畜牧兽医学报  2023, Vol. 54 Issue (6): 2414-2420. DOI: 10.11843/j.issn.0366-6964.2023.06.020    PDF    
宫内发育迟缓对环江香猪哺乳仔猪IGF发育模式的影响
耿梅梅1, 豆梦莹1, 傅德智1, 何庆华1, 孔祥峰1,2     
1. 中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室 动物营养生理与代谢过程湖南省重点实验室, 长沙 410125;
2. 中国科学院环江喀斯特农业生态试验站 环江香猪研究中心, 环江 547100
摘要:本文旨在探讨宫内发育迟缓(IUGR)发生与胰岛素样生长因子(IGF)发育模式的联系。选用20头体况相近的环江香猪母猪, 分娩后从每窝挑出1头体重最大(定义为正常出生重, NBW)仔猪和1头体重最小仔猪(定义为IUGR), 分为NBW组和IUGR组, 每组20头。分别于0、7、14和21日龄时, 从各组随机选取5头仔猪, 前腔静脉采血, 离心分离血浆, 检测IGF-1浓度; 采集肝和背最长肌样品, 检测IGF-1、IGF-1R、IGFBP-3和IGFBP-5的基因表达水平。结果表明: 与NBW仔猪相比, 0~21日龄IUGR仔猪体重和血浆IGF-1含量均显著降低(P<0.05);0~14日龄IUGR仔猪的体重逐渐增加(P < 0.05), 而21日龄IUGR仔猪的体重与14日龄差异不显著(P>0.05)。0日龄IUGR仔猪肌肉IGF-1R、IGFBP-3和IGFBP-5、肝IGFBP-5的表达显著上调显著高于NBW仔猪(P < 0.05), 7日龄IUGR仔猪肌肉和肝的IGF-1表达均显著下调低于NBW仔猪(P < 0.05), 21日龄IUGR仔猪肌肉IGF-1R的表达水平显著高于NBW仔猪(P < 0.05)。7日龄NBW仔猪肝和肌肉IGF-1以及IUGR仔猪肝IGF-1的表达水平显著高于其他日龄(P<0.05);0、14日龄IUGR仔猪肌肉IGF-1的表达水平显著高于7和21日龄(P<0.05);7日龄NBW仔猪肝和肌肉IGFBP-5的表达水平显著高于其他日龄(P<0.05);IUGR仔猪肝IGFBP-3的表达水平在14日龄显著上调, IGFBP-5的表达水平在0日龄显著上调高于其他日龄(P < 0.05)。综上, IUGR可能通过降低哺乳环江香猪IGF-1的表达、调节IGF-1受体及结合蛋白的表达, 导致机体内IGF-1含量降低, 进而延缓其生长发育。
关键词宫内发育迟缓    环江香猪    胰岛素样生长因子    受体    结合蛋白    
Effects of Intrauterine Growth Retardation on Developmental Model of Insulin-Like Growth Factor in Suckling Piglets of Huanjiang Mini-Pig
GENG Meimei1, DOU Mengying1, FU Dezhi1, HE Qinghua1, KONG Xiangfeng1,2     
1. Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
2. Research Center of Huanjiang Mini-pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
Abstract: This study was conducted to investigate the relationship between the occurrence of intrauterine growth retardation (IUGR) and the development pattern of insulin-like growth factor (IGF). Twenty pregnant sows with similar body condition were selected. The largest piglet selected was defined as normal birth weight (NBW) piglet and the smallest piglet was defined as IUGR piglet from each litter after parturition. They were divided into NBW group and IUGR group with 20 piglets per group. At 0, 7, 14, and 21 days of age, 5 piglets were randomly selected from each group, respectively. The blood was collected from the anterior vena cava and the plasma was collected to detect the IGF-1 concentration, and the samples of liver and longissimus dorsi muscle were collected to detect the gene expression levels of IGF-1, IGF-1R, IGFBP-3, and IGFBP-5. The results showed that the body weight and plasma IGF-1 content of IUGR piglets were significantly lower (P < 0.05) during 0 to 21 days of age, compared with the NBW piglets. The body weight of IUGR piglets during 0 to 14 days of age was increased (P < 0.05), but there were no significant difference (P > 0.05) in the body weight of IUGR piglets at 14 and 21 days of age. At 0 day of age, the IUGR piglets had up-regulatedsignificantly higher (P < 0.05) mRNA expressions of IGF-1R, IGFBP-3 and IGFBP-5 in muscle and IGFBP-5 in liver than NBW piglets; At 7 days of age, the IUGR piglets had down-regulatedsignificantly lower (P < 0.05) mRNA expression levels of IGF-1 in muscle or liver than NBW piglets; At 21 days of age, the IUGR piglets had up-regulatedsignificantly higher (P < 0.05) mRNA expression levels of IGF-1R and IGFBP-3 in muscle than NBW piglets. The expression of IGF-1 in liver and muscle of NBW piglets and liver of IUGR piglets at 7 days of age was significantly higher (P < 0.05) than that at other days of age; The mRNA expression level of IGF-1 in muscle of IUGR piglets at 0 and 14 days of age was significantly higher (P < 0.05) than that of IUGR piglets at 7 and 21 days of age. The expression level of IGFBP-5 in liver and muscle of NBW piglets at 7 days of age was significantly higher (P < 0.05) than that at other days of age, and the expression levels of IGFBP-3 at 14 days of age and IGFBP-5 at 0 day of age were significantly up-regulated (P < 0.05) in liver of IUGR piglets. Collectively, these findings suggested that the IUGR may reduce the expression of IGF-1 and regulate the expression of IGF-1 receptor and binding protein in suckling piglets of Huanjiang mini-pig, which may lead to the decrease of IGF-1 content, retard growth and development of suckling piglets.
Key words: intrauterine growth retardation    Huanjiang mini-pig    insulin-like growth factor    receptor    binding protein    

