畜牧兽医学报  2023, Vol. 54 Issue (6): 2223-2230. DOI: 10.11843/j.issn.0366-6964.2023.06.002    PDF    
母牛早期妊娠诊断技术研究进展
原开敏1,2, 时玉新3, 董智豪1,4, 赵羚均1,2, 许师源1,2, 吴开慧1, 王栋1     
1. 中国农业科学院北京畜牧兽医研究所,北京 100193;
2. 吉林农业大学动物科学技术学院, 长春 130118;
3. 内蒙古赤峰市敖汉旗农牧局, 赤峰 024300;
4. 河南科技大学动物科技学院, 洛阳 471203
摘要:简单、准确的早期妊娠诊断,是减少空怀,提升母畜繁殖力、提高养殖场经济效益的重要手段。直肠触诊、B超检查、孕酮检测等传统妊娠诊断方法,虽然为养殖生产提供了重要技术支撑,但还未实现母牛配后最早检测,部分养殖场还难以满足较高的技术要求或实验室条件。胚胎滋养层细胞分泌的妊娠相关蛋白(PAGs)是奶牛妊娠过程中的重要蛋白,其血液含量变化规律为妊娠诊断方法研发提供了新思路。本文简要概述了现有妊娠诊断方法,详细论述PAGs诊断方法发展历程,展望未来妊娠诊断技术发展方向,使其在“早”、“准”、“简便性”上取得重要进展,并为相关研究提供了重要参考。
关键词早期妊娠诊断    牛妊娠相关蛋白    自动化    中红外光谱    
Research Progress on Early Pregnancy Diagnosis Technologies in Cows
YUAN Kaimin1,2, SHI Yuxin3, DONG Zhihao1,4, ZHAO Lingjun1,2, XU Shiyuan1,2, WU Kaihui1, WANG Dong1     
1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
2. College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
3. Aohan Animal Husbandry Bureau, Chifeng 024300, China;
4. College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471203, China
Abstract: Simple and accurate early pregnancy diagnosis is an important means to reduce open cows, improve female fecundity and improve farm economic benefits. Although traditional pregnancy diagnoses methods such as rectal palpation, B-ultrasound examination, and progesterone detection have provided important technical support for breeding production, they have not yet achieved the earliest detection of cows after mating, and some farms are still difficult to meet the high technical requirements or laboratory conditions. Pregnancy-associated proteins (PAGs) are pregnancy-specific proteins secreted by embryonic trophoblast cells, which play an important role in the pregnancy of dairy cows and are widely used in the diagnosis of early pregnancy in dairy cows. This article briefly summarizes the existing diagnostic methods for pregnancy, discusses the development process of PAGs diagnostic methods in detail, looks forward to the future development direction of pregnancy diagnostic technology, and makes important progress in "early", "accurate" and "simple", and provides relevant research information and important reference.
Key words: early pregnancy diagnosis    bovine pregnancy-associated protein    automation    mid-infrared spectroscopy    

尽早确定配后母牛妊娠与否,可及早检出未孕母牛并及时安排再次配种,提高母牛繁殖效率,减少空怀母牛,缩短母牛产犊间隔;还可提高母牛日平均产奶量[1-2],具有相当大的商业价值。因此,高效、准确、简便、低成本的早期妊娠诊断一直是养牛企业和科研工作者关注的焦点,也是养殖场提高养殖效益的重要手段。

直肠触诊和超声波诊断是比较直观的妊娠诊断方法,主要依据卵巢、胎儿的发育程度进行妊娠诊断,且需发育到一定时间才能做出正确判断,受操作人员主观判断和仪器影响,配后35天前基本无法做出准确判断。还有人根据妊娠牛血液孕酮、早孕因子和妊娠相关糖蛋白(PAGs)含量变化,建立了酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)、胶体金免疫层析(gold immunochromatographic assay, GICA)等间接诊断技术[3-5]。这些方法可将妊娠诊断提前到配后28天左右,但其操作复杂程度、准确性、专业性以及检测成本等都与产业目标有较大差距。此外,母牛妊娠后表现安静,步伐稳健,体温略有升高,不再是发情时的敏感和亢奋状态[6],这一生理机能为自动化妊娠诊断提供了依据,可在配后21天得出较为准确的诊断结果。但自动化妊娠检测维护成本较高,未能在市场上推广使用。本文综述了已有妊娠诊断方法,通过梳理其优缺点,探讨早期妊娠诊断技术的发展方向,为研发简单、快速、低成本和现场检测技术,提高母牛繁殖效率,提升养殖效益提供重要参考。

