畜牧兽医学报  2023, Vol. 54 Issue (6): 2458-2467. DOI: 10.11843/j.issn.0366-6964.2023.06.024    PDF    
母猪添加益生菌和合生元对子代巴马香猪肌肉脂肪酸组成及相关基因表达的影响
祝倩1,2, 程雅婷1,2, 李锐煊1,2, 李宸健1, 刘雅婷1,2, 孔祥峰1,2     
1. 中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室 动物营养生理与代谢过程湖南省重点实验室, 长沙 410125;
2. 中国科学院大学 现代农业科学学院, 北京 100049
摘要:本试验旨在研究母体添加益生菌和合生元对子代肌肉脂肪酸组成及相关基因表达的影响。选用64头妊娠巴马香猪, 随机分为对照组(基础饲粮)、抗生素组(50 g·t-1维吉尼亚霉素)、益生菌组(200 mL·d-1益生菌发酵液)和合生元组(500 g·t-1低聚木糖+200 mL·d-1益生菌发酵液), 整个妊娠和哺乳期饲喂相应试验饲粮。断奶后每窝选取2头接近平均体重的仔猪, 每组32头, 饲喂基础饲粮。于125日龄每组选取8头, 采集股二头肌和腰大肌样品, 测定中长链脂肪酸组成和相关基因的表达。结果表明: 与对照组相比, 抗生素组股二头肌二十碳二烯酸的含量显著增加(P < 0.05)、硬脂酰辅酶A去饱和酶(SCD)和胆固醇调节原件结合蛋白1(SREBP-1)表达显著上调(P < 0.05);益生菌组股二头肌和腰大肌十七碳酸的含量显著减少(P < 0.05), 股二头肌激素敏感脂酶(HSL)和腰大肌过氧化物酶体增殖物激活受体γ(PPARγ)表达显著上调(P < 0.05);合生元组股二头肌亚油酸、二十碳一烯酸和n-6多不饱和脂肪酸的含量显著减少(P < 0.05), 腰大肌过氧化物酶体增殖物激活受体α(PPARα)表达显著上调(P < 0.05);抗生素和益生菌组股二头肌二十碳酸的含量显著减少(P < 0.05), 股二头肌PPARα、腰大肌脂肪甘油三酯脂酶(ATGL)和脂肪酸结合蛋白4(FABP4)表达显著上调(P < 0.05);益生菌和合生元组腰大肌肉碱棕榈酰转移酶1(CPT-1)和脂蛋白脂酶(LPL)表达显著上调(P < 0.05);三个试验组股二头肌反式油酸的含量显著减少(P < 0.05), ATGLFABP4和LPL表达显著上调(P < 0.05)。综上所述, 母体添加益生菌和合生元可改变子代肌肉的中长链脂肪酸组成、调控脂质代谢相关基因表达, 有利于猪肉营养价值和风味的改善; 添加抗生素可改善肌肉脂肪酸的组成。
关键词巴马香猪    益生菌    合生元    中长链脂肪酸    脂质代谢    
Effects of Probiotics and Synbiotics Addition to Sows' Diet on Fatty Acid Composition and Related Gene Expression in Muscle of Offspring Bama Mini-Pigs
ZHU Qian1,2, CHENG Yating1,2, LI Ruixuan1,2, LI Chenjian1, LIU Yating1,2, KONG Xiangfeng1,2     
1. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The present study was aimed to determine the effects of maternal addition with probiotics and synbiotics on muscular fatty acid composition and related gene expression of offspring.Bama mini-pigs xylo-oligosaccharide. A total of 64 pregnant Bama mini-pigs were selected and randomly divided into control (antibiotic-free basal diet), antibiotic (50 g·t-1 virginiamycin), probiotics (200 mL·d-1 probiotic mixture), and synbiotics (500 g·t-1 xylo-oligosaccharide + 200 mL·d-1 probiotics mixture) groups. The sows were fed with their corresponding experimental diets during pregnancy and lactation. After weaning, two piglets per litter (32 piglets per group) were selected and fed with a basal diet. At 125 days of age, 8 pigs per group were selected and their biceps femoris (BF) and psoas major (PM) muscles were sampled to determine medium- and long-chain fatty acid composition and related gene expressions. Results showed that, compared with the control group, the C20:2 content in BF muscle was significantly increased (P < 0.05) and the expression of stearyl coenzyme A desaturase (SCD) and sterol-regulatory element binding protein-1 (SREBP-1) in BF muscle were significantly up-regulated (P < 0.05) in the antibiotic group. In the probiotics group, the C17:0 content in BF and PM muscles were significantly decreased (P < 0.05), and the expression of hormone sensitive lipase (HSL) in BF muscle and peroxisome proliferator-activated receptor γ (PPARγ) in PM muscle were up-regulated (P < 0.05). In the synbiotics group, the content of C18:2n6c, C20:1, and n-6 PUFA in BF muscle were significantly decreased (P < 0.05), and the expression of PPARα in PM muscle was significantly up-regulated (P < 0.05). In the antibiotic and probiotics groups, the C20:0 content of BF muscle was significantly decreased (P < 0.05), while the expression of PPARα in BF muscle, triglyceride lipase (ATGL) and fatty acid binding protein 4 (FABP4) in PM muscle were significantly up-regulated (P < 0.05). The expression of carnitine palmityl transferase 1 (CPT-1) and lipoprotein lipase (LPL) in PM muscle were significantly up-regulated (P < 0.05) in the probiotics and synbiotics groups. In the antibiotic, probiotics and synbiotics groups, the C18:1n9t content in BF muscle was significantly decreased (P < 0.05), and the expression of ATGL, FABP4, and LPL in BF muscle were up-regulated (P < 0.05). In conclusion, maternal addition with probiotics and synbiotics could alter offspring's muscular fatty acid composition by regulating the expression of genes related to lipid metabolism, which are beneficial to improve the nutrition value and flavor of meat. In addition, maternal antibiotic addition could improve offspring's muscular fatty acid composition.
Key words: Bama mini-pigs    probiotics    synbiotics    medium- and long-chain fatty acid    lipid metabolism    

