西南石油大学学报(自然科学版)  2018, Vol. 40 Issue (5): 154-162
页岩纳米孔内超临界CO2、CH4传输行为实验研究    [PDF全文]
陈强, 孙雷 , 潘毅, 高玉琼    
“油气藏地质及开发工程”国家重点实验室·西南石油大学, 四川 成都 610500
摘要: 了解超临界CO2、CH4在页岩纳米孔内传输行为,是研究页岩储层超临界CO2注入能力、注入后时空分布以及提高页岩气藏采收率的基础。选用渗透率小于100 nD的龙马溪组富有机质页岩基块岩样,利用岩芯流动实验装置,通过监测岩芯入/出口端气体压力与混合气体(CO2、CH4)浓度变化,对比了页岩纳米孔内超临界CO2、CH4传输能力,分析了传输能力差异的原因。结果表明:页岩纳米孔内超临界CO2压力传递速率明显小于CH4,实验结束后岩样入口端二元混合气体组分中CH4百分含量显著降低,证实页岩纳米孔内超临界CO2传输能力显著低于CH4,主要原因是超临界CO2吸附能力更强、扩散-渗流能力更小以及超高密度特性表现出的非混相、活塞式驱替行为。基于以上认识,选择某些压裂段注入超临界CO2,而其他压裂段作为生产段,比单井"吞吐"方式(即注入-焖井-开井生产)更有利于驱替置换页岩纳米孔内游离态甲烷。
关键词: 超临界CO2     甲烷     传输     纳米孔     页岩气     采收率    
Experimental Study on the Transmission Behaviors of Supercritical CO2 and CH4 in Shale Nanopores
CHEN Qiang, SUN Lei , PAN Yi, GAO Yuqiong    
State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
Abstract: Understanding the transmission behaviors of supercritical CO2 and CH4 in shale nanopores is fundamental for studying the supercritical CO2 injection capacity of shale reserves and the temporal and spatial distribution of injected supercritical CO2. Understanding these behaviors is also essential for improving the recovery rate of shale reserves. In the study, the transmission capacities of supercritical CO2 and CH4 in shale nanopores were compared and the difference in their transmission capacities was analyzed for the underlying reason. A core flow experiment was performed on organic-matter-rich shale matrix samples of the Longmaxi Formation (permeability smaller than 100 nD) by varying the pressure as well as the CO2 and CH4 concentrations in the CO2/CH4 mixture at the inlet and outlet of the core. The experimental results show that the pressure transmission rate of supercritical CO2 in shale nanopores was clearly lower than that of CH4. At the end of the experiment, the CH4 content by percentage in the CO2/CH4 mixture significantly decreased at the inlet of the rock sample, demonstrating that the transmission capacity of supercritical CO2 in shale nanopores is significantly lower than that of CH4. This can be explained by certain properties of supercritical CO2, such as its higher absorption capacity and lower diffusibility and permeability as well as its immiscible displacement and piston-like displacement behaviors owing to its super-high density characteristics. Based on this understanding, some fractured sections were selected for supercritical CO2 injection, and other fractured sections were reserved for production. Compared with the single-well injection-soaking-production design, this configuration facilitates better displacement of free-state methane in shale nanopores.
Keywords: supercritical CO2     methane     transport     nanopores     shale gas     recovery rate    
引言

页岩气藏分布广泛,储层致密,是重要的CO$_{2}$地质埋存靶场[1],被埋存的CO$_{2}$同时又可用于提高页岩气藏采收率[2-4]。Heller等通过测试发现,页岩CO$_{2}$吸附能力是甲烷的2~3倍[5]。页岩气以吸附态、游离态共存,注入的CO$_{2}$通过竞争吸附促使吸附态甲烷解吸,增加游离态甲烷数量,从而提高采收率[6]。Liu等研究了北美Devonian-Mississippian New Albany页岩气藏CO$_{2}$埋存潜力[7],结果表明,吸附作用可使95%以上的CO$_{2}$注入量得到有效埋存;Godec等通过数值模拟发现,在最优化注采井网下,注入CO$_{2}$可使页岩气采收率提高7%~12%[8-9]。注CO$_{2}$提高煤层甲烷采收率已在室内与现场试验得到了验证[10],而页岩气藏注CO$_{2}$仍处于初期探索阶段,大量关键科学问题有待明确。