宫内发育迟缓(intrauterine growth retardation, IUGR)是指哺乳动物的胚胎或胎儿及其器官在母体妊娠期间的生长发育缓慢,未达到胎龄的预期体重[1]。IUGR不仅会影响出生重,而且会对动物出生后的生长发育产生不利影响[2]。在各种家畜中猪的IUGR发生最为严重,约75%的IUGR仔猪在断奶前死亡,给养猪业带来了严重的经济损失[3-4]。因此,探究IUGR的发生原因和机制,可为IUGR的防治提供理论依据。现有研究表明,IUGR动物的血液中胰岛素样生长因子(IGF)浓度降低,影响了胎儿及其出生后的生长发育[5]。因此,IGF-1含量的降低成为IUGR的一个重要判定指标。IGF的生物活性受机体内IGF结合蛋白及其受体的影响[6]。研究发现,IUGR动物机体内多个组织IGF结合蛋白的表达显著高于正常动物[7-8]。目前,IUGR动物IGF的研究主要与胎儿期及产后早期机体内IGF-1含量的变化有关[9],而关于IUGR动物出生后机体IGF系统发育模式的相关研究报道较少。环江香猪是我国著名的小型地方猪种,具有体型矮小、基因纯合、抗逆性强等特点,可作为研究人类疾病的理想动物模型[10]。因此,本研究通过比较不同日龄的IUGR和正常体重(NBW)环江香猪哺乳仔猪的体重、血浆IGF-1含量以及肝、肌肉组织中IGF系统相关因子的基因表达差异,探讨IUGR发生与IGF发育模式的联系,为揭示IUGR动物出生后生长发育规律、研发其营养调控技术提供依据。

1 材料与方法 1.1 试验动物、分组与饲养管理

动物饲养试验在广西壮族自治区环江毛南族自治县环江香猪原种保种场开展。选用20头胎次和体况相近的妊娠母猪,分娩后从每窝中挑出1头体重最大(定义为正常出生重,NBW)仔猪和1头体重最小(定义为IUGR)仔猪,分为NBW组和IUGR组,每组20头。IUGR仔猪的选择标准参照Xiong等[11]的方法。饲喂和免疫等饲养管理方式均按猪场养殖标准规范操作。

1.2 样品采集

分别于0、7、14和21日龄,选择IUGR仔猪与NBW仔猪各5头,空腹称重后,前腔静脉采血,置于肝素抗凝管中,3 500 r·min-1离心15 min分离血浆,用于IGF-1含量测定;采血后的仔猪颈动脉放血处死,快速取肝和背最长肌组织样品,液氮速冻后-80 ℃保存,用于IGF系统相关基因表达的分析。

