西南石油大学学报(自然科学版)  2018, Vol. 40 Issue (5): 71-83
塔中隆起奥陶系储层与油源断裂复合控藏模式    [PDF全文]
沈卫兵1 , 陈践发2, 罗广平2, 贺礼文2    
1. “深地动力学”自然资源部重点实验室·中国地质科学院地质研究所, 北京 西城 100037;
2. “油气资源与探测”国家重点实验室·中国石油大学(北京), 北京 昌平 102249
摘要: 基于现有油、气、水勘探成果及储层、断裂资料,利用常规测井、地震、地化及数理统计等多种方法,对塔中隆起奥陶系油气分布及成藏特征开展研究。结果表明,奥陶系储层以礁滩沉积为基础,发育大量溶蚀孔洞及裂缝,控制了油气相对高孔渗富集。储层孔隙度和渗透率越大,与围岩之间的毛细管力差就越大,含油气概率越大、含油饱和度越高,存在油气富集的临界毛细管力(2.5 MPa)。奥陶系油源断裂交汇处为油气优先充注点,控制了油气的近源富集。距离充注点越远,油气充注强度越小,油气产能越低,油气地球化学性质规律性变化,存在油气富集的临界距离(距充注点20 km)。在储层和油源断裂联合控制下,塔中隆起奥陶系油气富集呈"近充注点-相对高孔"的地质模式,于充注点近端的高孔渗储层内优先成藏。
关键词: 储层     断裂     烃源岩     油气成藏     奥陶系     塔中隆起    
Composite Controls on Oil and Gas Accumulation by Fractures in Source Rocks and Ordovician Reservoirs in the Tazhong Uplift
SHEN Weibing1 , CHEN Jianfa2, LUO Guangping2, HE Liwen2    
1. MLR Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Acadeym of Geological Sciences, Xicheng, Beijing 100037, China;
2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Changping, Beijing 102249, China
Abstract: In this study, existing oil, gas and water exploration results and information on reservoirs and fractures were used and various methods employed, including conventional borehole logging, seismology, geochemistry, and mathematical statistics. The goal of this synthesis of methodology and data was to examine the distributions and accumulation characteristics of oil and gas in the target layers in the study area. The results reveal that the Ordovician reservoirs are mainly composed of reef beach sediments. There are numerous karst caves and fractures, which control the relatively high-permeability accumulation of oil and gas. As porosity and permeability of a reservoir increase, capillary force differences between the reservoir and its surrounding rocks increase. Consequently, there is a higher probability that the reservoir contains oil and gas, and the degree of oil saturation increases. The critical capillary force for oil and gas accumulation is 2.5 MPa. Fractures in Ordovician source rocks show complicated distributions. They intersect each other to form ten oil and gas filling points, and control oil and gas accumulation near these filling points. When far away from these points, oil and gas filling becomes less intense and their yield decreases. The geochemical properties of oil and gas show regular variations. The critical distance for oil and gas accumulation is 20 km from a filling point. Under the joint control from reservoirs and fractures in source rocks, oil and gas show an accumulation mode characterizing "relatively high permeability near filling points" in which reserves are first formed near filling points in high-permeability reservoirs.
Keywords: reservoir     fault     source     hydrocarbon accumulation     Ordovician     Tazhong Uplift    
引言

塔中隆起奥陶系油气成藏条件优越,引起国内外学者和油气工业界的高度关注,相继探明塔中Ⅰ号、中古43号等多个千亿方级凝析气田[1-3]。根据现有油气水勘探成果,塔中隆起奥陶系流体相态多样且分布极为复杂:平面上表现为不同相态流体紧邻分布,凝析气藏、挥发性油藏、油藏、水藏之间界限不清;纵向上表现为不同类型产层叠置发育,高产层、低产层、油气显示层及水层分属不同的压力系统。研究表明,上述多相态流体的复杂分布受控于多种地质要素。烃源岩为储层富集油气提供物质来源,越靠近烃源岩,油气充注强度越大[4];断裂是油气的垂向运移通道,断距越大,油气富集层位越多[5-6];储层为油气富集提供孔隙空间,孔隙度、渗透率越大,连通性越好,油气越易富集[7-11];盖层是油气得以有效保存的关键,厚度越大,封闭性越好,油气成藏概率越大[12]。但目前对主控因素尚未达成统一认识,尤其是各因素往往相互关联:奥陶系储层展布除了与礁滩沉积体有关外,受断裂及不整合溶蚀作用的影响也较大;研究区油源条件复杂,多区、多源、多期成因油气主要通过断裂进入储层,烃源岩与断裂控藏密不可分。因此,系统研究各要素控藏特征,厘清各要素控藏机制,准确把握油气分布规律尤为重要。基于奥陶系现有油、气、水勘探成果,利用常规测井、地震、地化及数理统计等多种方法对储层、油源断裂的控藏特征与机制开展研究,建立研究区目的层储层─油源断裂复合控藏模式,以期为研究区目的层油气勘探开发提供一定的参考。

