在规则九点井网中,主向和侧向角井的井距相等[1],注水线呈规则几何形状向油藏的各个方向驱动。在各向异性油藏中,这样易导致渗透率主方向的油井先见水,造成水淹,而侧向渗透率的角井见水时间迟,水驱波及效率低,注水开发效果较差,剩余油分布零散。针对这个问题,构建平面各向异性菱形反九点井网来弱化油藏各向异性的负面影响。
长期以来,在各向异性储层中合理地布置井网是一大难题。Al-Yousef H Y等[2-5]通过室内实验方法研究了储层中渗透率各向异性的存在;Mazo E O等[6]研究了在水驱的条件下,渗透率各向异性对水驱波及系数和生产动态参数的影响;Onwunalu J E等[7]通过油藏物性参数的定量变换和粒子群优化算法,确定油藏中井网和井位的合理布置;Rongze Y等[8]根据室内实验和现场实际数据,研究了非线性渗流时菱形反九点井网的渗流规律和产量;计秉玉等[9-10]根据流管法和单元分析法,推导出各向同性油藏中九点法面积井网的产量计算公式;刘月田等[11-12]通过坐标变换,流体流动分析和油藏的开发动态,分析了渗透率各向异性对井网和油藏开发的影响机理;朱圣举等[13-14]根据流线积分法和单元分析法,推导了低渗透油藏中菱形反九点井网产量和见水时间的计算公式;王明等[15]建立了低渗透油藏压裂开采过程中菱形反九点井网不同流动区域的流动模型;吕栋梁等[16]根据低渗透油藏面积注水开发的特点,推导了考虑启动压力梯度的反九点井网波及效率和见水时间的计算公式。但关于各向异性油藏反九点井网研究的较少,鉴于此,在前人研究基础上,为达到均衡驱替的效果,根据流管法,在各向异性油藏中,菱形反九点井网合理井排距的计算。
菱形反九点井网中,由于角井和边井的见水时间和产液量不同,注水井与角井和角井之间的渗透率不同。因此,需要设置不同的边井和角井井距,以达到均衡驱替的目的,使反九点井网在各向异性油藏中达到较好的开发效果。
1 合理井排距研究 1.1 短轴角井井距的确定以各向同性油藏中规则菱形反九点注水开发井网为例说明(图 1)。在菱形反九点井网中,1口角井受4口注水井的作用,1口边井受2口注水井的作用,注采井数比为1:3。
![]() |
| 图1 九点井网渗流场示意图 Fig. 1 The 9-spot well pattern′s flow diagram |
根据三角形流管法,在反九点井网中,各向同性油藏注水井与角井之间的单元流量为[9]
| $ \left\{ {\begin{array}{*{20}{l}} {{q_1} = \int_0^{A'} {\frac{{Kh}}{{\mu \left( {B' + 4A'C'/{\rm{\pi }}} \right)}}\left( {{p_{\rm{h}}}-{p_{\rm{f}}}} \right){\rm{d}}\alpha } }\\ {A' = \frac{{\rm{\pi }}}{4}-\arctan \frac{1}{2}}\\ {B' = \ln \frac{{\sqrt 2 L\sin \beta }}{{{r_{\rm{w}}}\sin (\alpha + \beta )}}}\\ {C' = \ln \frac{{\sqrt 2 L\sin \alpha }}{{{r_{\rm{w}}}\sin (\alpha + \beta )}}} \end{array}} \right. $ | (1) |
以流管模型为基础(图 2),A(ξ)为流线长度为ξ处的流管横截面积。在渗流速度相同时,注入水将沿着注水井与采油井之间的直线距离(流管中线)移动,首先推进到井底,该见水时间即为油井见水时间。
![]() |
| 图2 九点井网单流管示意图 Fig. 2 The 9-spot well pattern single tube flow diagram |
根据物质平衡原理,油水接触前缘运动时间的微分方程为[17]
| $ {\rm{d}}t = \frac{{2{\rm{\pi }}\phi h\delta {r_{\rm{f}}}{\rm{d}}{r_{\rm{f}}}}}{{3{q_1}}} $ | (2) |
联合式(1)和式(2),得平面各向同性油藏中,九点井网角井见水时间公式为
| $ \int_0^t {{\rm{d}}t} = \int_{{r_{\rm{w}}}}^{L-{r_{\rm{w}}}} {\frac{{{\rm{\pi }}\phi \delta \mu B\ln \frac{{\sqrt 2 L}}{{{r_{\rm{w}}}}}\left( {2-\frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right){r_{\rm{f}}}}}{{814.31K({p_{\rm{h}}}-{p_{\rm{f}}})}}{\rm{d}}{r_{\rm{f}}}} $ | (3) |
假设储层平面x方向渗透率为Kx,y方向渗透率为Ky,且Kx > Ky。为使不同方向角井见水时间相同,九点井网注水井受效图从原来的正四边形变为扁平状的四边形(图 3)。