1.3 血浆IGF-1含量的测定

利用γ-放射免疫计数器(GC-400,中科中佳)检测血浆中IGF-1的浓度,试剂盒购自天津九鼎医学生物工程有限公司。

1.4 IGF系统相关基因表达的分析

利用TRIzol试剂盒(Invitrogen,美国)提取样品中的总RNA,利用NanoDrop One超微量紫外分光光度计(Thermo Fisher,美国)测定总RNA的浓度和纯度,1.5%的琼脂糖凝胶电泳检测总RNA的质量。DNAse I(Invitrogen,美国)处理RNA样品后,用逆转录试剂盒(Invitrogen,美国)合成cDNA。根据猪的IGF、IGF受体、IGF结合蛋白和GAPDH的cDNA序列,用Primer 5.0软件分别设计其引物(表 1),由生工生物工程(上海)有限公司合成。管家基因GAPDH作为内参基因对目的基因转录水平进行校正。采用荧光定量PCR仪(ABI,7900HT)进行PCR反应,反应体系如下:SYBR Green PCR混合物12.5 μL,cDNA模板2 μL,10 μmol·L-1的上、下游引物各1 μL,加去离子水至25 μL。PCR反应程序如下:95 ℃预变性10 s;扩增,95 ℃ 5 s,60 ℃ 20 s,40个循环;60~99 ℃收集熔解曲线。用2-ΔΔCt方法计算目的基因的相对表达量。

表 1 实时定量PCR引物 Table 1 Primers used in real time PCR
1.5 数据处理与分析

试验数据以“平均值±标准误”表示,采用SPSS21.0软件的配对t检验对NBW仔猪和IUGR仔猪进行分析,采用单因素方差分析Duncan氏法对NBW仔猪和IUGR仔猪的不同日龄进行多重比较,P < 0.05表示差异显著。

2 结果 2.1 IUGR对不同日龄环江香猪哺乳仔猪体重的影响

表 2可知,0、7、14和21日龄IUGR仔猪的体重均显著低于NBW仔猪(P < 0.05)。21日龄NBW仔猪的体重显著高于0、7和14日龄的体重(P < 0.05)。14、21日龄IUGR仔猪的体重显著高于0和7日龄IUGR仔猪的体重(P < 0.05),但14、21日龄IUGR仔猪的体重差异不显著(P>0.05)。

表 2 宫内发育迟缓对不同日龄环江香猪哺乳仔猪体重的影响 Table 2 Effect of IUGR on body weight of suckling piglets of Huanjiang mini-pig during different days of age 
2.2 IUGR对不同日龄环江香猪哺乳仔猪血浆IGF-1含量的影响

表 3可知,0、7、14和21日龄IUGR仔猪血浆中IGF-1含量均显著低于NBW仔猪(P < 0.05)。

表 3 宫内发育迟缓对不同日龄环江香猪哺乳仔猪血浆IGF-1含量的影响 Table 3 Effect of IUGR on plasma IGF-1 content in suckling piglets of Huanjiang mini-pig during different days of age 
2.3 IUGR对不同日龄环江香猪哺乳仔猪肝IGF系统相关因子基因表达的影响

表 4可知,与NBW仔猪相比,0日龄IUGR仔猪肝IGFBP-5的表达水平显著上调(P < 0.05),7日龄IUGR仔猪肝IGF-1和IGFBP-5的表达水平显著下调(P < 0.05)。与0、14和21日龄相比,7日龄NBW仔猪和IUGR仔猪肝IGF-1表达水平均显著上调(P < 0.05)。NBW仔猪肝IGF-1R在不同日龄的表达水平差异不显著(P>0.05),而IUGR仔猪IGF-1R的表达水平在21日龄显著下调(P < 0.05)。NBW仔猪肝IGFBP-3的表达水平在7、14日龄显著上调(P < 0.05),IGFBP-5的表达水平在7日龄显著上调(P < 0.05)。IUGR仔猪肝IGFBP-3的表达水平在14日龄显著上调,IGFBP-5的表达水平在0日龄显著上调(P < 0.05)。

表 4 宫内发育迟缓对不同日龄环江香猪哺乳仔猪肝IGF系统相关因子基因表达的影响 Table 4 Effect of IUGR on liver gene expression of IGF system related factors in suckling piglets of Huanjiang mini-pig during different days of age