1 地质概况

塔中隆起处于塔里木盆地中央隆起,与满加尔拗陷、阿瓦提拗陷等多个生烃拗陷相邻,可划分为塔中Ⅰ号坡折带、北部斜坡带、南部斜坡带、中央断垒带和东部潜山带等5个构造单元[13],目前发现的油气多分布于北部斜坡带及塔中Ⅰ号坡折带(图 1)。除缺失侏罗系外,塔中隆起发育古生界寒武系至新生界古近系大套连续地层。目的层奥陶系发育3套储盖组合:(1)上奥陶统良里塔格组礁滩沉积为储层、上奥陶统桑塔木组泥岩为盖层;(2)下奥陶统鹰山组风化壳为储层、上奥陶统良里塔格组泥灰岩为盖层;(3)下奥陶统蓬莱坝组既为储层也为盖层(图 1)。其中,良里塔格组及鹰山组为现今的主要油气产层。塔中隆起奥陶系油气来源复杂,多为满加尔拗陷及隆起内部寒武系─奥陶系烃源岩混源成因油气[4, 14-15]

图1 塔中隆起奥陶系油气分布特征及地层展布 Fig. 1 Ordovician hydrocarbon features and lithologic distribution in the Tazhong Uplift
2 储层控制油气藏形成与分布 2.1 储层特征

塔中隆起奥陶系储层以礁、滩沉积为基础,岩性主要为砂屑灰岩、生屑灰岩、泥晶灰岩、云质灰岩和灰质白云岩等。利用岩石薄片鉴定、岩芯观察、成像测井解释等多种手段分析认为,奥陶系储层储集空间除发育大量的孔洞,也分布多种断裂裂缝。孔洞主要与礁滩体溶蚀作用相关,包括粒内溶孔、粒间溶孔、晶间溶孔等(图 2)。裂缝作为该区重要的储集空间,从成因来看,主要有构造缝、溶蚀缝和成岩缝3种类型,在铸体薄片中出现频率较高(图 2)。岩芯常规数据统计分析表明,储层孔隙度0.05%~12.09%,平均1.84%,平行渗透率0.002~910.000 mD,平均2.770 mD,可见断裂裂缝、不整合风化岩溶作用极大地改善了储层的孔渗性。

图2 塔中隆起奥陶系储层物性特征 Fig. 2 Physical property features of the Ordovician reservoir in the Tazhong Uplift
2.2 储层控油气作用特征

储层控藏作用的本质是为油气富集提供场所,最终表现为储层物性与油气分布的关系[16]。整体上,奥陶系以滩间海和礁滩体两种亚相为特征,现今发现的油气基本分布于易受溶蚀、裂缝改造的礁滩体内,滩间海相中分布极少(图 3)。

图3 塔中隆起奥陶系沉积相、储层及油气分布剖面图 Fig. 3 Distribution of weathering zone, reservoir and hydrocarbon in the Ordovician of Tazhong Uplift

具体而言,奥陶系油气基本都富集于孔隙度、渗透率大的储层段中,储层物性的纵向、横向变化直接控制了油、气、水的空间分布(图 3)。结合塔中隆起沉积相(控制礁滩体展布)、断裂(控制裂缝发育密度)及古地貌演化(控制风化岩溶作用)研究成果,作出奥陶系物性平面分布图(图 4)。从图 4可以看出,高孔渗发育区集中产出油气井,低孔渗分布区多分布失利井。

图4 塔中隆起奥陶系储层物性与油气分布图 Fig. 4 Plane distribution of reservoir physics property and hydrocarbon in the Ordovician of the Tazhong Uplift