![]() |
| 图3 各向异性九点井网流场示意图 Fig. 3 The corner well flow schematic diagram of permeability anisotropy of four spot well pattern |
根据公式(3),注入水到达x和y方向生产井见水时间分别为
| $ {t_x} = \frac{{{\rm{\pi }}\phi \delta \mu B\left( {2-\frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right)}}{{814.31{K_x}\Delta p}}\int_{{r_{\rm{w}}}}^{{L_x}-{r_{\rm{w}}}} {\ln \frac{{\sqrt 2 L}}{{{r_{\rm{w}}}}}{r_{\rm{f}}}{\rm{d}}{r_{\rm{f}}}} $ | (4) |
| $ {t_y} = \frac{{{\rm{\pi }}\phi \delta \mu B\left( {2-\frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right)}}{{814.31{K_y}\Delta p}}\int_{{r_{\rm{w}}}}^{{L_y}-{r_{\rm{w}}}} {\ln \frac{{\sqrt 2 L}}{{{r_{\rm{w}}}}}{r_{\rm{f}}}{\rm{d}}{r_{\rm{f}}}} $ | (5) |
在菱形反九点井网中,假设Kx > Ky,在储层x方向布置A3和A7井,y方向布置A1和A5井,边井为A2,A4,A6和A8井。注水井与采油井流管中线的距离最短,因此,流管中线上油水的运动时间为油井见水时间。y方向的渗透率Ky小于x方向的渗透率Kx,故x方向上油井先于y方向见水。因此,反九点井网若要达到均衡驱替的效果,就必须在满足x和y方向油井见水时间一致的前提下,根据储层的各向异性系数,合理地安排不同渗透率方向上的注采井距。
为达到均衡驱替的效果,x和y方向上生产井的见水时间应该相等,有
| $ \int_{{r_{\rm{w}}}}^{{L_x}-{r_{\rm{w}}}} {{r_{\rm{f}}}} \ln \frac{{\sqrt 2 {r_{\rm{f}}}}}{{{r_{\rm{w}}}}}{\rm{d}}{r_{\rm{f}}} = \frac{{{K_y}}}{{{K_x}}}\int_{{r_{\rm{w}}}}^{{L_y}-{r_{\rm{w}}}} {{r_{\rm{f}}}} \ln \frac{{\sqrt 2 {r_{\rm{f}}}}}{{{r_{\rm{w}}}}}{\rm{d}}{r_{\rm{f}}} $ | (6) |
对式(6)两边积分,可以得到
| $ \begin{array}{l} - {r_{\rm{w}}}^2\ln 2 + {r_{\rm{w}}}^2 + {\left( {{L_x}- {r_{\rm{w}}}} \right)^2}\ln 2 + \\ 2\ln \left( {\frac{{{L_x}- {r_{\rm{w}}}}}{{{r_{\rm{w}}}}}} \right){\left( {{L_x} - {r_{\rm{w}}}} \right)^2} - {({L_x} - {r_{\rm{w}}})^2} = \\ \frac{{{K_y}}}{{{K_x}}}\left[{-{r_{\rm{w}}}^2\ln 2 + {r_{\rm{w}}}^2 + {{\left( {{L_y}-{r_{\rm{w}}}} \right)}^2}\ln 2} \right] + \\ \frac{{{K_y}}}{{{K_x}}}\left[{2\ln \left( {\frac{{{L_y}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}} \right){{\left( {{L_y}-{r_{\rm{w}}}} \right)}^2}-{{({L_y} - {r_{\rm{w}}})}^2}} \right] \end{array} $ | (7) |
由于Lx ≫ rw,Ly ≫ rw,因此Lx -rw ≈ Lx, Ly -rw ≈ Ly。令
| $ \begin{array}{l} - {r_{\rm{w}}}^2\ln 2 + {r_{\rm{w}}}^2 + {L_x}^2\ln 2 + 2{L_x}^2\ln \left( {\frac{{{L_x}- {r_{\rm{w}}}}}{{{r_{\rm{w}}}}}} \right)- {L_x}^2 = \\ \lambda \left( { - {r_{\rm{w}}}^2\ln 2 + {r_{\rm{w}}}^2 + {L_y}^2\ln 2} \right) + \\ \lambda \left[{2{L_y}^2\ln \left( {\frac{{{L_y}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}} \right)-{L_y}^2} \right] \end{array} $ | (8) |
