
页岩气藏分布广泛,储层致密,是重要的CO
煤岩储层温度、压力较页岩储层低得多,但煤岩割理、裂隙发育,渗流、注入能力较页岩更高,且煤岩储层甲烷以吸附态为主,因而两类储层CO
页岩储集空间以纳米尺度孔隙为主,明确超临界CO
多孔介质内部流体传输能力实验评价主要采用岩芯夹持器系统,测试参数包括入/出口端压力、传输时间、组分浓度等。本文采用如图 1所示实验装置,包括气源、温控系统、岩芯夹持器系统、真空泵、压力监测系统、气相色谱仪等。页岩渗流、扩散能力极低,为避免长时间测试过程中气体沿岩样侧壁渗漏,设置夹持器的围压值为20 MPa,并注入15 MPa以上的高压气体检测系统气闭性。同时,该围压值也有利于页岩内部微裂缝充分闭合,尽量排除微裂缝对纳米孔传输结果影响。
![]() |
图1 实验装置示意图 Fig. 1 Diagram of the experimental setup |
实验前,对夹持器系统抽真空,设定系统温度80℃(模拟涪陵页岩气藏温度),恒定48 h以上,使岩样与气体温度、围压值(20 MPa)充分稳定。根据岩芯入口端注入气体类型差异,测试共分为4组,第一组、第二组分别注入CO
如果页岩岩样存在连通性微裂缝,则该微裂缝将是气体主要传输通道[11-14],导致无法有效评价纳米孔内超临界CO
在扫描电镜下,观察到大量纳米尺度的有机质孔与黏土矿物粒间孔,有机孔呈圆形、椭圆形,黏土矿物粒间孔呈狭缝形,并含少量纳米级溶蚀孔(图 2a~图 2d)。氮气吸附法与压汞法测试表明,页岩储渗空间以纳米尺度为主(图 2e、图 2f),仅极少孔隙大于1 μm,因而气体在页岩内部的传输行为主要发生于纳米孔内。
![]() |
图2 页岩纳米孔特征及其孔径分布 Fig. 2 The nanopores of shale and pore size distribution |
岩样入口端充注的超临界CO
![]() |
图3 岩样入/出口端压力动态变化 Fig. 3 The change in gas pressure between inlet and outlet core sample |
实验测试时,岩样内部、出口端均处于真空状态,当出口端监测到压力大于0时,表明CO
实验表明:对于长度约5.1 cm的页岩岩芯柱(渗透率小于100 nD),CO
![]() |
图4
页岩纳米孔内CO |
为进一步验证页岩纳米孔内超临界CO
![]() |
图5
岩样入口端CO |
Javadpour等根据Knudsen数划分了页岩纳米孔内气体传输方式,宏孔(
![]() |
图6
不同压力下CO |
除黏度外,超临界CO
![]() |
图7
不同压力下CO |
扩散是页岩纳米孔内气体重要传输方式[22-23]。页岩微孔(
$ J_{\rm{k}} =-\dfrac{2}{3} \zeta_{\text{mb}}r{\left (\dfrac{8}{\pi {\rm{R}}TM} \right)^{0.5}} \dfrac{\text{d}p}{\text{d}l} $ | (1) |
式中:
R—气体常数,R=8.314 J/(mol·K);
从式(1)可以看出,努森扩散量与气体分子量呈反比,即分子量越小的气体传输速率越大。CO
本文选取渗透率为纳达西级别的龙马溪组柱塞岩样,测试了页岩纳米孔内CO
![]() |
图8 页岩纳米孔内气体吸附平衡时间对比 Fig. 8 The equilibrium time of gas adsorption in shale nanopores |
页岩有机质、黏土矿物对CO
![]() |
图9
页岩对CO |
与甲烷相比,CO
游离态甲烷含量越高,页岩气井产量越大。当产气层注入超临界CO
![]() |
图10
超临界CO |
为缩短注入时间,同时尽量避免单井“吞吐”损害页岩纳米孔内游离态甲烷传输能力,在多级压裂水平井段,可以选择某些压裂段注入超临界CO
(1) 室内岩芯流动实验表明,页岩基块岩样(渗透率小于100 nD)入口端分别注入超临界CO
(2) 与甲烷相比,超临界CO
(3) 基于页岩纳米孔内超临界CO
[1] |
KHOSROKHAVAR R, GRIFFITHS S, WOLF K H. Shale gas formations and their potential for carbon storage:Opportunities and outlook[J]. Environmental Processes, 2014, 1(4): 595-611. doi: 10.1007/s40710-014-0036-4 |
[2] |
SCHEPERS K C, NUTTALL B C, OUDINOT A Y, et al. Reservoir modeling and simulation of the devonian gas shale of eastern kentucky for enhanced gas recovery and CO2 storage[C]. SPE 126620-MS, 2009. doi:10.2118/126620-MS
|
[3] |
DAHAGHI A K. Numerical simulation and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs:A feasibility study[C]. SPE 139701-MS, 2010. doi:10.2118/139701-MS
|
[4] |
JIANG Jiamin, SHAO Yuanyuan, YOUNIS R M. Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[C]. SPE 169114-MS, 2014. doi:10.2118/169114-MS
|
[5] |
HELLER R, ZOBACK M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 14-24. doi: 10.1016/j.juogr.2014.06.001 |
[6] |
张美红, 吴世跃, 李川田. 煤系地层注入CO2开采煤层气质交换的机理[J]. 煤炭学报, 2013, 38(7): 1196-1200. ZHANG Meihong, WU Shiyue, LI Chuantian. Mass exchange mechanism of coalbed methane exploitation by CO2 injection in coal measure strata[J]. Journal of China Coal Society, 2013, 38(7): 1196-1200. doi: 10.13225/j.cnki.jccs.2013.07.015 |
[7] |
LIU Faye, Ellett K, XIAO Yitian, et al. Assessing the feasibility of CO2 storage in the new Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation[J]. International Journal of Greenhouse Gas Control, 2013, 17: 111-126. doi: 10.1016/j.ijggc.2013.04.018 |
[8] |
GODEC M, KOPERNA G, PETRUSAK R, et al. Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the eastern United States[J]. International Journal of Coal Geology, 2013, 118: 95-104. doi: 10.1016/j.coal.2013.05.007 |
[9] |
KIM T H, PARK S S, LEE K S. Modeling of CO2 injection considering multi-component transport and geomechanical effect in shale gas reservoirs[C]. SPE 176174-MS, 2015. doi:10.2118/176174-MS
|
[10] |
申建, 秦勇, 张春杰, 等. 沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1): 156-161. SHEN Jian, QIN Yong, ZHANG Chunjie, et al. Feasibility of enhanced coalbed mehtane recovery by CO2 sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(1): 156-161. doi: 10.13225/j.cnki.jccs.2015.9030 |
