西南石油大学学报(自然版)  2015, Vol. 37 Issue (4): 101-106
大段合采油井层间干扰主控因素研究    [PDF全文]
张继成1,2 , 何晓茹1,2, 周文胜2,3, 耿站立2,3, 唐恩高2,3    
1. 东北石油大学石油工程学院, 黑龙江 大庆 163318;
2. “海洋石油高效开发”国家重点实验室, 北京 朝阳 100027;
3. 中海石油(中国)有限公司北京研究中心, 北京 朝阳 100027
摘要: 针对大段合采油井储层层间非均质性严重的问题, 开展了层间干扰研究, 确定层间干扰的主控因素。结合现场试油实践, 以层间干扰系数作为定量评价层间干扰程度的指标, 对部分井的产能测试结果进行了分析, 发现流压、生产压差、含水率等因素均可对层间干扰程度造成影响。收集油田数据资料, 计算了渗透率级差、厚度级差、层数、地层压力系数级差、生产压差级差、平均黏度、孔隙度级差、流压级差等因素。采用复相关系数法对影响因素进行了初筛选, 根据基于熵权的灰色关联分析法计算了筛选后因素与层间干扰系数间的关联度, 确定出层间干扰的主控因素, 分别为渗透率级差、层数、静压系数级差、合测含水率、生产压差级差和流压级差。
关键词: 层间干扰     主控因素     层间干扰系数     复相关系数     基于熵权的灰色关联    
Main Controlling Factors of Interlayer Interference in Big Intervals Commingled Production Oil Wells
Zhang Jicheng1,2 , He Xiaoru1,2, Zhou Wensheng2,3, Geng Zhanli2,3, Tang Engao2,3    
1. College of Petroleum Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China;
2. State Key Laboratory of Offshore Oil Exploitation, Chaoyang, Beijing, 100027, China;
3. Beijing Research Center, CNOOC(China) Co., Ltd., Chaoyang, Beijing, 100027, China
Abstract: The oil wells with the commingled production with big intervals faced with the problem of serious interlayer heterogeneity. By analyzing interlayers interference, the main controlling factors of interlayer interference are determined. Combining field test practice, and by using interlayer interference coefficient as quantitative evaluation indicator of the degree of interlayer interference, we carried out productivity test on some wells and found that the flowing pressure, drawdown pressure, water-cut and other factors can affect the degree of interlayer interference. We collect data, and calculate the factors, including permeability contrast, thickness contrast, layers, formation pressure coefficient contrast, drawdown pressure contrast, average viscosity, porosity contrast, flowing pressure contrast and other factors. The multiple correlation coefficient method was adopted to screen the factors. According to the grey correlation method based on weighted entropy, the correlation degree between the factors and the interlayer interference coefficient was calculated. Permeability contrast, layers, formation pressure coefficient contrast, commingled water cut, drawdown pressure contrast, flowing pressure contrast were determined as the main control factors.
Key words: interlayer interference     main controlling factors     interlayer interference coefficient     multiple correlation coefficient method     grey correlation method based on weighted entropy    
引言

大段合采油井层间干扰情况较为严重。根据油田生产实际,发现大段合采油井的合采层数[1]、静压、流压、生产压差[2]、含水率[3-9]等因素均对层间干扰程度造成影响。为了提高采收率,合理划分开发层系以及实施分层工艺,有必要对层间干扰现象进行分析。在这方面,前人开展了一些相关研究工作。采用的手段包括利用各种生产资料[3-410-11]、取芯检查井[11]、测井解释资料[11]、精细油藏研究成果[12-13],渗流力学[16-814-20]、物理模拟[39-101321-22]、数值模拟方法[1-39-101323]等,研究内容涉及层间干扰影响因素[5-68-102124]、规律及对策[1, 6, 12, 14]等方面。本文以层间干扰系数作为定量评价层间干扰程度的指标,通过复相关系数法、灰色关联方法和熵权法确定层间干扰主控因素。

1 层间干扰系数

多层合采层间干扰系数定义为油井各小层分别生产的生产指数之和,与这些小层合采的生产指数的差值,再除以各小层分别生产的生产指数之和。

$ \eta = \frac{{\sum\limits_{i = 1}^n {{J_i}}-J}}{{\sum\limits_{i = 1}^n {{J_i}} }} $ (1)

