提高采收率的途径主要有两个,一是扩大波及体积,二是提高驱油效率。特高含水阶段波及系数已较高并且增加难度较大,降低含油饱和度和残余油饱和度,提高驱油效率将成为进一步提高采收率的重要途径[1-3]。
驱油效率其内涵反映了在波及系数基础上的波及程度(水洗程度)问题,一般理解为水波及的范围内微观原油被波及的最大程度或被采出的最大能力[4-5]。大量研究与统计分析表明[6-8]:储层非均质性(包括微观孔隙结构的非均质性和润湿性)是决定驱油效率的内在因素,外在因素是水驱条件的变化(包括注采系统调整和注采结构调整)。常规的水驱油理论认为,一旦某一储层的驱替剂确定,最终或极限驱油效率就为一个常数。但大量的实验和试验也证明随着注水倍数的增加,驱油效率可以增加7%~8%[9-10]。
为区别矿场的“驱油效率”的使用,这里将达不到驱油效率取值界限的而又反映储层在不同含水阶段或不同水洗倍数下水驱条件和水驱采出程度的波及程度(水洗程度)称为驱替效率,即目前技术驱油效率。
特高含水阶段,水驱波及程度已经较高,但由于储层的非均质性,使得渗透率低物性差的储层或区域注水倍数低,水洗程度低,导致驱替效率不高,造成这部分储层的采出程度或动用程度与高渗透储层具有很大差异。所以,以往的以提高波及系数的措施有效性减弱,应该认识和利用不同类型储层驱替效率的不均衡性,在“注水结构调整”、“产液结构调整”的基础上,着眼于特高含水阶段有针对性地研究提高某些储层水洗程度的技术经济手段,提高动用程度较差的储层的注水倍数,优化油田的“水驱油驱替效率结构”,最终实现使所有储层平均剩余油饱和度尽可能地降低,残余油饱和度不断减小的目标[11-16]。
1 非均质油层提高采收率影响因素分析一个油田或区块的采收率或采出程度可以用下式表示
| $ \eta = \frac{Q}{N} = \frac{{{Q_1} + {Q_2} + \cdots + {Q_n}}}{{{N_1} + {N_2} + \cdots + {N_n}}} = \\ \frac{{{\eta _1} \cdot {N_1} + {\eta _2} \cdot {N_2} + \cdots + {\eta _n} \cdot {N_n}}}{N} $ | (1) |
式中:
定义储量比例系数
| $ {a_{i}} = \dfrac{{{N_{i}}}}{N} $ |
则区块采出程度为
| $ \eta = {a_1}{\eta _1} + {a_2}{\eta _2} + \cdots + {a_n}{\eta _n} = \sum\limits_{i = 1}^n {{a_i}{\eta _i}} $ | (2) |
小层采出程度等于小层体积波及系数与驱替效率的乘积。根据驱替效率的定义,引入驱油效率系数
| $ {b_i} = E_{{\rm{D}}i}^*/{E_{{\rm{D}}i}} $ |
则,小层的采出程度或采收率为
| $ {\eta _i} = {E_{{\rm{V}}i}} \cdot E_{{\rm{D}}i}^* = {E_{{\rm{V}}i}} \cdot {b_i} \cdot E_{{\rm{D}}i}^{} =\\ {E_{{\rm{a}}i}} \cdot {E_{{\rm{h}}i}} \cdot {b_i} \cdot {E_{{\rm{D}}i}} $ | (3) |
式中:
区块的采出程度为
| $ \eta = \sum\limits_{i = 1}^n {({a_i} \cdot {b_i} \cdot {E_{{\rm{a}}i}} \cdot {E_{{\rm{h}}i}} \cdot {E_{{\rm{D}}i}}} ) $ | (4) |
式中小层的储量比例系数
在注水倍数和水洗程度高,油层动用程度好的情况下,驱油效率系数
为了对油层动用程度进行定量评价,这里用各小层驱油效率系数的平均值
| $ \bar b = \frac{{\sum\limits_{i = 1}^n {{b_i}} }}{n} $ | (5) |
| $ {b_{\rm{V}}} = \frac{{\sqrt {\frac{{\sum\limits_{i = 1}^n {{{({b_i}-\bar b)}^2}} }}{n}} }}{{\bar b}} $ | (6) |
若变异程度
根据大庆油田某区块实际地层参数建立数值模拟概念模型,研究了特高含水期细分注水、压裂、堵水等结构调整措施对非均质油层动用程度的影响。研究结果表明,细分注水程度对油层动用状况影响较大,细分程度越高油层动用程度越高、动用越均匀(图 1,表外指物性差、难动用的储层)。
![]() |
| 图1 不同细分程度小层动用状况对比图 Fig. 1 The comparison of producing degree sublayers of different subdivision extent |
利用式(3),可计算不同挖潜措施前后区块含水率为98%时的小层驱油效率系数,进而对油层动用程度进行定量评价。计算时小层采出程度采用数值模拟计算结果,小层驱油效率采用室内实验结果,波及系数取值为0.8。研究结果表明,注采结构调整后,小层间的动用状况更加均匀、动用程度更高。反映在小层的驱油效率系数上则表现为小层的驱油效率系数平均值增加、驱油效率系数变异程度减小,见图 2。