1 传统母牛妊娠诊断方法

传统妊娠诊断方法根据母牛受孕后体态、生理机能和相关生化指标的一系列变化做出判断,主要包括直肠检查、超声波检查、孕酮检查、早孕因子检查等方法。

妊娠母牛由于黄体生长发育,其卵巢体积比未妊娠时增大1倍,且质地柔软、表面光滑。妊娠黄体呈椭圆或半球状、质地柔软有肉感。妊娠30天时妊娠侧子宫角质地软弹、表面有膨胀感,比未妊娠牛大1/2倍左右;妊娠90天时母牛子宫中动脉粗如铅笔,跳动有力[7-8]。通过直肠壁感知子宫角、黄体、羊膜囊、胎儿等上述形态及质感变化进行妊娠诊断[7]。经验丰富的技术人员通常在母牛配种后30~35天进行直肠检查,就能得到准确的妊娠诊断结果[9]。但直肠检查法不能批量化检测,且需要熟练的专业技术人员,无法适应规模化牛场的需求。

直肠超声检测法根据超声波在体内传播时,会因组织、器官声阻值不同发生不同程度反射,形成不同特点的超声图像,通过判断卵泡及胎儿的发育,进行母牛妊娠状态诊断[10]。对47头配种后30天母牛进行B超妊娠诊断,其敏感性和特异性分别为92.30%和97.05%,说明配种30天该方法就具有较高的准确性[11]。但B超诊断仍需专业技术人员,且设备昂贵,检测繁琐,也无法批量诊断。

同时,因为妊娠黄体和胚胎会分泌大量孕酮[12],妊娠牛配种21天血浆孕酮显著高于未妊牛(4.675 ng·mL-1 vs 0.995 ng·mL-1, P<0.01),并可在乳汁和血液中检测到[13]。据此建立了放射免疫(radioimmunoassay,RIA)、酶联免疫吸附试验、胶体金免疫层析(colloidal gold immunochromatography assay,GICA)等方法测定血浆或牛奶孕酮含量,并取得了一定效果[14-15]。然而,有研究表明,35%~44%未孕母牛黄体期延长,且没有正常返情[16-17],黄体期延长未妊牛血浆孕酮水平与正常妊娠牛并无显著差异[18-19],使孕酮检测假阳性增加,影响整体妊检准确率。

另外,母牛配后2天可检测到血液、乳汁EPF蛋白,该蛋白具有免疫抑制和妊娠维持功能,主要由卵巢和母体胎盘分泌[20]。一旦妊娠停止,EPF就会在1~2 d内降为非妊娠水平,据此研发出了玫瑰花环抑制试验(rosette inhibition test,RIT)方法进行超早孕诊断[21-22]。但该方法操作繁琐、检测周期长、不适合规模养殖需求,未能推广使用。

2 PAGs研究进展及其检测方法 2.1 母牛PAGs研究进展

Butler等[23]最初从怀孕牛胎盘膜提取物中发现了一种蛋白,后来在妊娠25~270天的母牛胎盘提取物中也能分离纯化出该蛋白。经鉴定,该蛋白分子量为47~53 ku,并将其命名为妊娠特异性蛋白B(pregnancy specific protein B, PSPB),但在妊娠16~25天和270~280天间则没有检出该蛋白。Zoli[24]也从胚胎子叶中提取出一种分子量为67 ku的牛妊娠相关糖蛋白(bovine pregnancy-associated glycoprotein,bPAG),并证明与PSPB氨基酸序列同源,都是PAGs家族成员[25]。研究发现,PAGs家族至少有20个蛋白成员,涉及24个编码基因,该家族蛋白均在胎盘高表达,并呈现鲜明的时空特征[26-28],不同成员的分子量、氨基酸序列和糖基化程度有一定区别[26]。根据其分泌模式和表达位置,推测PAG有维持妊娠和免疫调节作用,但迄今为止,妊娠期间PAG的作用仍不清楚[29-30]

胚胎着床过程中,滋养层双核细胞逐渐与子宫上皮细胞相互作用,最终融合为合胞体细胞,并分泌PAGs到母体循环血液中,随着胚胎生长发育,PAGs分泌量逐渐增加,配后23天增加幅度增大,第30天时妊娠牛PAG浓度大于2.5 ng·mL-1,第45天时上升到11.7 ng·mL-1,在配种后240天时达到最高水平29.9 ng·mL-1,而未妊牛PAG水平始终接近于0 ng·mL-1[31-32],但也有研究报道,未妊牛PAGs含量约为0.5 ng·mL-1[19],在配后28~30天时妊娠牛PAGs含量显著高于未妊母牛,因此,推荐将配后28~30天作为检测PAG判断母牛妊娠与否的最早时间点[32-33]。也有研究以S-N值(样品OD值减去阴性对照OD值)标志血浆和牛奶的PAG浓度,妊娠母牛乳汁和血浆的PAG水平对比结果显示,牛奶PAG变化趋势同血浆一样,但PAG浓度只有血浆的一半[34],表明血液和乳样都可用于母牛妊娠诊断,但血液检测效果可能优于乳样。