进一步统计奥陶系34口井储层测井孔隙度、渗透率与油气解释成果的相关性,当储层测井孔隙度超过1.80%、渗透率超过0.100 mD时,储层含油气性随物性发生正相关变化,表现为储层含油饱和度随着孔隙度和渗透率的增大而增大(图 5),表明奥陶系高孔渗储层控藏地质模式。

图5 塔中隆起奥陶系储层物性与含油气性指标的关系 Fig. 5 Relationship between petroliferous property and reservoir physics property in the Ordovician of the Tazhong Uplift
2.3 储层控油气作用机制

塔中隆起奥陶系储层控藏作用表现为高孔渗储层富集油气,但含油气盆地内储层能否聚集油气,取决于储层与围岩间的相对物性[16-18]。奥陶系高孔渗储层与致密围岩之间存在着毛细管力差,驱使油气优先进入相对高孔渗区域,即物性差所产生的毛细管力差是非均一性碳酸盐岩储层控藏的关键[19]。奥陶系围岩为致密基质,物性在区域上较为统一,毛细管力可视为常值[20-21]。因此,储层与围岩间的毛细管力差取决于储层,储层受裂缝、溶蚀改造程度越强,孔隙度、渗透率、孔喉半径越大,毛细管力越小,与围岩的毛细管力差就越大,越有利于油气富集。

采用塔中隆起34口井922组储层的测井数据计算储层毛细管力值($p_{\text{c}}$),计算公式为[19]

$ p_{\textrm{c}} = 2\sigma\times 10^{-0.459}K-0.5\phi^{0.385} $ (1)

式中:

$p_{\text{c}}$─储层毛细管力值,MPa;

$\sigma$─经验常数,取0.734 5;

$\phi$─储层孔隙度,%;

$K$─储层渗透率,mD。

计算结果表明,当$p_{\text{c}}$大于2.5 MPa,基本为失利层;当$p_{\text{c}}$小于2.5 MPa,多为油气层(图 6),存在储层毛细管力控藏边界,与前人奥陶系碳酸盐岩储层油气突破压力模拟的相关实验值吻合[12]。随着$p_{\text{c}}$减小,油气层逐渐增多,储层富集油气的概率变大(图 7),进一步证实了储层与围岩间的毛细管力差为塔中隆起奥陶系油气高孔渗富集的根本原因。

图6 塔中隆起奥陶系储层毛细管力分布 Fig. 6 Distribution of reservoir capillary pressure in the Ordovician of the Tazhong Uplift
图7 塔中隆起奥陶系储层毛细管力油气富集概率的关系 Fig. 7 Relationship between capillary pressure and probability of oil and gas enrichment in the Ordovician of the Tazhong Uplift
3 油源断裂控制油气藏形成与分布 3.1 油源断裂特征

塔中隆起主要发育NW向逆冲断裂与NE向走滑断裂,两者对油气的高效输导已被证实[3, 5, 10, 21-22]。逆冲断裂体系主要为两端的塔中Ⅰ号断裂、塔中10号断裂及中部的塔中40号断裂,其中塔中Ⅰ号断裂为塔中隆起的边界断裂,控制了研究区的基本构造格局,由最初的伸展构造经多期构造变动演化而成[23-24]。逆冲断裂纵向断距较大,从下部的碳酸盐岩地层断至上部的碎屑岩地层,与隆起内部及满加尔拗陷寒武系─奥陶系烃源岩直接接触,控制着3个构造带及其周边的油气分布[23-25](图 1图 8)。

(剖面位置见图 1 (The location of the section is shown in Fig. 1) 图8 塔中隆起各构造带断裂展布及其控油气作用特征 Fig. 8 Fault distribution in the structural belts and its controlling on the hydrocarbon distribution, Tazhong Uplift

走滑断裂体系包括中古22号断裂、塔中82剪切走滑断裂及塔中621号断裂等(图 1),于中晚加里东期、早海西期多期活动,纵向上沟通下部烃源层与上部储层,控制了塔中隆起内部的油气分布[5, 24](图 1图 8)。两组断裂纵切形成10个交汇点(ZG17,TZ85,ZG3,TZ82,TZ621,ZG22,ZG441,ZG43,ZG432,ZG51)(图 1),其中,位于塔中Ⅰ号坡折带的5个交汇点已被证实为油气优先注入的区域[26-28]