![]() |
| 图2 不同挖潜措施前后驱油效率系数平均值、驱油效率系数变异程度对比图 Fig. 2 The comparison between average values and variability degree of flushing efficiency coefficient before and after the measures of tapping potentialities |
笼统注水情况下,各小层的驱油效率系数平均值为0.31,驱油效率系数变异程度为0.59;进行细分注水(7段)后,各小层的驱油效率系数平均值和驱油效率系数变异程度变化较大,分别提高到0.48和下降到0.31,油层动用程度明显改善;而细分四段后的动用程度相对细分七段而言效果较差,驱油效率系数平均值和驱油效率系数变异程度变化较小,分别为0.33和0.54(见图 2a)。
同样,在特高含水期对低渗透层采取压裂措施,对高渗、高含水层采取堵水措施,都能够在不同程度上改善多层非均质油层的动用状况(图 2b)。
此外,多层非均质油藏采取细分注水、压裂、堵水等措施后,其驱油效率系数累积分布曲线形态也发生明显变化,主要变现为措施后驱油效率系数数据分布偏向x轴右侧,曲线斜率增大,曲线高点提高(图 3)。
![]() |
| 图3 不同挖潜措施与未措施情况下驱油效率系数累积分布对比曲线 Fig. 3 The correlation curve of cumulative distribution of flushing efficiency coefficient under the condition of different measures of tapping potentialities and having no measures |
(1) 特高含水期虽然波及系数已较高,但由于储层非均质性的影响,渗透率低物性差的油层动用程度仍较低,各种精细挖潜措施是提高油层动用程度,改善薄差油层动用状况的有效手段。
(2) 细分注水等精细挖潜措施后,描述多层非均质油藏动用状况的参数驱油效率系数,其累积分布曲线发生明显变化,主要表现为曲线向右偏移、曲线斜率增加、累积量增加;驱油效率系数的变异程度变小、平均值增加,表明油层的动用程度和动用均衡状况都所有提高。
(3) 通过对非均质油层驱油效率系数的计算和分析,为多层非均质油藏动用状况评价提供了一种新的手段和理论依据,实现了对油层动用程度的定量分析。
| [1] |
孟立新, 成洪文, 高淑芳, 等. 复杂断块油藏注水体积波及系数与驱替程度变化规律研究[J].
天然气地球科学, 2010, 21 (4) : 638–641.
Meng Lixin, Cheng Hongwen, Gao Shufang, et al. Volume swept efficiency and displacement variation in complicated fault-block pool[J]. Natural Gas Geoscience, 2010, 21 (4) : 638–641. |
| [2] |
方宏长, 冯明生. 中国东部几个主要油田高含水期提高水驱采收率的方向[J].
石油勘探与开发, 1999, 26 (1) : 40–42.
Fang Hongchang, Feng Mingsheng. Direction in enhancing waterflooding recovery of oil fields with high water cut in eastern China[J]. Petroleum Exploration and Deve-lopment, 1999, 26 (1) : 40–42. |
| [3] |
张中一. 提高特低渗透油层动用程度机理研究[J].
中外能源, 2008, 13 (3) : 76–80.
Zhang Zhongyi. Mechanism study on improving oil producing degree of ultra-low reservoir[J]. Sino-Global Energy, 2008, 13 (3) : 76–80. |
| [4] |
刘柏林. 苏北盆地陈堡油田微观水驱油机理及水驱油效率影响因素研究[J].
石油实验地质, 2003, 25 (2) : 178–181.
Liu Bailin. Study on microscopic water-drive mechanism and the affecting factors of water-drive efficiency in Chembao Oilfield, the north Jiangsu Basin[J]. Experimental Petroleum Geology, 2003, 25 (2) : 178–181. |
| [5] |
闫范, 侯平舒. 非均质注水开发油藏提高水驱油效率研究及应用[J].