研究还发现,PAG浓度还与胎儿数量、流产与否有关。比如,有研究显示,配后28~42天,双胞胎母牛血浆PAG浓度均高于单胎母牛[35];而妊娠牛PAG浓度较低时,比如当配后31天母牛PAG浓度低于1.4 ng·mL-1,胚胎移植受体母牛PAG浓度低于1.8 ng·mL-1时,配后60天发生妊娠丢失的概率约为95%[36-37],这些研究表明,该蛋白指标可能还具有双胎预测、胚胎丢失等经济学价值。

2.2 妊娠相关蛋白(PAGs)的妊娠诊断检测方法

目前,基于PAGs检测主要建立了RIA、ELISA、GICA等妊娠诊断方法,其中,基于ELISA检测技术,美国IDEXX公司[38]和BioTracking公司以及加拿大Conception公司[39]都开发了商业化快速检测试剂盒,并取得了较好的市场应用效果。IDEXX公司近期还研发出了PAGs免疫层析胶体金试纸条,使妊娠诊断更为便捷[38, 40]。PAGs的RIA检测方法也取得了97%的准确率,但是,鉴于安全因素和检测的便捷性,RIA方法已很少使用[41]

基于PAGs建立的ELISA方法仍然是目前母牛妊娠诊断的常用方法。该方法首先将PAG抗体固定在微孔板上,加入被检血清或乳样后,样品PAG与微孔板的固定抗体结合,再与加入的酶标抗体形成夹心复合物,该复合物与加入的底物反应而显色,可根据颜色有无或深浅间接进行PAG定性或定量。对比879头奶牛配后35天乳样的ELISA检测结果和妊娠60天的超声结果,ELISA测试敏感性和特异性分别为96.3%和87%,B超诊断敏感性特异性为93.9%和94.3%,ELISA检测有更高的敏感性,但特异性稍低,说明ELISA检测可代替B超检测,用于母牛妊娠早期诊断[42-44]。还有人根据ELISA检测原理开发了一种以核酸适配体为识别分子的酶联免疫方法,对配后30天奶牛血清进行检测,妊娠准确率达91.7%[45]

相比较而言,集成免疫反应、胶体金标记、层析技术的胶体金检测方法具有更快速、高效检测效果[46],当被检样品滴加到样品孔后,在毛细管作用下样品向试纸条T线端移动,与胶体金垫的金标抗体结合后,继续向前移,与固定于T线的特异抗体结合,使胶体金在T线处大量聚集并显色,样品即为阳性,反之,如果被检血清无PAG或PAG含量较低(未妊),金标抗体就会在毛细作用下越过T线继续前行至C线,与固定在C线的二抗结合,使C线显示红色,而T线则不显色,即为阴性。比较牛早孕胶体金试纸条(UbioquickVET;BPRT)和ELISA-PAG试剂盒(Bovine Pregnancy Test DG29)妊娠诊断效果发现,配后30~40天胶体金试纸条和ELISA-PAG试纸条敏感度分别为89.4%和100%,特异性分别为89.8%和81.3%,准确率分别为90%和94%[47]。胶体金检测方法快速、简单、便捷的优点很适合当下的规模化养殖环境[38],但目前商用PAG胶体金检测只有进口产品,国内还处于实验室研发阶段。

3 未来妊娠诊断技术发展方向 3.1 中红外光谱技术

中红外光谱(mid-infrared spectroscopy, MIRS)是指物质在2.5~25 μm波长红外线照射下的吸收光谱。在红外线照射下,分子内部会发生振动吸收和能级跃迁,不同分子因红外吸光度不同,红外吸收光谱也不同[48]。据此,可用MIRS预测脂肪酸[49]、氨基酸[50]、酮体物质[51]、乳蛋白[52]等牛奶主要营养成分,揭示母牛健康状况[53]。研究发现,妊娠牛乳汁的乳脂和乳蛋白含量显著高于未妊牛[52],为利用MIRS测定牛奶乳脂、乳蛋含量预测母牛妊娠状态提供了重要依据[54-55]。而且,可以借助于乳样成分的机械化检测,批量化、自动化分析获知母牛妊娠状态。有研究使用偏最小二乘判别模型分析中红外光谱,但配种后30天妊娠诊断准确率只有58%[56]。另有研究通过深度学习构建模型分析中红外光谱预测妊娠状态,在30天左右的诊断准确度可达88%[55]。然而,基于中红外光谱测定母牛妊娠状态还处于研究阶段,且研究成果参差不齐,但这些研究为将来MIRS在母牛妊娠诊断的应用上奠定了基础。

3.2 信号增强型PAG胶体金试纸条的开发

因为快速、简单、易储存,并且无实验室检测条件要求,胶体金快速检测技术已广泛应用于食品、药品、疫病等检测[54-56],2007年,孕酮胶体金检测也被应用于母牛妊娠诊断,并取得一定效果[14],但是,从配后母牛血液的生理规律看,PAGs有更大的妊娠诊断开发价值,目前基于PAGs已开发出ELISA妊娠诊断试剂盒,PAGs胶体金试纸条虽已有进口商品化检测技术,但还未见到有关检测效果的报道,国内研究还停留在实验室阶段。