式中:η-干扰系数,无因次;Ji-分采时,第i小层的采油指数,i=1,2,...,nm3(MPa·d);J-n个小层合采时的采油指数,m3/ (MPa·d)。

2 影响因素相关性分析

复相关为一个要素或变量同时与几个要素或变量之间的相关关系。复相关系数是度量复相关程度的指标,复相关系数越大,表明要素或变量之间的线性相关程度越密切。

2.1 复相关性分析原理

研究平均渗透率、渗透率级差、平均孔隙度、层数、总厚度、平均厚度、厚度级差、黏度、平均静压、静压级差、静压系数级差、平均流压、流压级差、合测生产压差、生产压差级差、分测平均含水率、合测含水率和含水率级差对层间干扰的影响,给定各个因素的n组观察数据矩阵

$ \boldsymbol{A} = {\left( {{x_{ij}}} \right)_{n \times m}} = {\left( {\begin{array}{*{20}{c}} {{x_{11}}}&{{x_{12}}}& \cdots &{{x_{1m}}}\\ {{x_{21}}}&{{x_{22}}}& \cdots &{{x_{2m}}}\\ \cdots & \cdots & \cdots & \cdots \\ {{x_{n1}}}&{{x_{n2}}}& \cdots &{{x_{nn}}} \end{array}} \right)_{n \times m}} $ (2)

对第kk=1,2,···,m)项因素,其均值xk和方差skk

$ {\bar x_k} = \frac{1}{n}\sum\limits_{j = 1}^n {{x_{jk}}}, k = 1, 2, \cdots, m $ (3)
$ {s_{kk}} = \frac{1}{n}\sum\limits_{j = 1}^n {{{\left( {{x_{jk}}-{{\bar x}_k}} \right)}^2}}, k = 1, 2, \cdots, m $ (4)

因素xixj之间的协方差sij

$ {s_{ij}} = \frac{1}{n}\sum\limits_{k = 1}^n {\left( {{x_{ki}}-{{\bar x}_k}} \right)\left( {{x_{kj}}-{{\bar x}_k}} \right)}, 1 \le i \ne j \le m $ (5)

因素体系的相关矩阵为

$ \boldsymbol{R} = {\left( {{r_{ij}}} \right)_{m \times m}} $ (6)

其中:

$ {r_{ij}} = {s_{ij}}/\sqrt {{s_{ii}}{s_{jj}}} $ (7)

对式中因素体系相关矩阵R进行行列初等变换,记初等变换后的矩阵为

$ \left( {\begin{array}{*{20}{c}} {{R_j}}&{{r_j}}\\ {{r_j}^{\rm{T}}}&1 \end{array}} \right) $ (8)

xj与其他因素x1,···,xj-1x j+1,···,xm间的复相关系数为

$ \rho _j^2 = r_j^{\rm{T}}R_j^{-1}{r_j}{\rm{, }}j = 1{\rm{, }}2{\rm{, }} \cdots {\rm{, }}m $ (9)

通常采用以下两种方法除去复相关系数较大的对应因素。

阈值法:根据一定的准则给定阈值α,如果对某一因素k,有ρk2 > α,则可将因素xk从给定的因素体系中删去。

极值法:比较所有的复相关系数,将最大者除去,直至所有因素复相关系数小于α

2.2 因素体系的相关性分析

利用复相关系数法对影响因素进行初筛选,计算结果见表 1

表1 影响因素复相关系数计算结果表 Table 1 Result of multiple correlation coefficient method

综合阈值法与极值法筛选结果,删除总厚度、分测平均含水率两个影响因素。

3 层间干扰主控因素的确定

灰色关联是指事物之间的不确定关联,简称灰关联。灰色关联分析的目的就是指出各要素之间的不确定关联,找出影响最大的因素。该方法计算方便,对样本数量没有严格要求,不需要典型的分布规律。然而,灰色关联将各评价因素对评价结果的影响视为等权,这是不符合实际的。熵权法是依据因素反映的客观信息来反映其相对重要程度,可避免主观性的缺憾。因此,用熵权法来确定灰色关联分析法中的权数,可对被评价对象进行科学、客观、合理的综合评价。

3.1 确定子序列和母序列

母序列:层间干扰系数。

子序列:层数、平均厚度、厚度级差、渗透率、渗透率级差、孔隙度、黏度、平均静压、静压级差、静压系数级差、平均流压、流压级差、合测生产压差、生产压差级差、合测含水率、含水率级差。

3.2 原始数据的无因次处理

$ {b_i}\left( j \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{{a_{ij}}-\min ({a_{ij}})}}{{\max ({a_{ij}})-\min ({a_{ij}})}}, i \in {I_1}}\\ {\frac{{\max ({a_{ij}})-{a_{ij}}}}{{\max ({a_{ij}}) - \min ({a_{ij}})}}, i \in {I_2}}\\ {\frac{{\min \left\{ {{a_{ij}}, {\rm{mean}}({a_{ij}})} \right\}}}{{\max \left\{ {{a_{ij}}, {\rm{mean}}({a_{ij}})} \right\}}}, i \in {I_3}} \end{array}} \right. $ (10)

