔡亮学, 等. 起伏管内局部油水两相流流动特性实验研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 85-90.
XU Guangli, ZHANG Xin, CAI Liangxue, et al. Experimental investigation on the flow characteristics of the local oil-water two phases flow system in hilly-terrain tube[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 85-90. doi: 10.11885/j.issn.1674-5086.2013.07.09.12
[6]
PEDRAM H, AMIR K, ALIREZA T, et al. Experimental investigation of two-phase water-oil flow pressure drop in inclined pipes[J]. Journal of Petroleum Science and Engineering, 2016, 74: 169-180. doi: 10.1016/j.expthermflusci.2015.11.024
[7]
CHAKRABARTI D P, DAS G, DAS P K. Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe[J]. Chemical Engineering Science, 2007, 62(7): 1861-1876. doi: 10.1016/j.ces.2006.11.056
[8]
PEDRAM H, ALIREZA H, AMIR K. Experimental investigation of oil-water two phase flow regime in an inclined pipe[J]. Journal of Petroleum Science and Engineering, 2015, 136: 12-22. doi: 10.1016/j.petrol.2015.10.031
[9]
LOVICK J, ANGELI P. Experimental studies on the dual continuous flow pattern in oil-water flows[J]. International Journal of Multiphase Flow, 2004, 30(2): 139-157. doi: 10.1016/j.ijmultiphaseflow.2003.11.011
[10]
LUM J Y L, AL-WAHAIBI T, ANGELI P. Upward and downward inclination oil-water flows[J]. International Journal of Multiphase Flow, 2006, 32(4): 413-435. doi: 10.1016/j.ijmultiphaseflow.2006.01.001
[11]
FLORES J G, CHEN X T, BRILL J P. Characterization of oil-water flow patterns in vertical and deviated wells[J]. SPE Production & Facilities, 1999, 14(2): 94-101. doi: 10.2118/38810-MS
[12]
VIELMA M A, ATMACA S, SARICA C, et al. Characterization of oil/water flows in horizontal pipes[C]. SPE 109591-MS, 2007. doi: 10.2118/109591-MS
[13]
WANG Wei, GONG Jing, ANGELI P. Investigation on heavy crude-water two phase flow and related flow characteristics[J]. International Journal of Multiphase Flow, 2011, 37(9): 1156-1164. doi: 10.1016/j.ijmultiphaseflow.2011.05.011
[14]
GRASSI B, STRAZZA D, POESIO P. Experimental validation of theoretical models in two-phase high-viscosity ratio liquid-liquid flows in horizontal and slightly inclined pipes[J]. International Journal of Multiphase Flow, 2008, 34(10): 950-965. doi: 10.1016/j.ijmultiphaseflow.2008.03.006
[15]
SOTGIA G, TARTARINI P, STALIO E. Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures[J]. International Journal of Multiphase Flow, 2008, 34(12): 1161-1174. doi: 10.1016/j.ijmultiphaseflow.2008.06.001
[16]
RODRIGUEZ O M H, OLIEMANS R V A. Experimental study on oil-water flow in horizontal and slightly inclined pipes[J]. International Journal of Multiphase Flow, 2006, 32(3): 323-343. doi: 10.1016/j.ijmultiphaseflow.2005.11.001
[17]
ZONG Yanbo, JIN Ningde, WANG Zhenya, et al. Nonlinear dynamic analysis of large diameter inclined oil-water two phase flow pattern[J]. International Journal of Multiphase Flow, 2010, 36(3): 166-183. doi: 10.1016/j.ijmultiphaseflow.2009.11.006
[18]
AL-WAHAIBI T, YUSUF N, AL-WAHAIBI Y, et al. Experimental study on the transition between stratified and non-stratified horizontal oil-water flow[J]. International Journal of Multiphase Flow, 2012, 38(1): 126-135. doi: 10.1016/j.ijmultiphaseflow.2011.08.007
[19]
KUMARA W A S, HALVORSEN B M, MELAAEN M C. Particle image velocimetry for characterizing the flow structure of oil-water flow in horizontal and slightly inclined pipes[J]. Chemical Engineering Science, 2010, 65(15): 4332-4349. doi: 10.1016/j.ces.2010.03.045
[20]
DU Meng, JIN Ningde, GAO Zhongke, et al. Flow pattern and water holdup measurements of vertical upward oil-water two-phase flow in small diameter pipes[J]. International Journal of Multiphase Flow, 2012, 41: 91-105. doi: 10.1016/j.ijmultiphaseflow.2012.01.007
[21]
JANA A K, DAS G, DAS P K. Flow regime identification of two-phase liquid-liquid upflow through vertical pipe[J]. Chemical Engineering Science, 2006, 61(5): 1500-1515. doi: 10.1016/j.ces.2005.09.001
[22]
JIN N D, NIE X B, WANG J, et al. Flow pattern identification of oil/water two-phase flow based on kinematic wave theory[J]. Flow Measurement and Instrumentation, 2003, 14(4-5): 177-182. doi: 10.1016/S0955-5986(03)00023-2
[23]
JIN N D, NIE X B, REN Y Y, et al. Characterization of oil/water two-phase flow patterns based on nonlinear time series analysis[J]. Flow Measurement and Instrumentation, 2003, 14(4-5): 169-175. doi: 10.1016/S0955-5986(03)00022-0
[24]
SONG Xiaoqin, YANG Yuexin, ZHANG Tao, et al. Studies on water carrying of diesel oil in upward inclined pipes with different inclination angle[J]. Journal of Petroleum Science and Engineering, 2017, 157: 780-792. doi: 10.1016/j.petrol.2017.07.076
[25]
IZWAN Ismail A S, ISMAIL I, ZOVEIDAVIANPOOR M, et al. Experimental investigation of oil-water twophase flow in horizontal pipes:Pressure losses, liquid holdup and flow patterns[J]. Journal of Petroleum Science and Engineering, 2015, 127: 409-420. doi: 10.1016/j.petrol.2015.01.038