表 5可知,与NBW仔猪相比,0日龄IUGR仔猪肌肉IGF-1R、IGFBP-3和IGFBP-5的表达水平显著上调(P < 0.05),7日龄IUGR仔猪肌肉IGF-1和IGFBP-5的表达水平显著下调(P < 0.05);21日龄IUGR仔猪肌肉IGF-1R的表达水平显著上调(P < 0.05)。NBW仔猪0日龄的IGFBP-3和IGFBP-5以及7日龄的IGF-1和IGFBP-5的表达水平显著高于14、21日龄的表达水平(P < 0.05)。随着日龄的增长,IUGR仔猪肌肉IGF-1R、IGFBP-3和IGFBP-5的表达水平无显著差异(P>0.05),而IUGR仔猪肌肉0和14日龄IGF-1的表达水平显著高于7和21日龄的表达水平(P < 0.05)。

表 5 宫内发育迟缓对环江香猪哺乳仔猪肌肉IGF系统相关因子基因表达的影响 Table 5 Effect of IUGR on muscular gene expression of IGF system related factors in suckling piglets of Huanjiang mini-pig during different days of age
3 讨论

猪IUGR的发生率约占15%~20%[12],不仅影响新生仔猪的出生重,而且对其出生后的生长发育也产生不利影响,导致新生仔猪的发病率和死亡率较高[13],因此成为影响养猪生产效益的一个主要问题。本试验结果显示,0~21日龄IUGR仔猪的体重均显著低于NBW仔猪,这与Wan等[14]及Tang和Xiong[15]的报道一致。随着日龄的增长,21日龄NBW仔猪的体重显著高于0、7和14日龄,而21日龄IUGR仔猪的体重显著高于0和7日龄,提示IUGR仔猪较NBW仔猪生长较慢。以上结果表明,IUGR会影响出生后仔猪的生长发育。

IGF-1是机体生长发育的重要调节因子,机体IGF-1含量与IUGR的发生密切相关[1]。在本试验中,与NBW仔猪相比,IUGR仔猪血浆IGF-1含量均显著降低,这与IUGR仔猪体重变化一致。现有研究表明,围产期正常体重胎猪血浆IGF-1含量显著增加,妊娠112 d IUGR胎猪血浆IGF-1含量显著下降[16];低出生体重断奶仔猪血浆IGF-1含量显著降低,延缓了肠道的生长发育与成熟[17]。Luo等[18]研究发现,7和21日龄IUGR小鼠血浆IGF-1含量显著低于正常小鼠。上述结果提示,IUGR动物出生后机体内IGF-1的含量仍处于较低水平,这可能是IUGR动物出生后生长发育迟缓的重要原因之一。

IGF-1在动物出生后的生长中发挥主导作用,胎儿期的生长发育则主要受IGF-2调节[19]。因此,本试验检测了IGF-1、IGF-1R及其主要结合蛋白基因(IGFBP-3、IGFBP-5)的表达。IGF主要是在肝合成分泌,其在机体其他组织也均有表达。大多数IGF与IGFBP3、IGFBP5、酸不稳定亚基在血液中形成聚合物,到达靶器官组织后,在IGFBP蛋白酶的裂解作用下,IGF从聚合物中解离出来并与细胞膜上的IGF-Rs结合,从而发挥促进生长发育和调节机体代谢的作用[20]。在本试验中,7日龄IUGR仔猪肝IGF-1 mRNA表达量均显著低于NBW,IGF-1R的mRNA表达量无显著差异,这与Novitskaya等[21]的研究结果一致。而与Price等[22]和Ikeda等[23]的研究结果不尽相同,可能与试验动物及其发育阶段的差异有关。本研究中,IUGR仔猪肝IGF-1 mRNA表达量先升高后降低,其中7日龄时表达量最高、21日龄时表达量最低;而IGFBP-5 mRNA的表达量在7日龄显著下降、14日龄升高,IGFBP-3的mRNA的表达量在14日龄时也显著升高。IUGR仔猪IGF-1的变化趋势与其结合蛋白的变化趋势相反,提示IGF结合蛋白的增加可能是IGF-1降低的原因。肝是IGF合成与分泌的主要组织,其中IGF基因表达量的降低可能是血液中IGF-1含量降低的原因。

