β防御素是一种具有抗菌活性的先天免疫应答蛋白,可保护机体免受细菌、病毒、真菌和寄生虫等病原体入侵。除此之外,β防御素能够维持哺乳动物雄性生殖系统的功能稳定。研究发现,许多β防御素基因存在于哺乳动物雄性生殖系统中[1-2],张春香等[3]通过高通量转录组测序技术分析发现共有33种山羊β防御素基因在睾丸和附睾头中表达,尤其是在附睾头中有25种β防御素表达,分为4个基因簇,分别定位在8、13、23和27号染色体上,其中gBD134定位在8号染色体;gBD116~gBD129定位在13号染色体;gBD110like和gBD113定位在23号染色体;gBD104~gBD109tr2定位在27号染色体[4]。附睾头部有厚厚的附睾上皮,附睾头功能发挥主要归结为附睾上皮细胞的重吸收和分泌两大功能,附睾上皮分泌的各种物质在精子成熟、运输过程中起着保护精子免受外界有害物质侵扰的关键作用[5-6]。
近年来对人、牛和啮齿动物的研究表明,维生素D已成为先天免疫和适应性免疫对抗病原微生物威胁的关键调节因子[7-8]。1,25(OH)2D3作为维生素D的活性物质主要通过与细胞内维生素D受体(vitamin D receptor,VDR)结合调节基因表达,VDR是调控转录因子的核受体家族成员[9-10]。目前应用转基因技术构建VDR基因敲除的动物模型已成为研究维生素D功能的一种实用手段。对于VDR基因缺陷的病人以及VDR基因敲除小鼠的研究表明其精液品质和生殖能力均会降低[11-12]。在对人、小鼠以及牛等哺乳动物的研究中发现,维生素D对β防御素具有调控作用[13-15],尤其是VDR在维生素D调控抗菌肽的表达中起着关键作用[16],研究发现1,25(OH)2D3可以通过VDR途径高效调节人类β防御素表达[17]。目前有关维生素D对山羊β防御素家族的影响以及调控机制尚不明确,本试验采用具有生物学功能的1,25(OH)2D3处理附睾头上皮细胞,同时利用CRISPR/Cas9技术构建出的基因敲除载体对山羊附睾头细胞中的VDR基因进行敲除,探讨维生素D是否通过VDR途径调节山羊β防御素家族的表达,研究外源途径调控机体β防御素表达的可能性,从而为探索家畜健康养殖新途径提供参考。
1 材料与方法 1.1 试验材料在山西农业大学动物科学学院试验基地选取3只6月龄太行黑山羊,分别采集附睾头组织。
1.2 试验试剂I型胶原酶购自美国Sigma公司,胎牛血清购自美国Gibco公司,0.25%胰蛋白酶、青链霉素混合液、PBS、DMEM/F12购自北京索莱宝生物科技有限公司,1,25(OH)2D3购自美国Med Chen Express公司,Lipofectamine® 2000购自美国Invitrogen公司,TRIzol试剂、反转录试剂购自日本TaKaRa公司,硝酸纤维膜、脱脂奶粉、SDS-PAGE凝胶制备试剂盒、SDS-PAGE蛋白上样缓冲液、RIPA裂解液、广谱蛋白酶抑制剂、广谱磷酸酶抑制剂均购自武汉博士德生物有限公司,gBD124抗体、gBD126抗体、gBD104a抗体委托滨州绿都生物有限公司合成。
1.3 试验方法1.3.1 试验设计 取山羊附睾头上皮细胞,加入无水乙醇将1,25(OH)2D3配制为10 μmol ·L-1的储备液,待细胞汇合度达到90%后,在试验组中添加终浓度为100 nmol ·L-1 1,25(OH)2D3(VD组)、同时设定不添加维生素的空白对照组(BC组)和100 nmol ·L-1无水乙醇作为阴性对照组(NC组),每组3个重复孔,细胞处理36 h后检测各组细胞相关基因和蛋白的表达;利用已构建出的3个pCas9/gRNA1 VDR基因敲除载体,取经过扩繁培养的菌液进行测序,测序结果无误后,待细胞汇合度达到70%~90%,按照转染试剂:DNA为3 ∶1的比例进行细胞转染,VDR基因敲除靶点有3个,每种质粒为一组,分别为pCas9-VDR-V1组(V1组)、pCas9-VDR-V2组(V2组)和pCas9-VDR-V3组(V3组),同时设置阴性对照组(VNC组)、转染试剂对照组(TRC组)和空白对照组(BC组),每组设3个重复孔,使用荧光倒置显微镜观察荧光情况并进行拍照。48 h后检测VDR蛋白表达量,选取敲除效率最高的质粒载体转染山羊附睾头上皮细胞,48 h后检测β防御素基因和蛋白的表达。
1.3.2 VDR基因敲除靶点及敲除质粒鉴定 在基因的起始密码子附近查找设计基因敲除靶点,用在线软件http://crispr.mit.edu/进行设计。VDR基因敲除靶点以及阴性对照如表 1,靶点序列通过核酸内切酶EcoR V位点插入pCas9/gRNA1载体中。对连接转化后获得的菌液的PCR产物进行测序。