3.2 充注点控油气作用特征

整体上,原油密度于10个断裂交汇点处最小,干燥系数、气油比、硫化氢含量于10个断裂交汇点处最大,远离断裂交汇点,原油密度沿NW─SE向逐渐增大,干燥系数、气油比、硫化氢含量逐渐减小(图 9)。以硫化氢为例(图 9c),随着距ZG3交汇点距离的增大,硫化氢含量沿NW向SE方向由15 170.00 mg/m$^3$减小到15.17 mg/m$^3$。相似地,ZG17区块断裂交汇部位的气油比约为其他区域的3倍。具体地,隆起外带断裂交汇点处,分布于走滑断裂上升盘的奥陶系储层多发育气油比高的凝析气藏,下降盘的奥陶系储层多为油藏或干层。同时,随着距断裂交汇点远近的变化,油气性质出现明显分异。

图9 塔中隆起奥陶系油气性质分布等值线图 Fig. 9 Contour of hydrocarbon properties in the Ordovician of the Tazhong Uplift

以TZ82断裂交汇点处相对上升盘为例,交汇点附近奥陶系主要分布浅色的凝析油气藏,随着远离交汇点,原油颜色变深,油气藏相态也逐渐变化为正常油藏,油气产能逐渐降低(图 10)。相似地,隆起内部断裂交汇点处油气性质分布也具有相同规律,如远离中古43断裂交汇点,原油黏度、含硫量、含蜡量逐渐增加,气油比、$ V/Ni$逐渐减小(图 11)。

(E—E′剖面,位置见图 1 (Section E—E′, the location is shown in Fig. 1) 图10 塔中隆起外部油气充注点控藏特征 Fig. 10 Hydrocarbon charging point controlling the hydrocarbon distribution in the eastern Tazhong Uplift
(F—F′剖面,位置见图 1 (Section F—F′, the location is shown in Fig. 1) 图11 塔中隆起内部油气充注点控藏特征 Fig. 11 Hydrocarbon charging point controlling the hydrocarbon distribution in the western Tazhong Uplift

奥陶系油气性质分布特征表明,塔中隆起油气优先于断裂交汇点注入储层,呈现出点状充注特征。塔中隆起经历中加里东期、晚海西期、喜马拉雅期三期油气充注,前两期主要充注原油,最后一期主要充注天然气[29-31]。喜马拉雅期大量充注的天然气对先期油藏进行气侵改造,导致油气性质在区域上发生变化[31-32]。断裂交汇点作为油气优先充注区域,后期天然气侵入强度较高,天然气干燥系数、硫化氢含量、气油比较大,原油密度较小。由于奥陶系碳酸盐岩非均质性较强,致密围岩阻碍了高孔渗储层之间的物质交换。因此,天然气从断裂交汇点向远端运移的过程中,侵入强度递减,呈现出气油比、原油密度等油气性质的规律性变化。

系统分析钻井油气产能与钻井距断裂交汇点距离间的关系,距断裂交汇点距离增大,油气产能有明显减小的趋势,当距离超过20 km,油气显示井、水井、干井大量分布,工业高产井比例极少(图 12),存在油气充注点控藏距离临界值。上述储层油气产能的规律性变化也表明,研究区NW向与NE向断裂纵切形成的油气充注点,控制了目的层油气分布。

图12 塔中隆起奥陶系油气产能与距油气充注点距离关系 Fig. 12 Relationship between distances to hydrocarbon injection points and production in Ordovician rocks, Tazhong Uplift
3.3 充注点控油气作用机制

上述油气优先沿断裂交汇点点状注入是以断裂面面状充注为基础,但与传统观点认为的面状充注存在较大区别。断层面的形貌与结构往往会发生变化,油气进入断裂面后,会优先选择物性相对较好的区域进行高效运移[33-34]

Cowley和Gartrell等利用物理模拟与地质解剖相结合的方法研究认为,构造演化后期形成的断裂往往对前期形成的断裂进行改造,不同时期断裂相互作用的区域,多发育物性较好的油气优势运移通道[35-36]

根据三维地震资料,塔中隆起走滑断裂沿走向其倾向发生转变,丝带效应明显,具有分段性和多期性发育的特点。沿着走向,走滑断裂靠近Ⅰ号断裂具有张扭性走滑的特征,倾向为右倾,剖面上呈现出“负花状”构造特征;而靠近中央中部凸起则多表现出压扭逆断层性质,倾向为左倾,表现为“正花状”构造特征(图 13)。