式中:I1I2I3越大越优型、越小越优型和适中值型的下标集合,mean(aij)满足

$ {\rm{mean}}({a_{ij}}) = \frac{1}{n}\sum\limits_{i = 1}^n {{a_{ij}}} $ (11)

在影响因素中,层数、平均厚度、厚度级差、渗透率级差、孔隙度级差、静压级差、静压系数级差、流压级差、生产压差级差、含水率级差为越大越优型因素;渗透率、孔隙度、黏度、平均静压、平均流压、合测生产压差、合测含水率为适中值型因素。

3.3 计算子序列与母序列的绝对差值、确定最大绝对差值和最小绝对差值

绝对差值

$ {\Delta _i}\left( j \right) = \left| {{b_0}\left( j \right)-{b_i}\left( j \right)} \right| $ (12)

最大绝对差值

$ M = \mathop {\max }\limits_i \mathop {\max }\limits_j {\Delta _i}\left( j \right) $ (13)

最小绝对差值

$ m = \mathop {\min }\limits_i \mathop {\min }\limits_j {\Delta _i}\left( j \right) $ (14)
3.4 计算关联系数
$ {\xi _i}(j) = \frac{{m + \rho M}}{{{\Delta _i}\left( j \right) + \rho M}} $ (15)

式中:ρ-分辨系数,无因次,且ρ ∈ [0, 1],用于提高关联度的分辨率。

3.5 熵权法计算权重

根据熵的定义,可以确定评价因素的熵为

$ {E_i} = k\sum\limits_{i = 1}^m {{p_{ij}}\ln {p_{ij}}} $ (16)

式中:${p_{ij}} = \frac{{{b_{ij}}}}{{\sum\limits_{i = 1}^m {{b_{ij}}} }} $k > 0,取k=-1/ln m,ln为自然对数;E≥0;假设pij=0时,pij ln(pij)=0。

计算评价因素的熵权ω

$ {\omega _j} = \frac{{1-{E_j}}}{{n-\sum\limits_{j = 1}^n {{E_j}} }} $ (17)

且满足$\sum\limits_{j = 1}^n {{\omega _j}} = 1 $

3.6 计算关联度
$ {\gamma _j} = \sum\limits_{i = 1}^n {{\omega _j}{\xi _i}\left( j \right)} $ (18)

与参考序列越接近,该比较序列越优。

3.7 确定主控因素

根据关联序的大小可确定各因素对参考序列的影响程度大小(表 2):γa>γb时,则有a优于bγa < γb时,则有a劣于bγa=γb时,则有a等价b

表2 因素排序结果表 Table 2 Sorting result of the factors

假设一个问题有n个因素I1I2,···,In,其重要性大小分别是x1x2,···,xn,这里,xi都是正数,其值越大,表明相应的因素越重要。从n个因素中筛选出重要的因素,剔除不重要的因素,其方法如下:将${a_j}_{i = 1}^n$按从大到小排列,不妨仍记为x1x2,···,xn,并记$x = \sum\limits_{i = 1}^n {{x_i}} $,求最小的m,使得$\frac{{\sum\limits_{i = 1}^m {{x_i}} }}{x} \ge a $a为小于1的常数,称为重要性常数),x1x2,···,xm对应的因素I1I2,···,Im即为重要性因素。a的选取并无定量规定,应视实际情况而定,一般取a≥0.7。经验表明,取a=0.7是合适的,它不仅能保证所选出来的因素是重要的,而且能保证重要的因素都已被选上。通过这种方法确定层间干扰主控因素,结果见表 3

表3 因素排序结果表 Table 3 Sorting result of the factors
4 结论

(1) 通过复相关系数法进行影响因素相关性分析,利用阈值法和极值法进行影响因素筛选,最终确定删除的影响因素为总厚度和分测平均含水率。

(2) 利用基于熵权的灰色关联法计算影响因素与层间干扰系数间的关联度。通过关联度排序,权重加和的方法确定层间干扰的主控因素。最终确定层间干扰主控因素为渗透率级差、层数、静压系数级差、合测含水率、生产压差级差和流压级差。