因为妊娠早期,PAGs水平较低,所研发的胶体金试纸条T线显色不清楚,难以判别,如何增强T线信号,是PAG胶体金试纸条目前的研究重点,然而,相关报道很少见到。对牛奶中O157:H7大肠杆菌的检测发现,用更大直径的金纳米颗粒做辅助试剂,胶体金试纸条的检测灵敏度可比传统胶体金检测增强8倍[57]。在上述原位金生长基础上,进一步集成纳米酶催化沉积技术,两步级联信号放大系统的集成,使传统胶体金免疫层析灵敏度比传统型提高400倍[58]。另外,GICA方法抗体制备周期长,成本高,不易保存。在对玉米赤霉烯酮的胶体金检测中,采用核酸适配体代替抗体进行胶体金试纸条制备,核酸适配体的制备颠覆了PAG抗体制备的技术路线,不但缩短了生产周期,降低了成本,生产速度也发生了质的飞跃[59]。以上技术的探索,为基于PAG进行胶体金试纸条妊娠诊断方法研发指明了方向。

3.3 自动化妊娠检测

当前,规模化养殖不断发展,使生产面临技术和管理双重压力,用工难、用工贵、技术力量匮乏也在时时考验着规模养殖场,而信息、机电、传感科技不断进步,自动化、智能化已成为规模养殖的发展方向,妊娠诊断技术研发也不例外。妊娠母牛活动量显著低于返情牛[60-63],配后母牛体温逐渐升高,11天时显著高于未妊母牛[64],利用这些生理规律,借助于机电传感技术,就可实现配种母牛妊娠与否的自动诊断和预报[65]。已有研究根据活动量规律,实现了母牛妊娠诊断自动化,在配后21天左右对母牛妊娠状态进行自动判断和预报,并取得了较为理想的诊断效果[66],某牛场采用计步器来检测母牛发情和妊娠状态,从结果来看,牛场总体妊娠率提升了28%[67]。总而言之,自动化检测已为未来包括妊娠诊断在内的所有养殖技术发展指明了方向。

4 总结

母牛早孕检测一直是奶牛养殖技术研发的焦点,经过多年研发已取得较快进展,为产业做出了重要贡献,但仍距产业需求有一定距离。直肠触诊、B超检测虽然效果准确,但检测通量低,技术要求高,不能满足当前规模程度越来越大的产业发展需要,基于孕酮、EPF的检测效果逐渐提高,但不能现场检测、需要较大的人力物力。以爱得士为代表的PAGs-ELISA检测方法检测效果较好,几乎垄断了我国母牛妊娠诊断市场,但PAG胶体金检测方法的出现带动了相关技术研发,将会推动我国相关技术研发取得突破。特别是生物传感器使人类感知突破了时间与空间限制,相关技术成果将会颠覆以往对动物生理规律的认知方法和认知效果,并为开发更系统的自动化妊娠诊断技术提供强大技术支撑。