(剖面位置见图 1 (The location of the section is shown in Fig. 1) 图13 塔中隆起走滑断裂性质解剖图 Fig. 13 Analysis of strike-slip fault characteristic in the Tazhong Uplift

简单地说,区内走滑断裂南北分段差异大,南段压扭、北段张扭,其中,断层两段性质发生变化的转折点为其与塔中10号逆冲断裂带的交汇部位。由于逆冲断裂的改造与叠加,走滑断裂在倾向转折点(即断裂交汇部位)断裂性质最强,极大地改善了断裂交汇部位储层的物性,使得其为交汇部位远端储层物性的4~5倍(图 4),为油气的高效运移提供优势通道。

基于以上理论支撑及实际地质特征剖析,塔中含油气区油气从烃源岩排出之后,经断裂面输导进入隆起部位的过程中,优先沿断裂交汇形成的油气注入点运移,最终于奥陶系油气充注点近端的优质储层聚集成藏,表现为近油气充注点富油气地质模式。这也更为合理地解释了目的层油气“南北分带、东西分块”的分布格局(图 1)。

4 储层─油源断裂复合控藏模式

塔中隆起奥陶系储层控制了油气的相对高孔渗富集,包涵了礁滩体、断裂裂缝、风化溶蚀作用的综合影响,油源断裂控制了油气的近充注点富集,包涵了烃源岩、断裂的综合影响。两者联合作用宏观上控制着奥陶系油气的空间分布,微观上控制着储层的含油气性,呈现出“近充注点─相对高孔”复合富油气地质模式(图 14):油气优先于断裂交汇点处高孔渗储层改造区发生运聚,进而在毛细管力差的控制下,越过致密围岩向周边相对高孔渗区域运移,表现为油气相态及成熟度的有序变化(图 14)。

图14 塔中隆起奥陶系“近充注点─相对高孔”复合富油气地质模式图 Fig. 14 Hydrocarbon accumulation model jointly controlled by reservoir and source fault in Ordovician, Tazhong Uplift

近年来,塔中隆起北部斜坡带西部ZG49、ZG50等井区频频失利,奥陶系油气勘探面临挑战[3]。根据“近充注点─相对高孔”复合富油气地质模式,北部斜坡带西部与东部奥陶系储层条件及油气输导、充注条件等相似,结合前人有关油气保存条件研究成果[12],在东部取得重要勘探成果的基础上,西部也具有巨大的油气资源潜力,可作为塔中隆起油气勘探的有利目标。

另外,相较于油气充注点远端的储层,充注点近端的储层受NW、NE向断裂综合改造,储层物性更好,应优先勘探。同时,走滑断裂引起的断裂交汇点两侧相对高差控制了油气聚集的有利位置,使上升盘一侧的储层更有利于油气富集(图 11),因此,针对断裂交汇部位近端的勘探应首先选择上升盘。

5 结论

(1) 塔中隆起奥陶系储层以礁滩沉积为基础,发育大量的溶蚀孔洞及裂缝,控制了油气相对高孔渗富集。储层孔隙度、渗透率越大,与围岩之间的毛细管力差就越大,含油气的概率越大、含油饱和度越高,存在油气富集的临界毛细管力(2.5 MPa)。

(2) 塔中隆起奥陶系油源断裂分布复杂,相互交汇形成10个充注点,控制了油气近充注点富集。远离充注点,油气充注强度减小,油气产能降低,油气地化性质发生规律性变化,存在油气富集的临界距离(距充注点20 km)。

(3) 塔中隆起奥陶系油气在储层和油源断裂的联合控制下,呈现“近充注点─相对高孔富集”的地质模式。针对北部斜坡带西部奥陶系的油气勘探,应优先选择断裂交汇点近端的区域,且断裂交汇点近端走滑断裂的上升盘储层富集油气的概率更大。