肌内脂肪(intramuscular fat, IMF)可影响猪肉的色泽、嫩度、多汁性和营养价值等[1],且受动物品种、日龄、性别和饲粮营养等因素的影响[2]。可见,IMF是动物育种的重要经济性状,同时也是影响消费者对猪肉接受程度的重要定量性状[3]。但过去以提高瘦肉率和胴体重为目标的选育导致了猪的脂肪沉积尤其是IMF含量减少[4]。因此,提高IMF的沉积成为了改善猪肉品质的重要途径。肠道微生物与肌纤维特性和脂质代谢等影响肉品质的因素密切相关。现有研究表明,肠道梭菌属丰度与IMF呈显著正相关[5],厚壁菌门/拟杆菌门比值与宿主能量获取和脂肪沉积有关[6];干酪乳酸杆菌可增加背最长肌IMF和不饱和脂肪酸含量[7],屎肠球菌和枯草芽孢杆菌可提高IMF含量,改善肉品质[8];植物乳杆菌可通过改变肠道微生物改善肉品质[9],酵母菌、乳酸菌和芽孢杆菌的复合制剂可提高肌肉嫩度、持水性和营养物质含量等。另外,低聚木糖作为益生元可通过改变菌群结构发挥其有益功能,饲粮添加低聚木糖或低聚木糖(XOS)+丁酸梭菌均可改变脂肪酸组成,进而改善肉品质[10]。笔者前期研究也发现,母猪饲粮添加合生元可改善妊娠和哺乳期母猪的肠道菌群结构、仔猪的脂质代谢[11],添加益生菌和合生元可改善子代日采食量、促进背最长肌IMF的沉积、改善背最长肌脂肪酸组成和脂质代谢[12]。可见,益生菌或合生元可作为调控肠道微生物组成进而改善肉品质的功能性饲料添加剂。肌肉的脂质代谢对IMF沉积至关重要,而肌肉脂肪酸组成对猪肉的感官特性、营养价值和食用品质均存在较大影响[13]。另外,不同肌肉类型的营养物质含量和肉品质也存在差异[14]。因此,本文进一步研究母猪添加益生菌和合生元对子代巴马香猪股二头肌和腰大肌的中长链脂肪酸组成及相关基因表达的影响,为其在肉品质“母子一体化”调控中的应用提供依据。