参考文献
[1]
杜超, 刘深贺, 程春宝, 等. 奶牛妊娠诊断技术现状及未来发展方向[J]. 中国奶牛, 2019(10): 29-33.
DU C, LIU S H, CHEN C B, et al. Technology of pregnancy diagnosis in dairy cows: current status and future development[J]. China Dairy Cattle, 2019(10): 29-33. DOI:10.19305/j.cnki.11-3009/s.2019.10.006 (in Chinese)
[2]
GNEMMI G M, MARABOLI C V A, GNEMMI B, et al. Use and adequacy of non-pregnancy diagnosis in cow.Which future?[J]. Reprod Domest Anim, 2022, 57(S5): 45-52. DOI:10.1111/rda.14206
[3]
SZENCI O, BECKERS J F, HUMBLOT P, et al. Comparison of ultrasonography, bovine pregnancy-specific protein B, and bovine pregnancy-associated glycoprotein 1 tests for pregnancy detection in dairy cows[J]. Theriogenology, 1998, 50(1): 77-88. DOI:10.1016/S0093-691X(98)00115-0
[4]
KARAKUŞO, KAÇAR C, KURU M, et al. Efficacy of a commercial test kit to determine early pregnancy in cows using whole blood and blood serum[J]. Trop Anim Health Prod, 2021, 53(1): 28. DOI:10.1007/s11250-020-02428-x
[5]
DUROCHER J, MOORE R K, CASTONGUAY M H, et al. Bayesian estimation of sensitivity and specificity of a milk pregnancy-associated glycoprotein ELISA test for pregnancy diagnosis between 23 and 27 days after insemination in Holstein dairy cows[J]. J Dairy Sci, 2022, 105(8): 6985-6996. DOI:10.3168/jds.2022-21905
[6]
LÓPEZ-GATIUS F, GARCIA-ISPIERTO I, HUNTER R H F. Cervix-rectum temperature differential at the time of insemination is correlated with the potential for pregnancy in dairy cows[J]. J Reprod Dev, 2021, 67(4): 251-255. DOI:10.1262/jrd.2021-022
[7]
闵师勇, 成宜兵. 直肠检查法诊断母牛不同妊娠阶段的变化[J]. 养殖技术顾问, 2013(7): 50.
MIN S Y, CHENG Y B. Changes of rectal examination in different pregnancy stages of cows[J]. Technical Advisor for Animal Husbandry, 2013(7): 50. DOI:10.3969/j.issn.1673-1921.2013.07.052 (in Chinese)
[8]
陈荣, 黄依明. 奶牛妊娠早期的卵巢、黄体、子宫角变化的研究[J]. 福建农业科技, 1985(2): 44-45.
CHEN R, HUANG Y M. Study on the changes of ovary, corpus luteum and uterine horn in early pregnancy of dairy cows[J]. Fujian Agricultural Science and Technology, 1985(2): 44-45. (in Chinese)
[9]
ROMANO J E, THOMPSON J A, KRAEMER D C, et al. Effects of transrectal palpation with the fetal membrane slip technique for early pregnancy diagnosis on the proportion and type of associated pregnancy loss in dairy cattle[J]. Am J Vet Res, 2020, 81(5): 442-447. DOI:10.2460/ajvr.81.5.442
[10]
DEVENDER, CHANDOLIA R K. Applications of transabdominal ultrasonography in bovine reproduction: a review[J]. Anat Histol Embryol, 2022, 41(2): 225-240.
[11]
ABDULLAH M. Early pregnancy diagnosis in dairy cattle: economic importance and accuracy of ultrasonography[J]. Adv Anim Vet Sci, 2014, 2(8): 464-467. DOI:10.14737/journal.aavs/2014/2.8.464.467
[12]
贾晓, 邱瑾, 舒娟, 等. 血清孕酮水平检测在克隆胚胎移植受体牛的筛选及妊娠诊断中的应用[J]. 中国生物工程杂志, 2020, 40(7): 1-8.
JIA X, QIU J, SHU J, et al. Serum progesterone level detection for the screening of recipient cattle for cloned embryo transfer and their pregnancy diagnosis[J]. China Biotechnology, 2020, 40(7): 1-8. DOI:10.13523/j.cb.2006011 (in Chinese)
[13]
吕莲, 贾国慧, 王亮, 等. 奶牛妊娠早期血浆孕酮的变化规律[J]. 上海畜牧兽医通讯, 2009(2): 48-49.
LV L, JIA G H, WANG L, et al. Changes of plasma progesterone in early pregnancy of dairy cows[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2009(2): 48-49. DOI:10.3969/j.issn.1000-7725.2009.02.027 (in Chinese)
[14]
RACEWICZ P, JAŚKOWSKI J M. Contemporary methods of early pregnancy diagnosis in cows[J]. Med Weter, 2013, 69(11): 655-661.
[15]
万积成, 万志静, 唐晓宾, 等. 奶牛早孕诊断试纸条的研制及临床试验[J]. 中国奶牛, 2007(12): 22-25.
WAN J C, WAN Z J, TANG X B, et al. Development of diagnostic stripe for early pregnancy in dairy cows and its clinical trials[J]. China Dairy Cattle, 2007(12): 22-25. DOI:10.3969/j.issn.1004-4264.2007.12.010 (in Chinese)
[16]
GIORDANO J O, GUENTHER J N, LOPES G Jr, et al. Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows[J]. J Dairy Sci, 2012, 95(2): 683-697. DOI:10.3168/jds.2011-4609