钻采工艺, 2003, 26 (6) : 48–49, 65.
Yan Fan, hou Pingshu. Research and appliation of improving oil displacement effciency by waterflooding development heterogeneous reservoir[J]. Drilling & Production Technology, 2003, 26 (6) : 48–49, 65. |
| [6] |
王德龙, 郭平, 汪周华, 等. 非均质油藏注采井组均衡驱替效果研究[J].
西南石油大学学报:自然科学版, 2010, 33 (5) : 122–125.
Wang Delong, Guo Ping, Wang Zhouhua, et al. Study on equilibrium displacement effects of injection-production well group in heterogeneous reservoirs[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010, 33 (5) : 122–125. |
| [7] |
令文学, 刘兰芹. 胜坨油田特高含水期影响采收率的因素及针对性措施[J].
内蒙古石油化工, 2008, 12 : 126–129.
Ling Wenxue, Liu Lanqin. The influential factor to recovery of Shengtuo Oilfield in high water cut period and the pointed measure[J]. Inner Mongolia Petrochemical Industry, 2008, 12 : 126–129. |
| [8] |
莫建武, 孙卫, 杨希濮, 等. 严重层间非均质油藏水驱效果及影响因素研究[J].
西北大学学报:自然科学版, 2011, 41 (1) : 113–118.
Mo Jianwu, Sun Wei, Yang Xipu, et al. Study on water displacing oil effect and its factors in serious interlayer heterogeneity character reservoir[J]. Journal of Northwest University:Natural Science Edition, 2011, 41 (1) : 113–118. |
| [9] | Creties J, Shahin A S, Randy H, et al. Forty years of improved oil recovery:Lessons from low-permeability turbidites of the east Wilmington Field, California[C]. SPE 92036, 2004. |
| [10] | Saad M, Fahad A L M, David M, et al. A full field simulation model of a giant cabonate reservoir in Kuwait[C]. SPE 81498, 2003. |
| [11] |
吕国祥, 张津, 刘大伟, 等. 高含水油田提高水驱采收率技术的研究进展[J].
钻采工艺, 2010, 33 (2) : 55–57.
Lv Guoxiang, Zhang Jin, Liudawei, et al. Research on technology of enhance water drive recovery factor in high watered Oilfield[J]. Drilling & Production Technology, 2010, 33 (2) : 55–57. |
| [12] |
窦宏恩. 高含水期油田提高原油采收率的新理论[J].
特种油气藏, 2009, 16 (6) : 89–93.
Dou Hong'en. A new theory of improving oil recovery factor for oilfields in extra high water cut stage[J]. Special Oil & Gas Reservoirs, 2009, 16 (6) : 89–93. |
| [13] |
姚波, 赵庆东. 细分调整措施在高台子油层初见成效[J].
石油勘探与开发, 2008, 35 (2) : 220–224.
Yao Bo, Zhao Qingdong. A successful test with subdivision of oil layers and adjustment of water flooding in Gaotaizi Oil Zone, Daqing Oilfield[J]. Petroleum Exploration and Development, 2008, 35 (2) : 220–224. DOI:10.1016/S1876-3804(08)60030-0 |
| [14] |
王友启. 胜利油田高含水期油藏水驱精细调整技术方向[J].
石油钻探技术, 2011, 39 (1) : 101–104.
Wang Youqi. Fine adjustment direction of water flooding in high-water cut oil reservoirs of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2011, 39 (1) : 101–104. |
| [15] |
李卫彬, 王丽英, 孙庆萍. 特高含水期厚油层细分挖潜方法研究[J].
大庆石油地质与开发, 2005, 24 (1) : 58–60.
Li Weibin, Wang Liying, Sun Qingping. Improve the development effect of the thick oil zones in Lamadian Oilfield using water injection subdivision method[J]. Petroleum Geology & Oilfield Development in Daqin, 2005, 24 (1) : 58–60. |
| [16] |
吴淑云, 张晶涛. 萨中高台子油层浅调剖的实践与认识[J].
大庆石油地质与开发, 2005, 24 (3) : 61–63.
Wu Shuyun, Zhang Jingtao. Analysis of shallow profile modification application effect in Sazhong development Area[J]. Petroleum Geology & Oilfield Development in Daqin, 2005, 24 (3) : 61–63. |
2014, Vol. 36