![]() |
表 1 gRNA1靶点的引物序列 Table 1 Primer sequences of gRNA1 targets |
1.3.3 附睾头上皮细胞的分离培养 参考靳辉[18]关于附睾上皮细胞的分离方法,采用胶原酶消化差速贴壁法进行分离培养。用无菌剪刀、镊子将附睾头组织充分剪碎后,分别加入0.25%胰蛋白酶和I型胶原蛋白酶消化1 h,200目细胞筛过滤后离心重悬细胞,置于CO2培养箱中培养,8 h后倒上清于新的培养皿中继续培养,每2 d更换1次培养液。
1.3.4 上皮细胞纯度鉴定 角蛋白18(CK18)是上皮细胞特异性蛋白,采用细胞免疫荧光对分离所得附睾头上皮细胞进行纯度鉴定[19]。在12孔板进行细胞爬片,生长1 d后, 终止培养。4%多聚甲醛固定后1% Triton X-100通透, 1% BSA封闭1 h后加入CK18抗体, 4 ℃孵育过夜后洗涤, 加入FITC-羊抗小鼠IgG抗体室温孵育1 h后加DAPI复染10 min,用荧光共聚焦显微镜观察。最后使用Image J软件进行细胞计数计算阳性细胞率。
1.3.5 附睾头上皮细胞总RNA的提取和qRT-PCR检测 山羊附睾头上皮细胞按试验设计处理后,提取总RNA并反转录为cDNA,具体参照张昱等[1]方法。如表 2合成引物,根据TB GreenTM Premis Ex TaqTM Ⅱ试剂盒的说明,建立10 μL的反应体系,反应程序:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 30 s,72 ℃ 30 s,共45个循环;95 ℃ 30 s,60 ℃ 5 s,95 ℃ 1 min。目的基因mRNA表达量采用2-△△CT法计算,各基因表达量均经内参β-actin校正。引物均由生工生物工程股份有限公司合成。
![]() |
表 2 qRT-PCR引物序列信息 Table 2 qRT-PCR primer sequence information |
1.3.6 附睾头上皮细胞总蛋白的提取和Western blot 山羊附睾头上皮细胞按试验设计处理后,提取总蛋白并测定蛋白浓度,根据需要测定的蛋白大小调整分离胶的浓度,将各组蛋白按50 μg定量上样并进行SDS-PAGE凝胶电泳后将蛋白转至硝酸纤维膜,将膜浸于5%脱脂奶粉中室温封闭1 h。加入VDR(1 ∶500)、gBD104a(1 ∶500)、gBD124(1 ∶1 000)、gBD126(1 ∶2 000)、β-actin(1 ∶10 000)蛋白抗体孵育4 ℃过夜,TBST漂洗10 min×3次,加入荧光二抗(1 ∶15 000)避光孵育1 h后,TBST漂洗10 min×3次,用Odyssey® CLX双色近红外成像系统拍照。蛋白丰度值=蛋白灰度值/内参蛋白灰度值,结果用Image J软件分析。
1.4 统计分析所有数据重复3次。采用SPSS 22.0对数据进行单因素方差分析和显著性检验分析,结果以“平均值±标准误”表示。使用Graphpad Prism 7.0软件作图,*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01),ns表示无显著差异。
2 结果 2.1 pCas9/gRNA1 VDR基因敲除质粒鉴定对连接转化后获得的菌液PCR产物进行测序。以靶点pCas9-VDR-V1、pCas9-VDR-V2、pCas9-VDR-V3构建的基因敲除载体测序所得测序峰图如图 1。
![]() |
图 1 靶点pCas9-VDR-V1(A)、pCas9-VDR-V2(B)、pCas9-VDR-V3(C)构建的敲除载体测序结果 Fig. 1 The sequencing results of knockout vector builded by pCas9-VDR-V1(A), pCas9-VDR-V2(B), pCas9-VDR-V3(C) |
本试验分离出附睾头上皮细胞后传代培养用细胞免疫荧光鉴定结果见图 2,从图 2可知,CK18在传代细胞中的表达呈阳性并且阳性细胞率大于85%,表明本试验所培养的传代细胞为附睾头上皮细胞。
![]() |
A~C. CK18组;D~F. 阴性对照组 A-C. The CK18 group; D-F. The negative control group 图 2 CK 18细胞免疫荧光鉴定 Fig. 2 Cell immunofluorescence identification of CK 18 |