[17]
RICCI A, CARVALHO P D, AMUNDSON M C, et al. Characterization of luteal dynamics in lactating Holstein cows for 32 days after synchronization of ovulation and timed artificial insemination[J]. J Dairy Sci, 2017, 100(12): 9851-9860. DOI:10.3168/jds.2017-13293
[18]
FRICKE P M, RICCI A, GIORDANO J O, et al. Methods for and implementation of pregnancy diagnosis in dairy cows[J]. Vet Clin North Am Food Anim Pract, 2016, 32(1): 165-180. DOI:10.1016/j.cvfa.2015.09.006
[19]
GIORDANO J O, GUENTHER J N, LOPES G Jr, et al. Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows[J]. J Dairy Sci, 2012, 95(2): 683-697. DOI:10.3168/jds.2011-4609
[20]
赵生贤, 樊江峰, 余四九, 等. 早孕因子(EPF)在雌性牦牛主要生殖器官中的表达[J]. 农业生物技术学报, 2020, 28(5): 876-883.
ZHAO S X, FAN J F, YU S J, et al. Expression of Early Pregnancy Factors(EPF) in the main reproductive organs of female yak (Bos grunnien)[J]. Journal of Agricultural Biotechnology, 2020, 28(5): 876-883. (in Chinese)
[21]
王晓姗. 孕牛血清早孕因子的研究进展[J]. 中国牛业科学, 2018, 44(3): 82-85.
WANG X S. Research progress of early pregnancy factor of pregnancy bovine serum[J]. China Cattle Science, 2018, 44(3): 82-85. DOI:10.3969/j.issn.1001-9111.2018.03.024 (in Chinese)
[22]
WANG S L, ZHANG H L, KOU H X, et al. Early pregnancy diagnoses based on physiological indexes of dairy cattle: a review[J]. Trop Anim Health Prod, 2020, 52(5): 2205-2212. DOI:10.1007/s11250-020-02230-9
[23]
BUTLER J E, HAMILTON W C, SASSER R G, et al. Detection and partial characterization of two bovine pregnancy-specific proteins12[J]. Biol Reprod, 1982, 26(5): 925-933. DOI:10.1095/biolreprod26.5.925
[24]
ZOLI A P. Purification and characterization of a bovine pregnancy-associated glycoprotein[J]. Biol Reprod, 1991, 45(1): 1-10. DOI:10.1095/biolreprod45.1.1
[25]
MIALON M M, CAMOUS S, RENAND G, et al. Peripheral concentrations of a 60-kDa pregnancy serum-protein during gestation and after calving and in relationship to embryonic mortality in cattle[J]. Reprod Nutr Dev, 1993, 33(3): 269-282. DOI:10.1051/rnd:19930309
[26]
WALLACE R M, POHLER K G, SMITH M F, et al. Placental PAGs: gene origins, expression patterns, and use as markers of pregnancy[J]. Reproduction, 2015, 149(3): R115-R126. DOI:10.1530/REP-14-0485
[27]
WESSON G M, FERNANDEZ L, POOLE R K, et al. PSIV-25 Effect of various handling methods of plasma and serum samples on pregnancy associated glycoprotein concentrations[J]. J Anim Sci, 2020, 98(S4): 289-290.
[28]
KLINE A C, EPPERSON K, RICH J, et al. PSV-2 Use of pregnancy associated glycoproteins to determine fetal age throughout gestation[J]. J Anim Sci, 2021, 99(S1): 207-208.
[29]
HOEBEN D, BURVENICH C, MASSART-LEËN A M, et al. In vitro effect of ketone bodies, glucocorticosteroids and bovine pregnancy-associated glycoprotein on cultures of bone marrow progenitor cells of cows and calves[J]. Vet Immunol Immunopathol, 1999, 68(2-4): 229-240. DOI:10.1016/S0165-2427(99)00031-8
[30]
WOODING F B P, KIMURA J, FUKUTA K, et al. A light and electron microscopical study of the tragulid (Mouse Deer) placenta[J]. Placenta, 2007, 28(10): 1039-1048. DOI:10.1016/j.placenta.2007.04.010
[31]
BARBATO O, MENCHETTI L, SOUSA N M, et al. Pregnancy-associated glycoproteins (PAGs) concentrations in water buffaloes (Bubalus bubalis) during gestation and the postpartum period[J]. Theriogenology, 2017, 97: 73-77. DOI:10.1016/j.theriogenology.2017.04.021
[32]
SOUSA N M, AYAD A, BECKERS J F, et al. Pregnancy-associated glycoproteins (Pag) as pregnancy markers in the ruminants[J]. J Physiol Pharmacol, 2006, 57(Suppl 8): 153-171.
[33]
GREEN J A, PARKS T E, AVALLE M P, et al. The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers[J]. Theriogenology, 2005, 63(5): 1481-1503. DOI:10.1016/j.theriogenology.2004.07.011
[34]
RICCI A, CARVALHO P D, AMUNDSON M C, et al. Factors associated with pregnancy-associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis[J]. J Dairy Sci, 2015, 98(4): 2502-2514. DOI:10.3168/jds.2014-8974