1 材料与方法 1.1 试验动物、分组和饲养管理

试验选取3~5胎次妊娠巴马香猪64头,随机分为4组,分别为对照组(饲喂基础饲粮)、抗生素组(添加50 g·t-1维吉尼亚霉素)、益生菌组(添加200 mL·d-1益生菌发酵液)和合生元组(添加500 g·t-1低聚木糖+200 mL·d-1益生菌发酵液),每组16头,单栏饲养,从配种后3 d开始添加。益生菌发酵液由湖南粒丰生物科技有限公司提供,含有植物乳杆菌(≥1×108 CFU·mL-1)和酿酒酵母(≥0.2×108 CFU·mL-1)。XOS由山东龙力生物科技股份有限公司提供,含量大于35%。根据猪场的饲养管理标准管理,于每天的8:00和17:00各饲喂1次、自由饮水,每头母猪在妊娠期饲喂量随妊娠阶段调整:0.8 kg·d-1(1~15 d)、1.0 kg·d-1(16~30 d)、1.2 kg·d-1(31~75 d)、1.5 kg·d-1(76~90 d)、2.0 kg·d-1(91~110 d),分娩前1周饲喂量为1.0 kg·d-1,分娩至断奶饲喂量为2.4 kg·d-1。28日龄断奶后,每窝选取2头(公、母各半)接近平均体重的仔猪用于后续试验。来源于同处理每两窝中的2头仔猪合并为一栏饲喂,即每栏4头,每组8栏。所有子代均饲喂基础饲粮。母猪基础饲粮组成和营养水平见表 1,子代基础饲粮组成和营养水平见表 2。本试验于湖南省常德市石门镇山羊冲试验基地进行,试验猪在同一栋栏舍饲养,饲养管理条件相同。饲养和管理按照商业猪场的标准进行。

表 1 母猪基础饲粮组成及营养水平(风干基础) Table 1 Composition and nutrient levels of the basal diets for sows (air-dry basis) 
表 2 断奶巴马香猪基础饲粮组成及营养水平(风干基础) Table 2 Composition and nutrient levels of the basal diets for weaned Bama-mini pigs (air-dry basis) 
1.2 样品采集

各组试验猪于125日龄时禁食12 h,称重。每栏选取1头,每组8头,运至屠宰场电击(120 V,200 Hz)致晕后心脏放血,分割胴体,采集左半胴体股二头肌和腰大肌,-20 ℃保存用于常规营养成分测定,液氮速冻后于-80 ℃保存用于相关基因表达分析。

1.3 肌肉化学成分测定

肌肉样品切碎后称重,冷冻干燥后粉碎。粗脂肪含量采用索氏提取法[15],用全自动脂肪测定仪(SOX416,Gerhardt,Germany)测定;中长链脂肪酸含量参考Liu等[16]的方法,用液体进样气相色谱仪(7890A,Agilent,USA)测定。

1.4 RNA提取、反转录和基因表达分析

用AG RNAex Pro试剂盒(Accurate Biology, 湖南,中国)提取肌肉样品的总RNA。用NanoDrop ND-2000分光光度计(Thermo Fisher Scientific, Waltham, MA, USA)测定总RNA浓度,纯度以A260/A280比值确定。用琼脂糖凝胶电泳评估RNA质量。用Evo M-MLV RT试剂盒(Accurate Biology, 湖南,中国)将总RNA(1 000 ng)反转录为cDNA。RT-qPCR分析采用LightCycler 480II(Roche, Basel, Swiss)和SYBRGreen Premix Pro Taq HS qPCR Kit(Accurate Biology, 湖南,中国)进行。目的基因的特定引物由生工生物工程(上海)股份有限公司合成(表 3)。RT-qPCR的10 μL反应体系包括:上、下游引物各0.25 μL,5.0 μL SYBR Premix,2.0 μL cDNA,2.5 μL ddH2O。扩增条件为:95 ℃预变性30 s;95 ℃变性5 s,60 ℃退火30 s,共45个循环。采用2-ΔΔCt法计算目的基因的相对表达量。