如图 3所示,添加1,25(OH)2D3后VDR基因mRNA表达量极显著高于阴性对照组和空白对照组(P < 0.01);由图 4可知,1,25(OH)2D3组gBD104、gBD104a、gBD109tr1、gBD109tr2、gBD113、gBD116、gBD120、gBD121、gBD123、gBD124以及gBD126基因mRNA表达量极显著高于阴性对照组和空白对照组(P < 0.01);1,25(OH)2D3组gBD106、gBD127、gBD129以及gBD134基因的mRNA表达量显著高于阴性对照组和空白对照组(P < 0.05);而对gBD128和gBD110like的相对表达则无显著影响(P>0.05)。
![]() |
BC为空白对照组,NC为阴性对照组,VD为维生素D组;* 表示差异显著(P < 0.05),**表示差异极显著(P < 0.01),ns表示无显著差异。下同 BC is the blank control group, NC is the negative control group, VD is the vitamin D group. * indicate significant differences (P < 0.05), ** indicated very significant difference (P < 0.01), ns indicated no significant difference. The same as below 图 3 1,25(OH)2D3处理对VDR基因mRNA丰度的影响 Fig. 3 Effect of 1,25(OH)2D3 treatment on VDR gene mRNA abundance |
![]() |
A~D分别为位于13号、23号、27号和8号染色体上的β防御素基因 A-D represents beta-defensin genes located on chromosomes 13, 23, 27, and 8, respectively 图 4 1,25(OH)2D3处理对β防御素基因mRNA丰度的影响 Fig. 4 Effect of 1,25(OH)2D3 treatment on beta-defensin gene mRNA abundance |
如图 5所示,1,25(OH)2D3组VDR蛋白条带灰度明显高于阴性对照组和空白对照组,Image J软件进行蛋白条带分析显示1,25(OH)2D3组VDR蛋白相对表达极显著高于阴性对照组和空白对照组(P < 0.01)。图 6显示,1,25(OH)2D3组gBD104a、gBD124以及gBD126蛋白相对表达也极显著高于阴性对照组和空白对照组(P < 0.01),与qRT-PCR结果一致。
![]() |
A. VDR蛋白Western blot结果;B. 灰度值分析 A. VDR protein Western blot results; B. Gray value analysis 图 5 1,25(OH)2D3处理对VDR蛋白表达的影响 Fig. 5 Effect of 1,25(OH)2D3 treatment on VDR protein expression |
![]() |
A. β防御素蛋白Western blot结果;B. 灰度值分析 A. Western blot results of beta-defensin proteins; B. Gray value analysis 图 6 1,25(OH)2D3处理对3个β防御素蛋白表达的影响 Fig. 6 Effect of 1,25(OH)2D3 treatment on the protein expression of three beta-defensins |
将pCas9/gRNA1 VDR敲除载体质粒转染细胞,按照转染试剂(μL)和DNA(μg)比值为3 ∶1转染细胞,培养24和48 h后,用倒置荧光显微镜观察荧光情况并进行拍照。如图 7所示,pCas9-VDR-V1组的VDR蛋白相对表达极显著低于pCas9-VDR-V2组、pCas9-VDR-V3组、阴性对照组、转染试剂对照组和空白对照组(P < 0.01),因此pCas9-VDR-V1质粒载体的敲除效率最高。
![]() |