煤岩储层温度、压力较页岩储层低得多,但煤岩割理、裂隙发育,渗流、注入能力较页岩更高,且煤岩储层甲烷以吸附态为主,因而两类储层CO$_{2}$注入行为存在显著差异。CO$_{2}$的临界温度为31.1℃,临界压力为7.4 MPa,而中国页岩气藏埋深普遍大于2 000 m,储层温度大于80℃,孔隙压力大于20 MPa,CO$_{2}$注入时将以超临界态存在,而超临界CO$_{2}$性质更像“液体”,与页岩气层CH$_{4}$相态、黏度和密度等存在很大差别。

页岩储集空间以纳米尺度孔隙为主,明确超临界CO$_{2}$、CH$_{4}$在纳米孔内的传输行为,对超临界CO$_{2}$注入能力判断、注入后时空分布具有重要借鉴意义,同时也是揭示超临界CO$_{2}$驱替置换纳米孔内游离态甲烷的基础。

1 实验方法与岩样选取 1.1 实验装置与步骤

多孔介质内部流体传输能力实验评价主要采用岩芯夹持器系统,测试参数包括入/出口端压力、传输时间、组分浓度等。本文采用如图 1所示实验装置,包括气源、温控系统、岩芯夹持器系统、真空泵、压力监测系统、气相色谱仪等。页岩渗流、扩散能力极低,为避免长时间测试过程中气体沿岩样侧壁渗漏,设置夹持器的围压值为20 MPa,并注入15 MPa以上的高压气体检测系统气闭性。同时,该围压值也有利于页岩内部微裂缝充分闭合,尽量排除微裂缝对纳米孔传输结果影响。

图1 实验装置示意图 Fig. 1 Diagram of the experimental setup

实验前,对夹持器系统抽真空,设定系统温度80℃(模拟涪陵页岩气藏温度),恒定48 h以上,使岩样与气体温度、围压值(20 MPa)充分稳定。根据岩芯入口端注入气体类型差异,测试共分为4组,第一组、第二组分别注入CO$_{2}$、CH$_{4}$单组分气体,第三组、第四组分别注入CO$_{2}$、CH$_{4}$二元混合组分(浓度比分别为91:9、49:51)。实验过程中,实时监测4组岩样入/出口端压力,并在200 h后色谱测试第三组和第四组岩样的入口端组分浓度。

1.2 岩样选取及其纳米孔特征

如果页岩岩样存在连通性微裂缝,则该微裂缝将是气体主要传输通道[11-14],导致无法有效评价纳米孔内超临界CO$_{2}$、CH$_{4}$传输行为。Tinni等所做测试表明,无微裂缝页岩岩样渗透率一般小于100 nD[15-16]。为此,选用压力脉冲渗透率小于100 nD的龙马溪组柱状岩样(长5.1 cm、直径2.5 cm)开展实验,实验前60℃充分烘干岩样。该岩样有机碳含量4.0%,黏土矿物含量29.3%,孔隙度6.2%。

在扫描电镜下,观察到大量纳米尺度的有机质孔与黏土矿物粒间孔,有机孔呈圆形、椭圆形,黏土矿物粒间孔呈狭缝形,并含少量纳米级溶蚀孔(图 2a~图 2d)。氮气吸附法与压汞法测试表明,页岩储渗空间以纳米尺度为主(图 2e图 2f),仅极少孔隙大于1 μm,因而气体在页岩内部的传输行为主要发生于纳米孔内。

图2 页岩纳米孔特征及其孔径分布 Fig. 2 The nanopores of shale and pore size distribution
2 实验结果 2.1 页岩纳米孔内气体传输过程压力变化

岩样入口端充注的超临界CO$_{2}$、CH$_{4}$在压差或浓度差作用下,经渗流—扩散作用进入页岩纳米孔内,并在纳米孔表面发生吸附,同时,纳米孔内气体不断向出口端渗流—扩散,因而入口端压力连续下降,出口端压力连续上升,直至入/出口端压力达到平衡状态。如图 3所示,超临界CO$_{2}$、CH$_{4}$单组分沿页岩轴向方向传输时,在0~200 h内,入口端压力近似线性下降,出口端压力近似线性上升,但前者的下降或上升速率(拟合直线斜率)明显小于后者;当入口端注入超临界CO$_{2}$、CH$_{4}$二元混合组分时,CO$_{2}$浓度越高,入/出口端压力变化速率越小,同时从图 3d可以看出,即使入口端混合组分压力远高于单组分,出口端压力上升速率仍较低。渗流—扩散—吸附导致的压力变化反映了页岩纳米孔内气体多尺度传输过程,气体压力变化速率与纳米孔传输能力正相关[13-14]。该实验表明,页岩纳米孔内超临界CO$_{2}$传输能力小于CH$_{4}$