参考文献
[1]
GRAHAM S A, BRASSELL S, CARROLL A R. Characteristics of selected petroleum source rocks, Xinjiang Uygur Autonomous Region, northwest China[J]. American Association of Petroleum Geologists Bulletin, 1990, 74(4): 493-512. doi: 10.1306/0c9b233f-1710-11d7-8645-000102c1865d
[2]
韩剑发, 孙崇浩, 王振宇, 等. 塔中隆起碳酸盐岩叠合复合岩溶模式与油气勘探[J]. 地球科学, 2017, 42(3): 410-420.
HAN Jianfa, SUN Chonghao, WANG Zhenyu, et al. Superimposed compound karst model and oil and gas exploration of carbonate in the Tazhong Uplift[J]. Earth Science, 2017, 42(3): 410-420. doi: 10.3799/dqkx.2017.031
[3]
周新源, 吕修祥, 杨海军, 等. 塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响[J]. 石油学报, 2013, 34(4): 628-635.
ZHOU Xinyuan, LÜ Xiuxiang, YANG Haijun, et al. Effects of strike-slip faults on the differential enrichment of hydrocarbons in the northern sloppe of Tazhong Area[J]. Acta Petrolei Sinca, 2013, 34(4): 628-635. doi: 10.7623/-syxb201304002
[4]
LI Sumei, AMRANI A, PANG Xiongqi, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78: 1-22. doi: 10.1016/j.orggeochem.2014.10.004
[5]
LAN Xiaodong, LÜ Xiuxiang, ZHU Yanming, et al. The geometry and origin of strike-slip faults cutting the Tazhong Low Rise megaanticline (Central Uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 633-645. doi: 10.1016/-j.jngse.2014.12.030
[6]
韩杰, 江杰, 张敏, 等. 断裂及其裂缝发育带在塔中油气勘探中的意义[J]. 西南石油大学学报(自然科学版), 2015, 37(2): 11-20.
HAN Jie, JIANG Jie, ZHANG Min, et al. Significance of fault and fracture developing area in oil and gas exploration in Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(2): 11-20. doi: 10.11885/j.issn.1674-5086.2013.06.09.01
[7]
于红枫, 白忠凯, 邓力萍, 等. 塔中下奥陶统鹰山组不整合面的确定及其地质意义[J]. 新疆石油地质, 2011, 32(3): 231-234.
YU Hongfeng, BAI Zhongkai, DENG Liping, et al. Determination and geologic significance of Yingshan unconformity of Lower Ordovician in Tazhong Area, Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(3): 231-234.
[8]
傅恒, 韩建辉, 孟万斌, 等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J]. 天然气工业, 2017, 37(3): 25-35.
FU Heng, HAN Jianhui, MENG Wanbin, et al. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3): 25-35. doi: 10.3787/j.issn.-1000-0976.2017.03.004
[9]
罗春树, 杨海军, 李江海, 等. 塔中奥陶系优质储集层特征及断裂控制作用[J]. 石油勘探与开发, 2011, 38(6): 716-724.
LUO Chunshu, YANG Haijun, LI Jianghai, et al. Characteristics of high quality Ordovician reservoirs and controlling effects of faults in the Tazhong Area, Tarim Basin[J]. Petroleum Exploration and Development, 2011, 38(6): 716-724.
[10]
WU Guanghui, YANG Haijun, HE Shu, et al. Effects of structural segmentation and faulting on carbonate reservoir properties:A case study from the central uplift of the Tarim Basin, China[J]. Marine and Petroleum Geology, 2016, 71: 183-197. doi: 10.1016/j.marpetgeo.2015.12.008
[11]
沈卫兵, 庞雄奇, 陈践发, 等. 塔里木盆地塔中Ⅱ区奥陶系油气差异性分布及其主控因素分析[J]. 地质论评, 2018, 64(4): 913-926.
SHEN Weibing, PANG Xiongqi, CHEN Jianfa, et al. Differential hydrocarbon distribution and its key controlling factor, Tazhong Ⅱ Area, NW China[J]. Geologicl Review, 2018, 64(4): 913-926. doi: 10.16509/j.georeview.2018.-04.009
[12]
LÜ Xiuxiang, WANG Yafang, YU Hongfeng, et al. Major factors affecting the closure of marine carbonate caprock and their quantitative evaluation:A case study of Ordovician rocks on the northern slope of the Tazhong Uplift in the Tarim Basin, western China[J]. Marine and Petroleum Geology, 2017, 83: 231-245. doi: 10.1016/j.marpetgeo.-2017.03.006