参考文献
[1] 胡罡. 多层油藏油井生产井段跨度界限研究[J]. 新疆石油地质, 2012, 33 (1) : 72 –74.
Hu Gang. Study on limitation of production well segment span in multi-layer reservoirs[J]. Xinjiang Petroleum Geology, 2012, 33 (1) : 72 –74.
[2] 鲜波, 熊钰, 石国新, 等. 薄层油藏合采层间干扰分析及技术对策研究[J]. 特种油气藏, 2007, 14 (3) : 51 –54.
Xian Bo, Xiong Yu, Shi Guoxin, et al. Interlayer interference analysis of commingled production in thin reservoirs and its technical countermeasures[J]. Special Oil and Gas Reservoirs, 2007, 14 (3) : 51 –54.
[3] 周琦, 姜汉桥, 陈民锋. 严重非均质油藏开发层系组合界限研究[J]. 西南石油大学学报:自然科学版, 2008, 30 (4) : 93 –97.
Zhou Qi, Jiang Hanqiao, Chen Minfeng. Study on reasonable development layer combination limits of extremely heterogeneous reservoirs[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2008, 30 (4) : 93 –97.
[4] 李波, 罗宪波, 刘英, 等. 海上稠油油田合理单井产能预测新方法[J]. 中国海上油气, 2008, 20 (4) : 243 –245.
Li Bo, Luo Xianbo, Liu Ying, et al. A new method to predict reasonable deliverability of individual wells in offshore heavy oilfields[J]. China Offshore Oil and Gas, 2008, 20 (4) : 243 –245.
[5] 唐洪明, 文鑫, 张旭阳, 等. 层间非均质砾岩油藏水驱油模拟实验[J]. 西南石油大学学报:自然科学版, 2014, 36 (5) : 129 –134.
Tang Hongming, Wen Xin, Zhang Xuyang, et al. Wateroil displacing modeling experiment of interlayer heterogeneous conglomerate reservoir[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2014, 36 (5) : 129 –134.
[6] 许建红, 钱俪丹, 库尔班. 储层非均质对油田开发效果的影响[J]. 断块油气田, 2007, 14 (5) : 29 –31.
Xu Jianhong, Qian Lidan, Kuerban P. Influence of reservoir heterogeneity on oilfield development effectiveness[J]. Fault-Block Oil & Gas Field, 2007, 14 (5) : 29 –31.
[7] 王渊, 何志雄, 李嘉瑞, 等. 低渗气藏多层合采层间干扰系数的确定[J]. 科学技术与工程, 2012, 12 (34) : 9163 –9166.
Wang Yuan, He Zhixiong, Li Jiarui, et al. Determination of interlayer interference coefficient for commingling production in low permeability gas reservoir[J]. Science Technology and Engineering, 2012, 12 (34) : 9163 –9166.
[8] 刘启国, 王辉, 王瑞成, 等. 多层气藏井分层产量贡献计算方法及影响因素[J]. 西南石油大学学报:自然科学版, 2010, 32 (1) : 80 –84.
Liu Qiguo, Wang Hui, Wang Ruicheng, et al. A computing method for layered production contribution and affecting factors analyzing in commingled gas reservoirs[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010, 32 (1) : 80 –84.
[9] 王峙博, 黄爱先, 魏进峰. 薄互层油藏层间干扰数值模拟研究[J]. 石油天然气学报, 2012, 3 (9) : 247 –250.
Wang Shibo, Huang Aixian, Wei Jinfeng. Numerical simulation on interlayer interference of thin and interbed reservoirs[J]. Journal of Oil and Gas Technology, 2012, 3 (9) : 247 –250.
[10] 吴胜和, 曾溅辉, 林双运, 等. 层间干扰与油气差异充注[J]. 石油实验地质, 2003, 25 (3) : 285 –289.
Wu Shenghe, Zeng Jianhui, Lin Shuangyun, et al. Interlayer interference and differential injection of hydrocarbon into a trap[J]. Petroleum Geology & Experiment, 2003, 25 (3) : 285 –289.
[11] 石占中, 张一伟, 熊琦华, 等. 大港油田港东开发区剩余油形成与分布的控制因素[J]. 石油学报, 2005, 26 (1) : 79 –86.
Shi Zhanzhong, Zhang Yiwei, Xiong Qihua, et al. Control factors for formation and distribution of residual oil in Gangdong development area of Dagang Oilfield[J]. Acta Petrolei Sinica, 2005, 26 (1) : 79 –86.
[12] 姜平, 薛国庆, 成涛. 海上中小型气田经济高效联合开发技术——以乐东22-1/15-1气田为例[J]. 天然气工业, 2013, 33 (11) : 62 –67.
Jiang Ping, Xue Guoqing, Cheng Tao. An economic and efficient joint development technology for medium and small offshore gas fields:A case study of Ledong 22-1 and 15-1 Gas Fields in the Yinggehai Basin[J]. Natural Gas Industry, 2013, 33 (11) : 62 –67.