[11] |
NING Xiuxu, FAN Jin, HOLDITCH S A, et al. The measurement of matrix and fracture properties in naturally fractured cores[C]. SPE 25898-MS, 1993. doi:10.2118/25898-MS
|
[12] |
LUFFEL D L, HOPKINS C W, SCHETTLER P D. Matrix permeability measurement of gas productive shales[C]. SPE 26633-MS, 1993. doi:10.2118/26633-MS
|
[13] |
SINHA S, BRAUN E M, PASSEY Q R. Advances in measurement standards and flow properties measurements for tight rocks such as shales[C]. SPE 152257-MS, 2012. doi:10.2118/152257-MS
|
[14] |
GHANIZADEH A, BHOWMIK S, HAERI-ARDAKANI O. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques:Examples from the Duvernay Formation, Alberta (Canada)[J]. Fuel, 2015, 140: 371-387. doi: 10.1016/j.fuel.2014.09.073 |
[15] |
TINNI A, FATHI E, AGARWAL R. Shale permeability measurements on plugs and crushed samples[C]. SPE 162235-MS, 2012. doi:10.2118/162235-MS
|
[16] |
SUAREZ R R, CHERTOV M, WILLBERG D M, et al. Understanding permeability measurements in tight shales promotes enhanced determination of reservoir quality[C]. SPE 162816-MS, 2012. doi:10.2118/162816-MS
|
[17] |
JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61. doi: 10.2118/07-10-06 |
[18] |
陈强, 康毅力, 游利军, 等. 页岩微孔结构及其对气体传质方式影响[J]. 天然气地球科学, 2013, 24(6): 1298-1304. CHEN Qiang, KANG Yili, YOU Lijun, et al. Micro-pore structure of gas shale and its effect on gas mass transfer[J]. Natural Gas Geoscience, 2013, 24(6): 1298-1304. |
[19] |
田守嶒, 王天宇, 李根生, 等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12): 18-25. TIAN Shouzeng, WANG Tianyu, LI Gensheng, et al. Molecular simulation of methane adsorption behavior in different shale Kerogen types[J]. Natural Gas Industry, 2017, 37(12): 18-25. doi: 10.3787/j.issn.1000-0976.2017.12.003 |
[20] |
孙扬. 天然气藏超临界CO2埋存及提高天然气采收率机理[D]. 成都: 西南石油大学, 2012. SUN Yang. Sequestration of supercritical CO2 in natural gas reservoir and mechanism of enhancing gas recovery[D]. Chengdu:Southwest Petroleum University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10615-1012516050.htm |
[21] |
SIDIQ H, AMIN R. Super critical CO2-methane relative permeability investigation[C]. SPE 137884, 2010. doi:10.2118/137884-MS
|
[22] |
JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. doi: 10.2118/09-08-16-DA |
[23] |
吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848. WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848. doi: 10.7623/syxb201507008 |
[24] |
景莎莎. 砂岩微孔隙中CO2/CH4传质过程的分子模拟研究[D]. 成都: 西南石油大学, 2015. JING Shasha. Molecular simulation study of CO2/CH4 mass transfer process in sandstone micro pore[D]. Chengdu:Southwest Petroleum University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10615-1015599174.htm |
[25] |
KANG Yili, CHEN Mingjun, LI Xiangchen, et al. Laboratory measurement and interpretation of nonlinear gas flow in shale[J]. International Journal of Modern Physics C, 2015, 26(6): 1550063. doi: 10.1142/S0129183115500631 |
[26] |
葛洪魁, 申颍浩, 宋岩, 等. 页岩纳米孔隙气体流动的滑脱效应[J]. 天然气工业, 2014, 34(7): 46-54. GE Hongkui, SHEN Yinhao, SONG Yan, et al. Slippage effect of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 2014, 34(7): 46-54. doi: 10.3787/j.issn.1000-0976.2014.07.008 |
[27] |
曹成, 李天太, 刘刚, 等. 考虑吸附滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 48-53. CAO Cheng, LI Tiantai, LIU Gang, et al. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(5): 48-53. doi: 10.3969/j.issn.1673-064X.2015.05.008 |
[28] |
张艳玉, 李冬冬, 孙晓飞, 等. 实际状态下的页岩气表观渗透率计算新模型[J]. 天然气工业, 2017, 37(11): 53-60. ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. A new model for calculating the apparent permeability of shale gas in the real state[J]. Natural Gas Industry, 2017, 37(11): 53-60. doi: 10.3787/j.issn.1000-0976.2017.11.007 |
[29] |
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3): 425-430. WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3): 425-430. doi: 10.11743/ogg201418 |