[13]
张保涛, 于炳松, 苏劲, 等. 塔中西部平台区油气分布差异性及其主控因素[J]. 西南石油大学学报(自然科学版), 2014, 36(5): 49-58.
ZHANG Baotao, YU Bingsong, SU Jin, et al. Differential hydrocarbon distribution and its main controlling factors of plat area in western Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(5): 49-58. doi: 10.11885/j.issn.1674-5086.2012.08.30.09
[14]
朱心健, 陈践发, 贺礼文, 等. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学, 2017, 28(4): 566-574.
ZHU Xinjian, CHEN Jianfa, HE Liwen, et al. Geochemical characterics and source correlation of hydrocarbon in the Well Luosi 2 of Maigaiti Slope, Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(4): 566-574. doi: 10.-11764/j.issn.1672-1926.2017.03.001
[15]
王飞宇, 张水昌, 张宝民, 等. 塔里木盆地寒武系海相烃源岩有机成熟度及演化史[J]. 地球化学, 2003, 32(5): 461-468.
WANG Feiyu, ZHANG Shuichang, ZHANG Baomin, et al. Maturity and its history of Cambrian marine source rocks in the Tarim Basin[J]. Geochimica, 2003, 32(5): 461-468. doi: 10.3321/j.issn:0379-1726.2003.05.007
[16]
庞雄奇, 陈冬霞, 张俊, 等. 相-势-源复合控油气成藏机制物理模拟实验研究[J]. 古地理学报, 2013, 15(5): 575-595.
PANG Xiongqi, CHEN Dongxia, ZHANG Jun, et al. Physical simulation experimental study on mechanism for hydrocarbon accumulation controlled by facies-potentialsource coupling[J]. Journal of Palaeogeography, 2013, 15(5): 575-595. doi: 10.7605/gdlxb.2013.05.046
[17]
ROBETS S J, NUNN J A, CATHLES L, et al. Expulsion of abnormally pressured fluids along faults[J]. Journal of Geophysical Research, 1996, 101(B12): 28231-28252. doi: 10.1029/96jb02653
[18]
李明诚, 单秀琴, 马成华, 等. 砂岩透镜体成藏的动力学机制[J]. 石油与天然气地质, 2007, 28(2): 209-215.
LI Mingcheng, SHAN Xiuqin, MA Chenghua, et al. Dynamics of sand lens reservoir[J]. Oil & Gas Geology, 2007, 28(2): 209-215. doi: 10.3321/j.issn:0253-9985.2007.02.-012
[19]
PITTMAN E D. Relationship of porosity and permeability to various parameters[J]. Association of Petroleum Geologists Bulletin, 1992, 76: 191-198. doi: 10.1306/bdff87a4-1718-11d7-8645000102c1865d
[20]
CHEN Dongxia, PANG Xiongqi, KUANG Jun, et al. Control of facies and potential on Jurassic hydrocarbon accumulation and prediction of favourable targets in the Hinterland region of the Junggar Basin[J]. Acta Geologica Sinica (English Edition), 2010, 84(5): 1256-1272. doi: 10.1111/acgs.2010.84.issue-5
[21]
PANG Hong, CHEN Junqing, PANG Xiongqi, et al. Key factors controlling hydrocarbon accumulations in Ordovician carbonate reservoirs in the Tazhong Area, Tarim Basin, western China[J]. Marine and Petroleum Geology, 2013, 43: 88-101. doi: 10.1016/j.marpetgeo.2013.03.002
[22]
WANG Yangyang, CHEN Jianfa, PANG Xiongqi, et al. Origin of deep sour natural gas in the Ordovician Carbonate reservoir of the Tazhong Uplift, Tarim Basin, northwest China:Insights from gas geochemistry and formation water[J]. Marine and Petroleum Geology, 2018, 91: 532-549. doi: 10.1016/j.marpetgeo.2018.01.029
[23]
张仲培, 王毅, 云金表, 等. 塔中地区断裂不同演化阶段对油气聚集的控制[J]. 石油与天然气地质, 2009, 30(3): 316-324.
ZHANG Zhongpei, WANG Yi, YUN Jinbiao, et al. Control of faults at different evolution stage on hydrocarbon accumulation in Tazhong Area, Tarim Basin[J]. Oil & Gas Geology, 2009, 30(3): 316-324. doi: 10.3321/j.issn:0253-9985.2009.03.010
[24]
LI Chuanxin, WANG Xiaofeng, LI Benliang, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. doi: 10.1016/j.marpetgeo.2012.09.010