当已知A7井和A9井之间的井距Lx,各向异性系数λ和井径rw时,就可以根据式(8),求出A1和A5井与注水井之间的距离Ly。
1.2 边井井距的确定根据三角形流管法,在反九点井网中,各向同性油藏注水井与边井之间的单元流量为[9]
| $ \left\{ {\begin{array}{*{20}{l}} {{q_2} = \int_0^{\arctan \frac{1}{2}} {\frac{{\frac{{Kh}}{\mu }\left( {{p_{\rm{h}}}-{p_{\rm{f}}}} \right)}}{{F(\beta ) + F(\alpha )\frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}}}{\rm{d}}\alpha } }\\ {F(X) = \ln \frac{{L\sin X}}{{{r_{\rm{w}}}\sin \left( {\alpha + \beta } \right)}}\;\;X = \alpha, \beta } \end{array}} \right. $ | (9) |
联合式(9)和式(2),得平面各向同性油藏九点井网边井见水时间公式为
| $ \int_0^t {{\rm{d}}t} = \int_{{r_{\rm{w}}}}^{L-{r_{\rm{w}}}} {\frac{{{\rm{\pi }}\phi \delta \mu B\ln \frac{L}{{{r_{\rm{w}}}}}\left( {1 + \frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}} \right){r_{\rm{f}}}}}{{814.31K({p_{\rm{h}}}-{p_{\rm{f}}})}}{\rm{d}}{r_{\rm{f}}}} $ | (10) |
边井与注水井之间的关系如图 4所示,对式(10),两边积分,可得边井的见水时间为
![]() |
| 图4 各向异性九点井网边井流场示意图 Fig. 4 The edge well flow schematic diagram of permeability anisotropy of four spot well pattern |
| $ {t_c} = \frac{{{\rm{\pi }}\phi \delta \mu B\left( {1 + \frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}} \right)}}{{814.31{K_c}\Delta p}}\int_{{r_{\rm{w}}}}^{{L_c}-{r_{\rm{w}}}} {\ln \frac{L}{{{r_{\rm{w}}}}}{r_{\rm{f}}}{\rm{d}}{r_{\rm{f}}}} $ | (11) |
为达到均衡驱替的效果,x和c方向上生产井的见水时间应该相等,联立式(4)和式(11),有
| $ \int_{{r_{\rm{w}}}}^{{L_x}-{r_{\rm{w}}}} {{r_{\rm{f}}}\ln \frac{{{r_{\rm{f}}}}}{{{r_{\rm{w}}}}}} {\rm{d}}{r_{\rm{f}}} = \frac{{{K_x}}}{{{K_c}}}\int_{{r_{\rm{w}}}}^{{L_c}-{r_{\rm{w}}}} {{r_{\rm{f}}}\ln \frac{{{r_{\rm{f}}}}}{{{r_{\rm{w}}}}}} {\rm{d}}{r_{\rm{f}}} $ | (12) |
两边积分,得
| $ \begin{array}{l} \left[{{r_{\rm{w}}}^2\left( {1-\ln 2} \right) + {{\left( {{L_x}-{r_{\rm{w}}}} \right)}^2}\left( {\ln 2 + 2\ln \frac{{{L_x}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}} - 1} \right)} \right] \cdot \\ \left( {2 - \frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) = \frac{{{K_x}}}{{{K_c}}}\left( {1 + \frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) \cdot \\ \left[{{r_{\rm{w}}}^2 + {{\left( {{L_c}-{r_{\rm{w}}}} \right)}^2}\left( {2\ln \frac{{{L_c}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}-1} \right)} \right] \end{array} $ | (13) |