图3 岩样入/出口端压力动态变化 Fig. 3 The change in gas pressure between inlet and outlet core sample
2.2 页岩纳米孔内气体传输突破时间

实验测试时,岩样内部、出口端均处于真空状态,当出口端监测到压力大于0时,表明CO$_{2}$或CH$_{4}$已到达出口端。因此,页岩纳米孔内超临界CO$_{2}$、CH$_{4}$传输突破时间定义为实验开始至岩样出口端压力大于0所经历的时间,该时间一定程度上反映了气体传输能力。理论上,该时间与传输路径长度(或岩样长度)、孔隙尺度、流体压力和流体类型等有关。

实验表明:对于长度约5.1 cm的页岩岩芯柱(渗透率小于100 nD),CO$_{2}$和CH$_{4}$在纳米孔内传输的突破时间差异不明显,均小于2 h,传输速率大于2.5 cm/h(图 4);即使图 4b的入口端压力远大于图 4a,二者的突破时间仍无明显差异。分析认为,在实验初期较短时间内,岩样内部孔隙压力较低,大部分区域并非处于超临界态,且距离岩样出口端越近,孔隙压力越低,CO$_{2}$、CH$_{4}$物理性质越接近,因而传输突破时间差异较小。

图4 页岩纳米孔内CO$_{2}$、CH$_{4}$传输突破时间 Fig. 4 The breakthrough time of SCO$_{2}$ and CH$_{4}$ transport in shale nanopores
2.3 页岩纳米孔内混合气体传输时组分变化

为进一步验证页岩纳米孔内超临界CO$_{2}$传输能力弱于CH$_{4}$,将不同浓度的CO$_{2}$、CH$_{4}$混合组分充入岩样入口端,并采用气相色谱仪监测实验200 h后入口端混合组分浓度变化。如图 5所示,实验200 h后,入口端混合组分中CH$_{4}$浓度显著降低,证实页岩纳米孔内CH$_{4}$传输能力更大,与上述实验结果一致。

图5 岩样入口端CO$_{2}$、CH$_{4}$混合气体组分变化 Fig. 5 Changes in the volume fraction of CO$_{2}$ and CH$_{4}$ at the inlet of core sample
3 讨论 3.1 流体黏度与密度对渗流能力影响

Javadpour等根据Knudsen数划分了页岩纳米孔内气体传输方式,宏孔($d>$50 nm)内气体主要以渗流方式传输[17-19],而黏度是影响该流态传输能力的重要因素,因液体黏度远大于气体,液体在致密岩石内的传输能力远小于气体。本文实验测试时,孔隙压力为7~13 MPa,参考AP1700物质物性计算查询平台数据,该压力范围内超临界CO$_{2}$的黏度大于CH$_{4}$(图 6),因而前者的渗流能力必定显著小于后者。

图6 不同压力下CO$_{2}$和CH$_{4}$的黏度(温度80℃) Fig. 6 The viscosity of CO$_{2}$ and CH$_{4}$ at different pressure($T=80 $℃)

除黏度外,超临界CO$_{2}$的高密度特性同样减弱了其渗流能力。与气态CO$_{2}$相比,超临界CO$_{2}$高密度特性将表现出对甲烷的“阻溶”能力[20]。Sidiq等发现超临界CO$_{2}$与甲烷之间存在非混相界面,并测试了二者的相渗曲线特征[21];孙扬实验测试了砂岩孔隙内超临界CO$_{2}$驱替甲烷过程渗流特征,认为超临界CO$_{2}$的高密度特性,可大幅减弱其与甲烷之间的微观窜流现象。本文实验压力主要在7~13 MPa,参考AP1700物质物性计算查询平台数据,该范围内超临界CO$_{2}$密度远大于甲烷(图 7),因而,当超临界CO$_{2}$与CH$_{4}$混合注入岩样入口端时,必定存在两相界面,导致两相渗流现象,影响混合组分的渗流能力,从而使本文图 3c中的压力下降速率低于图 3a

图7 不同压力下CO$_{2}$和CH$_{4}$的密度(温度80℃) Fig. 7 The density of CO$_{2}$ and CH$_{4}$ at different pressure($T=80 $℃)
3.2 分子量对扩散系数影响