肌肉的生长发育是反映哺乳动物体型变化的重要指标,受到生长因子和激素的调控[24]。IUGR会延缓肌纤维的发育,减少瘦肉率和增加脂肪沉积,从而对胴体品质产生不利影响[25]。本研究中,1日龄IUGR仔猪肌肉IGF-1R和IGFBP-5的mRNA的表达显著上调,IGFBP-5表达上调可能会导致更多的IGF-1被结合,从而使血浆中的IGF-1含量降低,IGF-1R表达上调可缓解IGF-1含量降低给机体带来的不利影响;在7日龄时,肌肉IGF-1的表达显著下调,与IUGR仔猪的体重和血浆IGF-1含量的变化一致。这提示IUGR对肌肉生长发育的影响与IGF系统相关基因表达的改变可能有关。也有研究表明,妊娠第65天时IUGR胎猪背最长肌IGF-1R和IGFBP-3以及妊娠第100天时IGF-1R、IGF-2R和IGFBP-5的mRNA表达量均显著升高[26]。上述研究结果表明,IUGR猪肌肉中IGF系统基因表达发生变化,影响了肌肉的生长发育。另外,随着日龄的增长,IUGR仔猪肌肉中IGF-1R、IGFBP-3和IGFBP-5的表达水平差异不显著,而0和14日龄IGF-1的表达水平显著高于7和21日龄。这与IGF系统在肝中的表达规律不同,可能与组织的特异性有关。

4 结论

IUGR可能通过降低哺乳环江香猪IGF-1的表达以及调节IGF-1受体及其结合蛋白的表达,导致机体内IGF-1含量降低,进而延缓了哺乳仔猪的生长发育,这为揭示IUGR动物出生后的生长发育规律、研发其营养调控技术提供了依据。