由于Lx ≫ rw,Lc ≫ rw,因此Lx -rw ≈ Lx, Lc -rw ≈ Lc。式(13)可以简写为
| $ \begin{array}{l} \left[{{r_{\rm{w}}}^2\left( {1-\ln 2} \right) + {L_x}^2\left( {\ln 2 + 2\ln \frac{{{L_x}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}-1} \right)} \right] \cdot \\ \left( {2 - \frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) = \frac{{{K_x}}}{{{K_c}}}\left( {1 + \frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) \cdot \\ \left[{{r_{\rm{w}}}^2 + {L_c}^2\left( {2\ln \frac{{{L_c}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}-1} \right)} \right] \end{array} $ | (14) |
在式(14)中,A2井的位置Lc和c方向的渗透率Kc均未知。根据方向渗透率的确定方法,有[18]
| $ {K_c} = {K_x}{\cos ^2}\theta + {K_y}{\sin ^2}\theta $ | (15) |
当θ=0时,Kc=Kx;θ=90°时,Kc=Ky,Ky < Kc < Kx。其他条件相同时,渗透率的大小决定着油井的见水时间。假设A1,A2和A3井见水时间相同,则3口油井与注水井之间的距离关系为:Ly < Lc < Lx。加大主渗透率方向上的注采油井距,或缩小侧向渗透率的井距,可使油藏达到均衡驱替的效果,提高注水波及面积和采出程度。
将式(15)代入式(14),得
| $ \begin{array}{l} \left[{{r_{\rm{w}}}^2\left( {1-\ln 2} \right) + {L_x}^2\left( {\ln 2 + 2\ln \frac{{{L_x}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}-1} \right)} \right] \cdot \\ \left( {2 - \frac{4}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) = \left( {1 + \frac{2}{{\rm{\pi }}}\arctan \frac{1}{2}} \right) \cdot \\ \frac{{\left[{{r_{\rm{w}}}^2 + 2{L_c}^2\ln \frac{{{L_c}-{r_{\rm{w}}}}}{{{r_{\rm{w}}}}}-{L_c}^2} \right]{K_x}}}{{{K_x}\left( {1 -{{\sin }^2}\theta } \right) + {K_y}{{\sin }^2}\theta }} \end{array} $ | (16) |
式(16)为菱形反九点井网边井井距的计算公式,取0 < θ < 90°,根据试差法,可以求出最佳的边井井距。
式(8)和(16)组成了各向异性油藏中,菱形反九点井网合理井排距的计算公式。
2 计算实例为验证所建公式正确性,选取鄂尔多斯盆地平面各向异性较强的某试验区M区块进行分析。M区块于2009年6月投产,井网形式为菱形反九点井网,长轴角井井距500 m,短轴角井井距300 m,x方向渗透率16 mD,y方向渗透率4 mD。
截至2012年底,由于储层渗透率的强各向异性,沿Kx方向油井水淹严重,而沿Ky方向油井则未见效。对整个井网系统而言,油藏水驱效果较差,主要原因是沿Kx方向部分注入水由油井产出形成了无效循环。
通过现场资料,根据式(8)和式(16),计算合理Ly为260.37 m,实际排距大于理论计算,是该区块部分油井未见效的主要原因。以Ky < Kc < Kx,Ly < Lc < Lx为依据,运用试差法,当θ为60°时,合理的Lc为345.84 m。建议该M区块适当缩小排距(图 5),以达到油藏井网系统均衡驱替,提高采出程度的目的。
![]() |
| 图5 菱形反九点井网变换示意图 Fig. 5 Transformation of rhombus inverted 9-spot well pattern |