扩散是页岩纳米孔内气体重要传输方式[22-23]。页岩微孔($d<2$ nm)和介孔(2$<d<$50 nm)十分发育,在该尺度孔隙内,气体分子与孔隙壁面碰撞频繁,努森扩散是其主要传输方式,其传输过程可由Knudsen方程表示

$ J_{\rm{k}} =-\dfrac{2}{3} \zeta_{\text{mb}}r{\left (\dfrac{8}{\pi {\rm{R}}TM} \right)^{0.5}} \dfrac{\text{d}p}{\text{d}l} $ (1)

式中:$J_{\rm{k}}$—气体努森扩散量,mol/(m$^2\cdot$s);

$\zeta_{\text{mb}}$—气体在多孔介质中流动时的修正系数,无因次;

$r$—孔隙半径,m;

$T$—气体温度,K;

R—气体常数,R=8.314 J/(mol·K);

$M$—气体摩尔质量,kg/mol;

$p$—孔隙气体压力,Pa;

$l$—气体传输方向的距离,m。

从式(1)可以看出,努森扩散量与气体分子量呈反比,即分子量越小的气体传输速率越大。CO$_{2}$分子量为44 g/mol,CH$_{4}$分子量为16 g/mol,因而微孔、介孔内CO$_{2}$努森扩散系数更小,传输更慢。景莎莎利用Einstein法模拟计算表明,微孔、介孔内超临界CO$_{2}$扩散系数小于甲烷[24]

本文选取渗透率为纳达西级别的龙马溪组柱塞岩样,测试了页岩纳米孔内CO$_{2}$、CH$_{4}$单组分扩散系数。同等条件下,CO$_{2}$扩散系数为5.9$\times 10^{-8}$ cm$^{2}$/s,CH$_{4}$为44.3$\times 10^{-8}$ cm$^{2}$/s,约为CO$_{2}$的7.5倍,CO$_{2}$的扩散系数显著小于CH$_{4}$。同时,在页岩粉末样品(粒径60~80目)吸附气体过程中,CO$_{2}$吸附平衡时间大于1 200 s(图 8a),而CH$_{4}$约600 s(图 8b),也同样反映CO$_{2}$扩散系数小于CH$_{4}$。因此,页岩纳米孔内CO$_{2}$传输能力弱于CH$_{4}$,导致混合气体传输时CH$_{4}$浓度明显降低(图 5)。

图8 页岩纳米孔内气体吸附平衡时间对比 Fig. 8 The equilibrium time of gas adsorption in shale nanopores
3.3 吸附作用对有效流动孔喉大小影响

页岩有机质、黏土矿物对CO$_{2}$、CH$_{4}$有较强吸附性,并主要赋存于微孔、介孔内。实验测试表明,在80℃下,CO$_{2}$在页岩纳米孔内的吸附量是CH$_{4}$的2.3倍(图 9),与Heller等的吸附测试结果接近[5]。Kang等实验发现,吸附作用下甲烷气测渗透率明显小于氮气和氦气,主要原因为吸附态甲烷减小了微孔、介孔传输通道,使得甲烷传输阻力增加[25];葛洪魁等计算了甲烷吸附对页岩有效孔径的影响[26],曹成等计算表明甲烷吸附会降低页岩纳米孔视渗透率[27-28]

图9 页岩对CO$_{2}$与CH$_{4}$吸附能力对比 Fig. 9 Adsorptive capacity of CO$_{2}$ and CH$_{4}$ in shale nanopores

与甲烷相比,CO$_{2}$在页岩纳米孔表面吸附能力更强,导致页岩有效流动孔喉半径进一步减小,从而其传输能力更弱。

4 现场注超临界CO$_{2}$驱替置换游离态甲烷方式探讨

游离态甲烷含量越高,页岩气井产量越大。当产气层注入超临界CO$_{2}$后,其通过竞争吸附释放出游离态甲烷,使纳米孔内游离态甲烷含量增加。本文实验表明,页岩纳米孔内超临界CO$_{2}$传输能力小于游离态甲烷,且两者之间对流扩散过程很弱,超临界CO$_{2}$对甲烷存在“阻溶”现象,具有活塞式驱替特征[5]。因此,如果采用单井“吞吐”(即注超临界CO$_{2}$—焖井—开井生产)方式提高页岩气藏采收率(图 10),在注入阶段,超临界CO$_{2}$进入页岩纳米孔隙十分缓慢,导致注入时间长;在焖井阶段,超临界CO$_{2}$传输距离短,主要聚集于井周或水力裂缝面附近;在产出阶段,纳米孔内超临界CO$_{2}$压力传递、扩散缓慢,将阻碍纳米孔内游离态甲烷的流动。