表 3 荧光定量RT-qPCR引物 Table 3 Primers used for RT-qPCR
1.5 数据处理与分析

用Microsoft Excel 2019初步整理试验数据,用SPSS 25.0软件的一般线性模型GLM进行单因素方差分析,采用Duncan氏法进行多重比较,结果以平均值(Mean)和标准误(SEM)表示。P < 0.05表示组间存在显著差异。

2 结果 2.1 子代股二头肌中长链脂肪酸组成的变化

表 4可知,与对照组相比,抗生素组二十碳二烯酸的含量显著增加(P < 0.05);益生菌组十七碳酸的含量显著减少(P < 0.05);合生元组亚油酸、二十碳一烯酸和n-6多不饱和脂肪酸的含量显著减少(P < 0.05);抗生素和益生菌组二十碳酸的含量及三个试验组反式油酸的含量显著减少(P < 0.05)。

表 4 母猪饲粮添加益生菌和合生元对子代股二头肌肌内脂肪和中长链脂肪酸含量的影响 Table 4 Effects of probiotics and synbiotics addition to sows' diet on intramuscular fat and medium- and long-chain fatty acid content in biceps femoris muscle of offspring 
2.2 子代腰大肌中长链脂肪酸组成的变化

表 5可知,与对照组相比,益生菌组十七碳酸含量显著减少(P < 0.05);其他中长链脂肪酸含量各组间均无显著差异。

表 5 母猪饲粮添加益生菌和合生元对子代腰大肌肌内脂肪和中长链脂肪酸含量的影响 Table 5 Effects of probiotics and synbiotics addition to sows' diet on intramuscular fat and medium- and long-chain fatty acid content in psoas major muscle of offspring 
2.3 子代股二头肌脂质代谢相关基因表达的变化

表 6可知,与对照组相比,抗生素组SCDSREBP-1表达显著上调(P < 0.05);益生菌组HSL表达显著上调(P < 0.05);抗生素和益生菌组PPARα表达显著上调(P < 0.05);三个试验组ATGLFABP4和LPL表达显著上调(P < 0.05)。

表 6 母猪饲粮添加益生菌和合生元对子代股二头肌脂质代谢相关基因表达的影响 Table 6 Effects of probiotics and synbiotics addition to sows' diet on the gene expression related to lipid metabolism in biceps femoris muscle of offspring
2.4 子代腰大肌脂质代谢相关基因表达的变化

表 7可知,与对照组相比,益生菌组PPARγ表达显著上调(P < 0.05);合生元组PPARα表达显著上调(P < 0.05);抗生素和益生菌组ATGLFABP4表达显著上调(P < 0.05);益生菌和合生元组CPT-1和LPL表达显著上调(P < 0.05)。

表 7 母猪饲粮添加益生菌和合生元对子代腰大肌脂质代谢相关基因表达的影响 Table 7 Effects of probiotics and synbiotics addition to sows' diet on the gene expression related to lipid metabolism in psoas major muscle of offspring
3 讨论