以上例中有关参数为依据,分析各参数之间的关系:在各向异性系数一定的条件下,随着长轴角井井距Lx增加,为了达到均衡驱替的效果,短轴角井井距Ly也相应地线性增加(图 6)。在长轴井距Lx一定时,随储层平面各向异性系数增加,短轴井距Ly迅速降低,在各向异性系数为10时,短轴角井井距的减小趋于平缓(图 7)。
![]() |
| 图6 短轴井距与长轴排距之间的关系 Fig. 6 The relationship between long axis well spacing and short axis well spacing |
![]() |
| 图7 短轴井距与各向异性系数之间的关系 Fig. 7 The relationship between short axis well spacing and anisotropic coefficient |
(1)建立的菱形反九点井网可以提高油藏的采出程度和注入水的波及效率,适用于各向异性油藏井网的布置。
(2)在各向异性油藏中,短轴角井井距随着长轴角井井距的增加而增加,随各向异性系数的增加而迅速降低,在各向异性系数为10时,短轴角井井距的减小趋于平缓。
(3)所建公式可以定量的计算菱形反九点井网注采单元中的几何参数,为各向异性油藏菱形反九点井网设置合理的井距和排距提供了参考。
| [1] | 李传亮. 油藏工程原理[M]. 北京: 石油工业出版社, 2005. |
| [2] | AL-YOUSEF H Y. Permeability anisotropy measurement on whole cores analytical solution and application[C]. SPE 93559, 2005. doi:10.2118/93559-MS |
| [3] | WADE J M, HOUGH E V, PEDERSEN S H. Practical methods employed in determining permeability anisotropy for optimization of a planned waterflood of the Eldfisk Field[C]. SPE 48961, 1998. doi:10.2118/48961-MS |
| [4] | TRAN N H, CHEN Z, RAHMAN S S. Practical application of hybrid modelling to naturally fractured reservoirs[J]. Petroleum Science and Technology, 2007, 25(10): 1263–1277. DOI:10.1080/10916460500423445 |
| [5] | NEJAD S A T, ALEAGHA A A V, Salari S. Estimating optimum well spacing in a middle east onshore oil field using a genetic algorithm optimization approach[C]. SPE 105230, 2007. doi:10.2118/105230-MS |
| [6] | MAZO E O, MORENO J M, SCHIOZER D J. Effects of directional permeability anisotropy on sweep efficiency of water injection under fracturing conditions process[C]//Canadian International Petroleum Conference, Petroleum Society of Canada, 2007. doi:10.2118/2007-141 |
| [7] | ONWUNALU J E, DURLOFSKY L J. Development and application of a new well pattern optimization algorithm for optimizing large scale field development[C]. SPE 124364, 2009. doi:10.2118/124364-MS |
| [8] | RONGZE Y, YANAN B, KAIJUN W, et al. Numerical simulation study on diamond-shape inverted ninespot well pattern[J]. Physics Procedia, 2012, 24: 390–396. DOI:10.1016/j.phpro.2012.02.057 |
| [9] |
计秉玉, 李莉, 王春艳. 低渗透油藏非达西渗流面积井网产油量计算方法[J].
石油学报, 2008, 29(2): 256–261.