图10 超临界CO$_{2}$单井“吞吐”驱替置换页岩气不利因素示意图 Fig. 10 Diagram of injection of supercritical CO$_{2}$ into gas shale for EGR through huff-n-puff

为缩短注入时间,同时尽量避免单井“吞吐”损害页岩纳米孔内游离态甲烷传输能力,在多级压裂水平井段,可以选择某些压裂段注入超临界CO$_{2}$,而其他压裂段作为生产段。水平井各压裂段之间距离较短(小于100 m)[29],根据图 4中的突破时间可以判断,注超临界CO$_{2}$数年之后,将有效提升邻近生产段甲烷产量。

5 结论

(1) 室内岩芯流动实验表明,页岩基块岩样(渗透率小于100 nD)入口端分别注入超临界CO$_{2}$、CH$_{4}$时,前者的压力传递速率明显小于后者,而当注入混合组分时,色谱监测结果表明甲烷更易通过页岩,从而证实页岩纳米孔内超临界CO$_{2}$传输能力显著低于甲烷。

(2) 与甲烷相比,超临界CO$_{2}$在页岩纳米孔表面吸附量更大,在微孔、介孔内扩散更慢,而在宏孔内黏度导致的渗流阻力更大,以及超临界CO$_{2}$与甲烷间存在非混相特性,两相共存增大了渗流阻力,从而造成页岩纳米孔内超临界CO$_{2}$传输能力偏弱。

(3) 基于页岩纳米孔内超临界CO$_{2}$传输能力更弱这一特点,选择某压裂段注入超临界CO$_{2}$,而其他压裂段作为生产段,比单井“吞吐”方式(即注入—焖井—开井生产)更有利于驱替置换孔隙内游离态甲烷。