现有研究表明,肠道微生物和母乳在母子一体化的营养调控中发挥至关重要的作用[17]。益生菌和合生元在母猪、仔猪和育肥猪中通过调控肠道微生物进而影响其生长和生产性能方面均具有重要的作用,因此广泛应用于养猪生产中。另外,虽然母体添加益生菌和合生元对子代肉品质的调控作用尚不清楚,但其可能主要是通过妊娠期间的脐带血液供给、泌乳期间的母乳供给和肠道菌群传递3个途径实现的。肌纤维类型和肌内脂肪含量是影响肉品质的两个主要因素,而肌纤维数量在妊娠期间就已确定,肌内脂肪主要在育肥期沉积。鉴于肠道微生物广泛参与了机体的营养代谢,且其在肌肉的发育和脂肪沉积中发挥重要作用[18],因此本试验在整个妊娠期和哺乳期母猪饲粮中添加益生菌和合生元,研究其对子代肉品质的影响。

肌肉组织中IMF含量可影响肉的感官性能和营养价值,较高的IMF含量可改善肉的口感[19]。本研究中,母猪饲粮添加益生菌和合生元不影响子代股二头肌和腰大肌的IMF含量。笔者前期研究发现,母猪饲粮添加益生菌和合生元促进了背最长肌IMF的沉积[12]。这可能与不同的骨骼肌类型有关[20]

在猪肉的主要中长链脂肪酸中,C18∶2n6c是UFA中的主要脂肪酸且对人体健康有益[21],而C18∶1n9t是一种对人体健康存在不利影响的反式脂肪酸[22]。本研究中,母猪饲粮添加益生菌增加了子代腰大肌MUFA含量,添加抗生素、益生菌和合生元减少了子代股二头肌C18∶1n9t含量,提示子代的肉品质和营养价值得到改善。这与前期报道一致,即饲粮添加Lactobacillus amylovorusEnterococcus faecium可增加猪背最长肌中C18∶2n6c、MUFA和PUFA含量[23],添加益生菌可改善鸡肉FA组成[24]。另有研究表明,过高含量的n-6 PUFA可增加癌症和冠心病的发病率[25]。本研究发现,饲粮添加合生元减少了子代股二头肌n-6 PUFA。这表明上述添加剂可通过改变肌肉脂肪酸的组成而改善猪肉的营养价值,这可能与肠道微生物的变化有关[26]。笔者前期研究也表明,母猪饲粮添加抗生素、益生菌和合生元可改变与脂肪沉积相关的ClostridiumBlautiaTreponema等肠道微生物的丰度[27]

脂质的合成与分解是影响机体脂肪沉积的主要因素。PPARα可通过调控SCD促进动物机体脂肪酸的合成[28]。本研究中,益生菌组、合生元组子代股二头肌PPARα的表达上调,提示肌肉脂肪酸的合成可能会增加,这也解释了子代肌肉脂肪酸组成的变化。FABP4和PPARγ可促进猪肉IMF的沉积[29]。本研究中,母猪饲粮添加益生菌上调了子代股二头肌和腰大肌FABP4以及腰大肌PPARγ的表达,添加合生元上调了子代股二头肌FABP4的表达,提示母体添加益生菌和合生元可促进子代肌肉脂肪的沉积。LPL在脂质代谢及脂肪酸组成中发挥重要作用,被认为是调节脂肪酸组成的功能候选基因[30]。本研究发现,母猪饲粮添加益生菌和合生元上调了子代股二头肌和腰大肌LPL的表达,这解释了肌肉脂质代谢和脂肪酸组成的变化。ATGL可参与脂肪的分解且与肌肉IMF含量呈负相关[4]。本研究中,母猪饲粮添加抗生素上调了子代腰大肌ATGL表达,其生理学意义还有待进一步研究。

4 结论

母猪饲粮添加益生菌和合生元可通过上调FABP4、PPARγLPL的表达改变肌肉脂肪酸的组成,这有利于改善子代的肉品质;另外,添加抗生素可改变肌肉脂肪酸的组成。这为益生物质在猪肉品质“母子一体化”调控中的应用提供了依据。关于益生菌和合生元通过肠道微生物影响肌肉脂质代谢进而改善肉品质的具体机制还有待进一步的研究。