[13] 潘凌, 方全堂, 段永刚. 低渗油藏非均质性对采收率的影响因素研究[J]. 西南石油大学学报:自然科学版, 2012, 34 (3) : 111 –115.
Pan Ling, Fang Quantang, Duan Yonggang. Mechanism research of the impact of heterogeneity on the low permeability reservoir recovery[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2012, 34 (3) : 111 –115.
[14] 李大建, 牛彩云, 吕亿明, 等. 低渗透油藏两层合采油井层间干扰分析[J]. 西部探矿工程, 2012 (12) : 20 –23.
Li Dajian, Niu Caiyun, Lv Yiming, et al. Analysis on interlayer iinterference in low permeability reservoir two laminated production wells[J]. West-China Exploration Engineering, 2012 (12) : 20 –23.
[15] 李立东.油田注水井层间干扰规律的研究及应用[D].杭州:浙江大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10335-1011165077.htm
[16] 安伟煜. 特高含水期多层非均质油藏层间干扰因素分析[J]. 东北石油大学学报, 2012, 36 (5) : 76 –82.
An Weiyu. Interference mechanism of multilayer heterogeneous reservoir in high water-cut stage[J]. Journal of Northeast Petroleum University, 2012, 36 (5) : 76 –82.
[17] 刘鹏程, 王晓冬, 候晓春, 等. 圆形封闭油藏垂直裂缝合采油井产能分析[J]. 新疆石油地质, 2004, 25 (3) : 297 –300.
Liu Pengcheng, Wang Xiaodong, Hou Xiaochun, et al. Productivity analysis of commingled production in circle-sealing reservoir with infinite conductive vertical fractures[J]. Xinjiang Petroleum Geology, 2004, 25 (3) : 297 –300.
[18] 张烈辉, 王海涛, 贾永禄, 等. 层间窜流的双孔介质双层油藏渗流模型[J]. 西南石油大学学报:自然科学版, 2009, 31 (5) : 178 –182.
Zhang Liehui, Wang Haitao, Jia Yonglu, et al. Model of two-layered reservoir with crossflow and dual porosity media[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2009, 31 (5) : 178 –182.
[19] 鲍敬伟, 宋新民, 叶继根, 等. 高含水率油田开发层系的重组[J]. 新疆石油地质, 2010, 31 (3) : 291 –294.
Bao Jingwei, Song Xinmin, Ye Jigen, et al. Recombination of layer series of development in high water-cut oil field[J]. Xinjiang Petroleum Geology, 2010, 31 (3) : 291 –294.
[20] 尹邦堂, 李相方, 李佳, 等. 巨厚高产强非均质气藏产能评价方法——以普光、大北气田为例[J]. 天然气工业, 2014, 34 (9) : 70 –75.
Yin Bangtang, Li Xiangfang, Li Jia, et al. A productivity evaluation method of gas reservoirs with great thickness, high deliverability and strong heterogeneity:Case studies of the Puguang in the Sichuan Basin and the Dabei in the Tarim Basin[J]. Natural Gas Industry, 2014, 34 (9) : 70 –75.
[21] 赵永胜. 注水井层间干扰的探讨[J]. 石油勘探与开发, 1983 (1) : 64 –69.
Zhao Yongsheng. A discussion on the interlayer interference in water-injection wells[J]. Petroleum exploration and development, 1983 (1) : 64 –69.
[22] 潘毅, 董卫军, 冯靓, 等. 多层砂岩油藏可视化模型水驱油物模实验研究[J]. 西南石油大学学报:自然科学版, 2012, 34 (6) : 79 –86.
Pan Yi, Dong Weijun, Feng Liang, et al. Experimental research of physical simulation on visual model water flooding flow character of multi-layer sandstone reservoir[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2012, 34 (6) : 79 –86.
[23] 于会利, 汪卫国, 荣娜, 等. 胜坨油田不同含水期层间干扰规律[J]. 油气地质与采收率, 2006, 13 (4) : 71 –73.
Yu Huili, Wang Weiguo, Rong Na, et al. Rule of interlayer interference in various water cut periods of Shengtuo Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2006, 13 (4) : 71 –73.
[24] 余华杰, 朱国金, 谭先红. 砂岩油藏多层合采层间干扰及开发策略研究[J]. 西南石油大学学报:自然科学版, 2014, 36 (1) : 101 –106.
Yu Huajie, Zhu Guojin, Tan Xianhong. Study on interlayer interference caused by commingling production and development strategy in sandstone reservoir[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2014, 36 (1) : 101 –106.