参考文献
[1]
KHOSROKHAVAR R, GRIFFITHS S, WOLF K H. Shale gas formations and their potential for carbon storage:Opportunities and outlook[J]. Environmental Processes, 2014, 1(4): 595-611. doi: 10.1007/s40710-014-0036-4
[2]
SCHEPERS K C, NUTTALL B C, OUDINOT A Y, et al. Reservoir modeling and simulation of the devonian gas shale of eastern kentucky for enhanced gas recovery and CO2 storage[C]. SPE 126620-MS, 2009. doi:10.2118/126620-MS
[3]
DAHAGHI A K. Numerical simulation and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs:A feasibility study[C]. SPE 139701-MS, 2010. doi:10.2118/139701-MS
[4]
JIANG Jiamin, SHAO Yuanyuan, YOUNIS R M. Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[C]. SPE 169114-MS, 2014. doi:10.2118/169114-MS
[5]
HELLER R, ZOBACK M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 14-24. doi: 10.1016/j.juogr.2014.06.001
[6]
张美红, 吴世跃, 李川田. 煤系地层注入CO2开采煤层气质交换的机理[J]. 煤炭学报, 2013, 38(7): 1196-1200.
ZHANG Meihong, WU Shiyue, LI Chuantian. Mass exchange mechanism of coalbed methane exploitation by CO2 injection in coal measure strata[J]. Journal of China Coal Society, 2013, 38(7): 1196-1200. doi: 10.13225/j.cnki.jccs.2013.07.015
[7]
LIU Faye, Ellett K, XIAO Yitian, et al. Assessing the feasibility of CO2 storage in the new Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation[J]. International Journal of Greenhouse Gas Control, 2013, 17: 111-126. doi: 10.1016/j.ijggc.2013.04.018
[8]
GODEC M, KOPERNA G, PETRUSAK R, et al. Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the eastern United States[J]. International Journal of Coal Geology, 2013, 118: 95-104. doi: 10.1016/j.coal.2013.05.007
[9]
KIM T H, PARK S S, LEE K S. Modeling of CO2 injection considering multi-component transport and geomechanical effect in shale gas reservoirs[C]. SPE 176174-MS, 2015. doi:10.2118/176174-MS
[10]
申建, 秦勇, 张春杰, 等. 沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1): 156-161.
SHEN Jian, QIN Yong, ZHANG Chunjie, et al. Feasibility of enhanced coalbed mehtane recovery by CO2 sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(1): 156-161. doi: 10.13225/j.cnki.jccs.2015.9030
[11]
NING Xiuxu, FAN Jin, HOLDITCH S A, et al. The measurement of matrix and fracture properties in naturally fractured cores[C]. SPE 25898-MS, 1993. doi:10.2118/25898-MS
[12]
LUFFEL D L, HOPKINS C W, SCHETTLER P D. Matrix permeability measurement of gas productive shales[C]. SPE 26633-MS, 1993. doi:10.2118/26633-MS
[13]
SINHA S, BRAUN E M, PASSEY Q R. Advances in measurement standards and flow properties measurements for tight rocks such as shales[C]. SPE 152257-MS, 2012. doi:10.2118/152257-MS
[14]
GHANIZADEH A, BHOWMIK S, HAERI-ARDAKANI O. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques:Examples from the Duvernay Formation, Alberta (Canada)[J]. Fuel, 2015, 140: 371-387. doi: 10.1016/j.fuel.2014.09.073
[15]
TINNI A, FATHI E, AGARWAL R. Shale permeability measurements on plugs and crushed samples[C]. SPE 162235-MS, 2012. doi:10.2118/162235-MS
[16]
SUAREZ R R, CHERTOV M, WILLBERG D M, et al. Understanding permeability measurements in tight shales promotes enhanced determination of reservoir quality[C]. SPE 162816-MS, 2012. doi:10.2118/162816-MS
[17]
JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61. doi: 10.2118/07-10-06
[18]
陈强, 康毅力, 游利军, 等. 页岩微孔结构及其对气体传质方式影响[J]. 天然气地球科学, 2013, 24(6): 1298-1304.
CHEN Qiang, KANG Yili, YOU Lijun, et al. Micro-pore structure of gas shale and its effect on gas mass transfer[J]. Natural Gas Geoscience, 2013, 24(6): 1298-1304.
[19]
田守嶒, 王天宇, 李根生, 等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12): 18-25.
TIAN Shouzeng, WANG Tianyu, LI Gensheng, et al. Molecular simulation of methane adsorption behavior in different shale Kerogen types[J]. Natural Gas Industry, 2017, 37(12): 18-25. doi: 10.3787/j.issn.1000-0976.2017.12.003
[20]
孙扬. 天然气藏超临界CO2埋存及提高天然气采收率机理[D]. 成都: 西南石油大学, 2012.
SUN Yang. Sequestration of supercritical CO2 in natural gas reservoir and mechanism of enhancing gas recovery[D]. Chengdu:Southwest Petroleum University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10615-1012516050.htm
[21]
SIDIQ H, AMIN R. Super critical CO2-methane relative permeability investigation[C]. SPE 137884, 2010. doi:10.2118/137884-MS
[22]
JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. doi: 10.2118/09-08-16-DA
[23]
吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848.
WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848. doi: 10.7623/syxb201507008
[24]
景莎莎. 砂岩微孔隙中CO2/CH4传质过程的分子模拟研究[D]. 成都: 西南石油大学, 2015.
JING Shasha. Molecular simulation study of CO2/CH4 mass transfer process in sandstone micro pore[D]. Chengdu:Southwest Petroleum University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10615-1015599174.htm
[25]
KANG Yili, CHEN Mingjun, LI Xiangchen, et al. Laboratory measurement and interpretation of nonlinear gas flow in shale[J]. International Journal of Modern Physics C, 2015, 26(6): 1550063. doi: 10.1142/S0129183115500631
[26]
葛洪魁, 申颍浩, 宋岩, 等. 页岩纳米孔隙气体流动的滑脱效应[J]. 天然气工业, 2014, 34(7): 46-54.
GE Hongkui, SHEN Yinhao, SONG Yan, et al. Slippage effect of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 2014, 34(7): 46-54. doi: 10.3787/j.issn.1000-0976.2014.07.008
[27]
曹成, 李天太, 刘刚, 等. 考虑吸附滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 48-53.
CAO Cheng, LI Tiantai, LIU Gang, et al. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(5): 48-53. doi: 10.3969/j.issn.1673-064X.2015.05.008
[28]
张艳玉, 李冬冬, 孙晓飞, 等. 实际状态下的页岩气表观渗透率计算新模型[J]. 天然气工业, 2017, 37(11): 53-60.
ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. A new model for calculating the apparent permeability of shale gas in the real state[J]. Natural Gas Industry, 2017, 37(11): 53-60. doi: 10.3787/j.issn.1000-0976.2017.11.007
[29]
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3): 425-430.
WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3): 425-430. doi: 10.11743/ogg201418