参考文献
[1]
GONG H F, XIAO S J, LI W B, et al. Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array[J]. J Anim Breed Genet, 2019, 136(1): 3-14. DOI:10.1111/jbg.12365
[2]
ZHENG Y, CHEN J J, WANG X X, et al. Metagenomic and transcriptomic analyses reveal the differences and associations between the gut microbiome and muscular genes in angus and Chinese simmental cattle[J]. Front Microbiol, 2022, 13: 815915. DOI:10.3389/fmicb.2022.815915
[3]
WON S, JUNG J, PARK E, et al. Identification of genes related to intramuscular fat content of pigs using genome-wide association study[J]. Asian-Australas J Anim Sci, 2018, 31(2): 157-162. DOI:10.5713/ajas.17.0218
[4]
ZAPPATERRA M, DESERTI M, MAZZA R, et al. A gene and protein expression study on four porcine genes related to intramuscular fat deposition[J]. Meat Sci, 2016, 121: 27-32. DOI:10.1016/j.meatsci.2016.05.007
[5]
QI K K, MEN X M, WU J, et al. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity[J]. BMC Microbiol, 2019, 19(1): 181. DOI:10.1186/s12866-019-1556-x
[6]
THAISS C A, ITAV S, ROTHSCHILD D, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain[J]. Nature, 2016, 540(7634): 544-551. DOI:10.1038/nature20796
[7]
王四新, 季海峰, 王红卫, 等. 干酪乳杆菌对北京黑猪育肥阶段生长性能和肌肉营养成分含量的影响[J]. 动物营养学报, 2019, 31(1): 469-476.
WANG S X, JI H F, WANG H W, et al. Effects of Lactobacillus casei on growth performance and muscle nutritional component contents of Beijing black pigs during fattening stage[J]. Chinese Journal of Animal Nutrition, 2019, 31(1): 469-476. DOI:10.3969/j.issn.1006-267x.2019.01.055 (in Chinese)
[8]
刘金阳, 王在贵, 张宏福, 等. 益生菌与饲粮组合效应对苏淮猪生长性能、胃肠道pH和肉品质的影响[J]. 畜牧兽医学报, 2014, 45(10): 1648-1655.
LIU J Y, WANG Z G, ZHANG H F, et al. Effects of diets supplemented with probiotic on growth performance, gastrointestinal pH and meat quality of Suhuai pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(10): 1648-1655. DOI:10.11843/j.issn.0366-6964.2014.10.010 (in Chinese)
[9]
SUO C, YIN Y S, WANG X N, et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Vet Res, 2012, 8: 89. DOI:10.1186/1746-6148-8-89
[10]
CAI Q L, HU C J, TANG W, et al. Dietary addition with Clostridium butyricum and xylo-oligosaccharides improves carcass trait and meat quality of Huanjiang mini-pigs[J]. Front Nutr, 2021, 8: 748647. DOI:10.3389/fnut.2021.748647
[11]
MA C, ZHANG W H, GAO Q K, et al. Dietary synbiotic alters plasma biochemical parameters and fecal microbiota and metabolites in sows[J]. J Funct Food, 2020, 75: 104221. DOI:10.1016/j.jff.2020.104221
[12]
ZHU Q, SONG M T, AZAD M A K, et al. Probiotics and synbiotics addition to Bama mini-pigs' diet improve carcass traits and meat quality by altering plasma metabolites and related gene expression of offspring[J]. Front Vet Sci, 2022, 9: 779745. DOI:10.3389/fvets.2022.779745
[13]
ABOAGYE G, ZAPPATERRA M, PASINI F, et al. Fatty acid composition of the intramuscular fat in the longissimus thoracis muscle of Apulo-Calabrese and crossbreed pigs[J]. Livest Sci, 2020, 232: 103878. DOI:10.1016/j.livsci.2019.103878
[14]
LORENZO J M, PATEIRO M. Influence of type of muscles on nutritional value of foal meat[J]. Meat Sci, 2013, 93(3): 630-638. DOI:10.1016/j.meatsci.2012.11.007