[35]
GARCÍA-ISPIERTO I, ROSSELLÓ-VISA M A, SERRANO-PÉREZ B, et al. Plasma concentrations of pregnancy-associated glycoproteins Ⅰ and Ⅱ and progesterone on day 28 post-AI as markers of twin pregnancy in dairy cattle[J]. Livest Sci, 2016, 192: 44-47. DOI:10.1016/j.livsci.2016.09.003
[36]
POHLER K G, PEREIRA M H C, LOPES F R, et al. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds[J]. J Dairy Sci, 2016, 99(2): 1584-1594. DOI:10.3168/jds.2015-10192
[37]
POHLER K G, PERES R F G, GREEN J A, et al. Use of bovine pregnancy-associated glycoproteins to predict late embryonic mortality in postpartum Nelore beef cows[J]. Theriogenology, 2016, 85(9): 1652-1659. DOI:10.1016/j.theriogenology.2016.01.026
[38]
DANA O I, MUKHTAR R H, MOHAMMED M O, et al. Comparison of a rapid test with bPAG elisa in pregnancy diagnosis in cows[J]. Iraqi J Agric Sci, 2021, 52(6): 1475-1481. DOI:10.36103/ijas.v52i6.1488
[39]
耿晓晖, 殷臣胤, 王月华. DG29定量ELISA检测技术在奶牛妊检中的应用[J]. 中国奶牛, 2018(3): 21-23.
GENG X H, YIN C Y, WANG Y H. Application of the DG29 quantitative ELISA test for detection of pregnancy in dairy cattle[J]. China Dairy Cattle, 2018(3): 21-23. (in Chinese)
[40]
VELEK K, MICHAUD S, BOUCHER K, 等. 牛妊娠早期精准ELISA检测[J]. 养殖与饲料, 2012(11): 10-12.
VELEK K, MICHAUD S, BOUCHER K, et al. Early and accurate ELISA test for bovine pregnancy[J]. Animal Breeding and Feed, 2012(11): 10-12. (in Chinese)
[41]
KAREN A, DE SOUSA N M, BECKERS J F, et al. Comparison of a commercial bovine pregnancy-associated glycoprotein ELISA test and a pregnancy-associated glycoprotein radiomimmunoassay test for early pregnancy diagnosis in dairy cattle[J]. Anim Reprod Sci, 2015, 159: 31-37. DOI:10.1016/j.anireprosci.2015.05.005
[42]
HOLTON M P, OOSTHUIZEN N, DE MELO G D, et al. Luteal color doppler ultrasonography and pregnancy-associated glycoproteins as early pregnancy diagnostic tools and predictors of pregnancy loss in Bos taurus postpartum beef cows[J]. J Anim Sci, 2022, 100(2): skac018. DOI:10.1093/jas/skac018
[43]
SHEPHARD R W, MORTON J M. Estimation of sensitivity and specificity of pregnancy diagnosis using transrectal ultrasonography and ELISA for pregnancy-associated glycoprotein in dairy cows using a Bayesian latent class model[J]. N Z Vet J, 2018, 66(1): 30-36. DOI:10.1080/00480169.2017.1391723
[44]
SHARMA N, SINGH S P, BHARADWAJ A, et al. Pregnancy-associated glycoproteins as a potential marker for diagnosis of early pregnancy in goats: a scoping reviewing[J]. Asian Pac J Reprod, 2020, 9(6): 255-260. DOI:10.4103/2305-0500.298772
[45]
卢春霞, 刘长彬, 周平, 等. 酶联适配体可视化检测牛妊娠相关糖蛋白9(bPAG9)及其在奶牛早孕检测中的应用[J]. 农业生物技术学报, 2021, 29(7): 1407-1416.
LU C X, LIU C B, ZOU P, et al. Enzyme-linked aptamer assay for visual detection of bPAG9 and its application for pregnancy diagnosis in dairy cows (Bos taurus)[J]. Journal of Agricultural Biotechnology, 2021, 29(7): 1407-1416. (in Chinese)
[46]
武晋慧, 孟利. 免疫胶体金技术及其应用研究进展[J]. 中国农学通报, 2019, 35(13): 146-151.
WU J H, MENG L. Immunocolloidal gold technology: advances and application[J]. Chinese Agricultural Science Bulletin, 2019, 35(13): 146-151. (in Chinese)
[47]
MOUSSAFIR Z, ALLAI L, EL KHALIL K, et al. Could a bovine pregnancy rapid test be an alternative to a commercial pregnancy-associated glycoprotein ELISA test in dairy cattle?[J]. Anim Reprod Sci, 2018, 192: 78-83. DOI:10.1016/j.anireprosci.2018.02.016
[48]
FENG L, ZHU S S, CHEN S S, et al. Combining fourier transform mid-infrared spectroscopy with chemometric methods to detect adulterations in milk powder[J]. Sensors, 2019, 19(13): 2934. DOI:10.3390/s19132934
[49]
ROVERE G, DE LOS CAMPOS G, LOCK A L, et al. Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins[J]. J Dairy Sci, 2021, 104(10): 11242-11258. DOI:10.3168/jds.2021-20267
[50]