[25]
庞宏, 庞雄奇, 石秀平, 等. 调整改造作用对塔中油气藏的影响[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 33-39.
PANG Hong, PANG Xiongqi, SHI Xiuping, et al. The influence of adjustment and modification on hydrocarbon accumulation in Tazhong Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(1): 33-39. doi: 10.3863/j.issn.1674-5086.2010.-01.006
[26]
SHEN Weibing, PANG Xiongqi, JIANG Fujie, et al. Accumulation model based on factors controlling Ordovician hydrocarbons generation, migration, and enrichment in the Tazhong Area, Tarim Basin[J]. Arabia Journal of Geoscience, 2016, 9: 347-369. doi: 10.1007/s12517-016-2319-8
[27]
PANG Hong, CHEN Junqing, PANG Xiongqi, et al. Analysis of secondary migration of hydrocarbons in the Ordovician carbonate reservoirs in the Tazhong Uplift, Tarim Basin, China[J]. AAPG Bulletin, 2013, 97(10): 1765-1783. doi: 10.1306/04231312099
[28]
XIANG Caifu, PANG Xiongqi, YANG Wenjing, et al. Hydrocarbon migration and accumulation along the fault intersection zone-A case study on the reef-flat systems of the No. 1 slope break zone in the Tazhong Area, Tarim Basin[J]. Petroleum Science, 2010, 7(2): 211-225. doi: 10.1007/s12182-010-0021-0
[29]
杨海军, 朱光有, 韩剑发, 等. 塔里木盆地塔中礁滩体大油气田成藏条件与成藏机制研究[J]. 岩石学报, 2011, 27(6): 1865-1885.
YANG Haijun, ZHU Guangyou, HAN Jianfa, et al. Condition and mechanism of hydrocarbon accumulation in large reef-bank Karst Oil/Gas Fields of Tazhong Area, Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(6): 1865-1885.
[30]
杨海军, 邬光辉, 韩剑发, 等. 塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征[J]. 石油学报, 2007, 28(4): 26-30.
YANG Haijun, WU Guanghui, HAN Jianfa, et al. Characteristics of hydrocarbon enrichment along the Ordovician Carbonate platform margin in the central uplift of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 26-30. doi: 10.7623/syxb200704005
[31]
ZHU Guangyou, ZHANG Baotao, YANG Haijun, et al. Origin of deep strata gas of Tazhong in Tarim Basin, China[J]. Organic Geochemistry, 2014, 74: 85-97. doi: 10.1016/j.orggeochem.2014.03.003
[32]
ZHANG Shuichang, HUANG Haiping. Geochemistry of Paleozoicmarine petroleum from the Tarim Basin, NW China:Part 1. Oil family classification[J]. Organic Geochemistry, 2005, 36(8): 1204-1214. doi: 10.1016/j.orggeochem.2005.01.013
[33]
PRATSCH J C. The distribution of major oil and gas reserves in regional basin structures, an example from the Powder river basin, Wyoming, USA[J]. Journal of Petroleum Geology, 1986, 9(4): 393-412. doi: 10.1306/-bf9ab666-0eb6-11d7-8643000102c1865d
[34]
郝芳, 邹华耀, 姜建群. 油气成藏动力学及其研究进展[J]. 地学前缘(中国地质大学, 北京), 2000, 7(3): 11-20.
HAO Fang, ZOU Huayao, JIANG Jianqun. Dynamics of petroleum accumulation and its advances[J]. Earth Science (China University of Geosciences, Beijing), 2000, 7(3): 11-20. doi: 10.3321/j.issn:1005-2321.2000.03.002
[35]
GARTRELL A, ZHANG Yanhua, LISK M, et al. Fault intersections as critical hydrocarbon leakage zones:Integrated field study and numerical modelling of an example from the Timor Sea, Australia[J]. Marine and Petroleum Geology, 2004, 21: 1165-1179. doi: 10.1016/j.-marpetgeo.2004.08.001
[36]
CROW D. Fluid flow at fault intersections in an active oblique collision[J]. Journal of Geochemical Exploration, 2000, 69-70: 523-526. doi: 10.1016/s0375-6742-(00)00094-7