[15]
AO AC. Official methods of analysis[M]. 16th ed. Arlington: AOAC, 1995.
[16]
LIU Y Y, LI F N, HE L Y, et al. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner[J]. Br J Nutr, 2015, 113(7): 1069-1077. DOI:10.1017/S0007114514004310
[17]
严佳豪, 胡睿智, 王楹, 等. 微生物、氧化应激与母乳在猪母子一体化营养调控中的作用[J]. 动物营养学报, 2020, 32(7): 2981-2988.
YAN J H, HU R Z, WANG Y, et al. Roles of microbe, oxidative stress and breast milk in regulation of maternal-child integrated nutrition in swine[J]. Chinese Journal of Animal Nutrition, 2020, 32(7): 2981-2988. (in Chinese)
[18]
HAN Q, HUANG X G, YAN F Y, et al. The role of gut microbiota in the skeletal muscle development and fat deposition in pigs[J]. Antibiotics, 2022, 11(6): 793. DOI:10.3390/antibiotics11060793
[19]
WOOD J D, NUTE G R, RICHARDSON R I, et al. Effects of breed, diet and muscle on fat deposition and eating quality in pigs[J]. Meat Sci, 2004, 67(4): 651-667. DOI:10.1016/j.meatsci.2004.01.007
[20]
ZHAO Y Y, CAO G Q, GAO P F, et al. Comparing the mRNA expression profile of psoas major and longissimus dorsi muscles in pig[J]. Indian J Anim Res, 2020, 54(12): 1490-1496.
[21]
CHEN W, MI J D, LV N, et al. Lactation stage-dependency of the sow milk microbiota[J]. Front Microbiol, 2018, 9: 945. DOI:10.3389/fmicb.2018.00945
[22]
LI X P, LUO T, LI J, et al. Linolelaidic acid induces a stronger proliferative effect on human umbilical vein smooth muscle cells compared to elaidic acid[J]. Lipids, 2013, 48(4): 395-403. DOI:10.1007/s11745-012-3754-2
[23]
ROSS G R, VAN NIEUWENHOVE C P, GONZÁLEZ S N. Fatty acid profile of pig meat after probiotic administration[J]. J Agric Food Chem, 2012, 60(23): 5974-5978. DOI:10.1021/jf205360h
[24]
HOSSAIN M E, KIM G M, LEE S K, et al. Growth performance, meat yield, oxidative stability, and fatty acid composition of meat from broilers fed diets supplemented with a medicinal plant and probiotics[J]. Asian-Australas J Anim Sci, 2012, 25(8): 1159-1168. DOI:10.5713/ajas.2012.12090
[25]
WOOD J D, RICHARDSON R I, NUTE G R, et al. Effects of fatty acids on meat quality: a review[J]. Meat Sci, 2004, 66(1): 21-32. DOI:10.1016/S0309-1740(03)00022-6
[26]
LI X, CAO Z H, YANG Y T, et al. Correlation between jejunal microbial diversity and muscle fatty acids deposition in broilers reared at different ambient temperatures[J]. Sci Rep, 2019, 9: 11022. DOI:10.1038/s41598-019-47323-0
[27]
ZHU Q, SONG M T, AZAD M A K, et al. Probiotics or synbiotics addition to sows' diets alters colonic microbiome composition and metabolome profiles of offspring pigs[J]. Front Microbiol, 2022, 13: 934890. DOI:10.3389/fmicb.2022.934890
[28]
KUCHARSKI M, KACZOR U. Desaturaza stearylo-CoA-regulator metabolizmu lipidów[J]. Adv Hyg Exp Med, 2014, 68: 334-342.
[29]
ZHAO X Y, HU H M, LIN H C, et al. Muscle transcriptome analysis reveals potential candidate genes and pathways affecting intramuscular fat content in pigs[J]. Front Genet, 2020, 11: 877. DOI:10.3389/fgene.2020.00877
[30]
JEONG J, KWON E G, IM S K, et al. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers[J]. J Anim Sci, 2012, 90(6): 2044-2053. DOI:10.2527/jas.2011-4753

(编辑   范子娟)