MCDERMOTT A, VISENTIN G, DE MARCHI M, et al. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics[J]. J Dairy Sci, 2016, 99(4): 3171-3182. DOI:10.3168/jds.2015-9747
[51]
GRELET C, BASTIN C, GELÉ M, et al. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network[J]. J Dairy Sci, 2016, 99(6): 4816-4825.
[52]
PENASA M, DE MARCHI M, CASSANDRO M. Short communication: Effects of pregnancy on milk yield, composition traits, and coagulation properties of Holstein cows[J]. J Dairy Sci, 2016, 99(6): 4864-4869.
[53]
陈焱森, 上官爱哨, 陈明新, 等. 应用MIR预测牛健康状况的研究进展[J]. 中国奶牛, 2020(1): 58-63.
CHEN Y S, SHANGGUAN A S, CHEN M X, et al. Advances in the application of MIR to predict the health status of cattle[J]. China Dairy Cattle, 2020(1): 58-63. (in Chinese)
[54]
TIPLADY K M, TRINH M H, DAVIS S R, et al. Pregnancy status predicted using milk mid-infrared spectra from dairy cattle[J]. J Dairy Sci, 2022, 105(4): 3615-3632.
[55]
BRAND W, WELLS A T, SMITH S L, et al. Predicting pregnancy status from mid-infrared spectroscopy in dairy cow milk using deep learning[J]. J Dairy Sci, 2021, 104(4): 4980-4990.
[56]
DELHEZ P, HO P N, GENGLER N, et al. Diagnosing the pregnancy status of dairy cows: how useful is milk mid-infrared spectroscopy?[J]. J Dairy Sci, 2020, 103(4): 3264-3274.
[57]
董旭旭, 孙威, 曹攀, 等. 胶体金免疫层析试纸条技术在病毒检测领域的应用研究现状[J]. 生物工程学报, 2022, 38(9): 3243-3254.
DONG X X, SUN W, CAO P, et al. Colloidal gold immunochromatographic test strip for virus detection: a review[J]. Chinese Journal of Biotechnology, 2022, 38(9): 3243-3254. (in Chinese)
[58]
张赛, 王刚, 刘仲明, 等. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
ZHANG S, WANG G, LIU Z M, et al. Development and performance evaluation of a rapid antigen test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34. (in Chinese)
[59]
何锋荣, 曾令恒, 操龙斌. 两种胶体金试纸条检测血清人绒毛膜促性腺激素的性能评价[J]. 中国医药指南, 2020, 18(34): 1-3.
HE F R, ZENG L H, CAO L B. Performance evaluation of two kinds of colloidal gold immunochromatography strip to detect serum HCG and its application of the estimation of serum HCG content[J]. Guide of China Medicine, 2020, 18(34): 1-3. (in Chinese)
[60]
WANG J Y, CHEN M H, SHENG Z C, et al. Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk[J]. RSC Adv, 2015, 5(76): 62300-62305.
[61]
FU J M, ZHOU Y F, HUANG X L, et al. Dramatically enhanced immunochromatographic assay using cascade signal amplification for ultrasensitive detection of Escherichia coli O157:H7 in Milk[J]. J Agric Food Chem, 2020, 68(4): 1118-1125.
[62]
孙淑敏, 马卫宾, 卫敏, 等. 基于核酸适体-纳米金银染放大的玉米赤霉烯酮快速检测方法研究[J]. 粮油食品科技, 2020, 28(5): 11-17.
SUN S M, MA W B, WEI M, et al. A Colorimetric aptasensor for the fast detection of zearalenone based on AuNPs combined with argentation amplification[J]. Science and Technology of Cereals, Oils and Foods, 2020, 28(5): 11-17. (in Chinese)
[63]
李蓝祁, 刘江静, 陈晓丽, 等. 奶牛发情期活动量变化规律研究[J]. 畜牧兽医学报, 2018, 49(7): 1387-1393.
LI L Q, LIU J J, CHEN X L, et al. Study on the activity alteration of dairy cow during estrus[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(7): 1387-1393. (in Chinese)
[64]
NOGRALES A H H, CALUYO F S. Wireless system for pregnancy detection in cows by monitoring temperature changes in body[C]//2013 IEEE 9th International Colloquium on Signal Processing and Its Applications (CSPA). Kuala Lumpur, Malaysia: IEEE, 2013: 11-16.
[65]
MOTTRAM T. Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection[J]. Animal, 2016, 10(10): 1575-1584.
[66]
田宏志, 陈晓丽, 路永强, 等. 自动化妊娠诊断效果和母牛返情规律研究[J]. 黑龙江动物繁殖, 2020, 28(1): 1-3, 19.
TIAN H Z, CHEN X L, LU Y Q, et al. Study on the effect of automatic pregnancy diagnosis and the regularity of cow's return estrous[J]. Heilongjiang Journal of Animal Reproduction, 2020, 28(1): 1-3, 19. (in Chinese)
[67]
李军, 罗艳红, 冯艳, 等. 陕西省千阳县奶牛计步器应用效果分析[J]. 中国乳业, 2016(1): 41-43.
LI J, LUO Y H, FENG Y, et al. Analysis on application of cow pedometer in Qianyang County, Shaanxi province[J]. China Dairy, 2016(1): 41-43. (in Chinese)

(编辑   郭云雁)