JI Bingyu, LI Li, WANG Chunyan. Oil production calculation for areal well pattern of low-permeability reservoir with non-Darcy seepage flow[J]. Acta Petrolei Sinica, 2008, 29(2): 256–261. DOI:10.7623/syxb200802018 |
| [10] | JI B, LAN Y. Optimization of permeability tensor characteristics of anisotropic reservoir and well pattern parameters[J]. Tsinghua Science and Technology, 2003, 8(5): 564–567. |
| [11] | LIU Y. Performance analysis and optimal design for well patterns in anisotropic formations[J]. Petroleum Science, 2008, 5(3): 251–257. DOI:10.1007/s12182-008-0040-2 |
| [12] |
刘月田. 各向异性油藏注水开发布井理论与方法[J].
石油勘探与开发, 2005, 32(5): 101–104.
LIU Yuetian. Well location in water flooding anisotropic oil reservoirs[J]. Petroleum Exploration and Development, 2005, 32(5): 101–104. DOI:10.3321/j.issn:1000-0747.2005.05.023 |
| [13] |
朱圣举, 张皎生, 安小平, 等. 低渗透油藏菱形反九点井网产量计算研究[J].
岩性油气藏, 2013, 24(6): 115–120.
ZHU Shengju, ZHANG Jiaosheng, AN Xiaoping, et al. Oil production calculation for rhombic inverted nine-spot areal well pattern of low permeability reservoirs[J]. Lithologic Reservoirs, 2013, 24(6): 115–120. DOI:10.3969/j.issn.1673-8926.2012.06.023 |
| [14] |
朱圣举, 王萍, 王思仪, 等. 低渗透油藏菱形反九点井网见水时间研究[J].
油气藏评价与开发, 2013, 3(2): 41–45.
ZHU Shengju, WANG Ping, WANG Si, et al. Research on breakthrough time of diamond shaped inverted 9-spot pattern of low permeability reservoir[J]. Reservoir Evaluation and Development, 2013, 3(2): 41–45. DOI:10.3969/j.issn.2095-1426.2013.02.009 |
| [15] |
王明, 朱维耀, 李继山, 等. 低渗透油藏菱形反九点压裂井网两相渗流分析[J].
岩土力学, 2010, 31(10): 3295–3299.
WANG Ming, ZHU Weiyao, LI Jishan, et al. Two-phase percolation of rhombus inverted nine-spot fracturing well pattern in low permeability oil reservoirs[J]. Rock and Soil Mechanics, 2010, 31(10): 3295–3299. DOI:10.3969/j.issn.1000-7598.2010.10.042 |
| [16] |
吕栋梁, 唐海, 郭粉转, 等. 低渗透油田反九点井网面积波及效率影响研究[J].
西南石油大学学报:自然科学版, 2012, 34(1): 147–153.
Dongliang, TANG Hai, GUO Fenzhuan, et al. Study of areal sweep efficiency for invert 9-spot pattern of low permeability reservoir[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2012, 34(1): 147–153. DOI:10.3863/j.issn.1674-5086.2012.01.023 |
| [17] |
陆程, 程敏华, 刘雄. 平面各向异性油藏变形五点井网研究[J].
特种油气藏, 2013, 20(3): 111–113.
LU Cheng, CHENG Minhua, LIU Xiong. Research on skewed five-spot pattern for planar anisotropic reservoir[J]. Special Oil and Gas Reservoirs, 2013, 20(3): 111–113. DOI:10.3969/j.issn.1006-6535.2013.03.027 |
| [18] |
刘月田, 张吉昌. 各向异性油藏水平井网稳定渗流与产能分析[J].
石油勘探与开发, 2004, 31(1): 94–96.
LIU Yuetian, ZHANG Jichang. Stable permeating flow and productivity analysis for anisotropic reservoirs in horizontal well networks[J]. Petroleum Exploration and Development, 2004, 31(1): 94–96. DOI:10.3321/j.issn:1000-0747.2004.01.029 |
2016, Vol. 38