参考文献
[1]
MARTIN-ESTAL I, DE LA GARZA R G, CASTILLA-CORTAZAR I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency[J]. Rev Physiol Biochem Pharmacol, 2016, 170: 1-35.
[2]
CHE L Q, HU L, ZHOU Q, et al. Microbial insight into dietary protein source affects intestinal function of pigs with intrauterine growth retardation[J]. Eur J Nutr, 2020, 59(1): 327-344. DOI:10.1007/s00394-019-01910-z
[3]
SU G, LUND M S, SORENSEN D. Selection for litter size at day five to improve litter size at weaning and piglet survival rate[J]. J Anim Sci, 2007, 85(6): 1385-1392. DOI:10.2527/jas.2006-631
[4]
熊亮, 张旺宏, 孔祥峰, 等. 宫内发育迟缓对生长猪血常规指标的影响[J]. 动物营养学报, 2020, 32(1): 417-422.
XIONG L, ZHANG W H, KONG X F, et al. Effects of intrauterine growth retardation on blood routine indices of growing pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(1): 417-422. DOI:10.3969/j.issn.1006-267x.2020.01.048 (in Chinese)
[5]
赵永伟, 牛玉, 何进田, 等. 日粮中添加双氢青蒿素对宫内发育迟缓断奶仔猪胰岛素水平和肝发育的影响[J]. 畜牧兽医学报, 2020, 51(7): 1628-1636.
ZHAO Y W, NIU Y, HE J T, et al. Effects of dietary dihydroartemisinin supplementation on insulin level and liver development in intrauterine growth retardation weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1628-1636. (in Chinese)
[6]
SMITH T J. Insulin-like growth factor pathway and the thyroid[J]. Front Endocrinol, 2021, 12: 653627. DOI:10.3389/fendo.2021.653627
[7]
CARTER A M, KINGSTON M J, HAN K K, et al. Altered expression of IGFs and IGF-binding proteins during intrauterine growth restriction in guinea pigs[J]. J Endocrinol, 2005, 184(1): 179-189. DOI:10.1677/joe.1.05781
[8]
NAWATHE A R, CHRISTIAN M, KIM S H, et al. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders[J]. Clin Epigenetics, 2016, 8: 11. DOI:10.1186/s13148-016-0178-5
[9]
RANDHAWA R S. The insulin-like growth factor system and fetal growth restrictionn[J]. Pediatr Endocrinol Rev, 2008, 6(2): 235-240.
[10]
ZHU X X, ZHONG Y Z, GE Y W, et al. Generation of transgenic-cloned Huanjiang Xiang pigs systemically expressing enhanced green fluorescent protein[J]. Reprod Domest Anim, 2018, 53(6): 1546-1554. DOI:10.1111/rda.13301
[11]
XIONG L, YOU J M, ZHANG W H, et al. Intrauterine growth restriction alters growth performance, plasma hormones, and small intestinal microbial communities in growing-finishing pigs[J]. J Anim Sci Biotechnol, 2020, 11: 86. DOI:10.1186/s40104-020-00490-x
[12]
HU L, LIU Y, YAN C, et al. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction[J]. Br J Nutr, 2015, 114(1): 53-62. DOI:10.1017/S0007114515001579
[13]
GARRABOU G, HERNÁNDEZ A S, GUITART-MAMPEL M, et al. Comment on Yeste et al. Polyphenols and IUGR pregnancies: Intrauterine growth restriction and hydroxytyrosol affect the development and neurotransmitter profile of the hippocampus in a pig model[J]. Antioxidants, 2022, 11(5): 833. DOI:10.3390/antiox11050833
[14]
WAN J, YU Q, LUO J Q, et al. Effects of ferulic acid on the growth performance, antioxidant capacity, and intestinal development of piglets with intrauterine growth retardation[J]. J Anim Sci, 2022, 100(5): skac144. DOI:10.1093/jas/skac144
[15]
TANG X P, XIONG K N. Intrauterine growth retardation affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses[J]. Oxid Med Cell Longev, 2022, 2022: 2644205.
[16]
CHRIETT S, LE HUËROU-LURON I, VIDAL H, et al. Dysregulation of sirtuins and key metabolic genes in skeletal muscle of pigs with spontaneous intrauterine growth restriction is associated with alterations of circulating IGF-1[J]. Gen Comp Endocrinol, 2016, 232: 76-85. DOI:10.1016/j.ygcen.2015.12.028
[17]
MICHIELS J, DE VOS M, MISSOTTEN J, et al. Maturation of digestive function is retarded and plasma antioxidant capacity lowered in fully weaned low birth weight piglets[J]. Br J Nutr, 2013, 109(1): 65-75. DOI:10.1017/S0007114512000670
[18]
LUO K J, CHEN P Y, HE M F, et al. Bone turnover markers and bone histomorphometry in pubertal rats with intrauterine growth restriction[J]. Fetal Pediatr Pathol, 2021, 40(5): 359-368. DOI:10.1080/15513815.2019.1710791
[19]
ZHAN S Y, CHEN L, LI L, et al. Molecular characterization and expression patterns of insulin-like growth factor-binding protein genes in postnatal Nanjiang brown goats[J]. Genet Mol Res, 2015, 14(4): 12547-12560. DOI:10.4238/2015.October.16.22
[20]
MOONESI M, ZAKA KHOSRAVI S, MOLAEI RAMSHE S, et al. IGF family effects on development, stability, and treatment of hematological malignancies[J]. J Cell Physiol, 2021, 236(6): 4097-4105. DOI:10.1002/jcp.30156
[21]
NOVITSKAYA T, BASERGA M, DE CAESTECKER M P. Organ-specific defects in insulin-like growth factor and insulin receptor signaling in late gestational asymmetric intrauterine growth restriction in Cited1 mutant mice[J]. Endocrinology, 2011, 152(6): 2503-2516. DOI:10.1210/en.2010-1385
[22]
PRICE W A, STILES A D, MOATS-STAATS B M, et al. Gene expression of insulin-like growth factors (IGFs), the type 1 IGF receptor, and IGF-binding proteins in dexamethasone-induced fetal growth retardation[J]. Endocrinology, 1992, 130(3): 1424-1432.
[23]
IKEDA N, SHOJI H, SUGANUMA H, et al. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats[J]. Pediatr Int, 2016, 58(5): 353-358.
[24]
WANG C, LIU S, WU Q, et al. Porcine IGF-1R synonymous mutations in the intracellular domain affect cell proliferation and alter kinase activity[J]. Int J Biol Macromol, 2020, 152: 147-153.
[25]
HU L, HAN F, CHEN L, et al. High nutrient intake during the early postnatal period accelerates skeletal muscle fiber growth and maturity in intrauterine growth-restricted pigs[J]. Genes Nutr, 2018, 13: 23.
[26]
TILLEY R E, MCNEIL C J, ASHWORTH C J, et al. Altered muscle development and expression of the insulin-like growth factor system in growth retarded fetal pigs[J]. Domest Anim Endocrinol, 2007, 32(3): 167-177.

(编辑   范子娟)