A. 转染时间分别为24和48 h;B. VDR蛋白Western blot结果;C. 灰度值分析。V1为pCas9-VDR-V1组,V2为pCas9-VDR-V2组,V3为pCas9-VDR-V3组,VNC为阴性对照组,TRC为转染试剂对照组,BC为空白对照组 A. Transfection time was 24 and 48 h; B. VDR protein Western blot results; C. Gray value analysis. V1 is the pCas9-VDR-V1 group, V2 is the pCas9-VDR-V2 group, V3 is the pCas9-VDR-V3 group, VNC is the negative control group, TRC is the Transfection reagent group, BC is the blank control group 图 7 VDR基因敲除载体转染细胞效果 Fig. 7 The effect of VDR gene knockout vector transfection on cells |
选择pCas9/gRNA1敲除效率最高的pCas9-VDR-V1质粒载体转染附睾头上皮细胞,转染48 h后检测17种β防御素基因mRNA表达情况。如图 8所示,pCas9-VDR-V1组gBD116、gBD123、gBD124、gBD126、gBD127、gBD128、gBD109tr1、gBD109tr2以及gBD134基因mRNA表达量极显著低于阴性对照组(P < 0.01);pCas9-VDR-V1组gBD104、gBD104a、gBD106、gBD120以及gBD129基因mRNA表达量显著低于阴性对照组(P < 0.05);而对gBD121、gBD110like以及gBD113的相对表达则无显著影响(P>0.05)。
![]() |
图 8 VDR基因敲除对β防御素基因mRNA丰度的影响 Fig. 8 Effect of VDR gene knockdown on beta-defensin gene mRNA abundance |
pCas9-VDR-V1质粒载体转染附睾头上皮细胞48 h后检测3种β防御素蛋白表达情况。如图 9所示,pCas9-VDR-V1组的gBD124蛋白相对表达极显著低于阴性对照组(P < 0.01),gBD104a与gBD126蛋白相对表达显著低于阴性对照组(P < 0.05),与qRT-PCR结果一致。
![]() |
A. β防御素蛋白Western blot结果;B. 灰度值分析 A. beta-defensin proteins Western blot results; B. Gray value analysis 图 9 VDR基因敲除对3个β防御素蛋白表达的影响 Fig. 9 Effect of VDR gene knockout on the protein expression of three beta-defensins |
1,25(OH)2D3作为维生素D的活化形式,除了调节钙磷代谢以及细胞的生长分化等经典作用外,1,25(OH)2D3被证明具有先天免疫反应作用[20],靳辉[18]和Dai等[21]研究发现100 nmol ·L-1 1,25(OH)2D3处理细胞36 h后可显著提高细胞活力以及提高hBD3和Cathelicidin抗菌肽(Cathelicidin Antimicrobial Peptides,CAMP)表达。1,25(OH)2D3是上调和激活VDR的调节因子[22],通过维生素D结合蛋白(vitamin D binding protein,VDBP)将1,25(OH)2D3运输至细胞内,与VDR结合并与维甲酸X受体相互作用发生异源二聚化,产物异二聚体随后进入核内识别特定基因启动子区的维生素D反应元件(vitamin D response element,VDRE)[23],然后通过募集转录共激活因子或共抑制因子的复合物,激活编码蛋白质的基因转录。本研究显示,1,25(OH)2D3处理山羊附睾头上皮细胞36 h显著提高了VDR mRNA和蛋白表达,表明1,25(OH)2D3可以通过上调VD/VDR信号通路关键基因VDR的表达,从而调控下游靶基因发挥多种生物学功能的作用。
VD/VDR信号通路的靶基因包括β防御素、CYP24酶和CAMP,研究发现VDR通过与位于CAMP基因启动子区域的VDRE结合上调多种细胞系中该基因表达[24]。同样,在hBD2、hBD3和hBD4启动子上也具有VDRE[21]。关于山羊β防御素启动子区1,25(OH)2D3/VDR结合位点还需进一步验证,但我们证明了VDR在维生素D对山羊β防御素调控中的关键作用。Gombart等[25]研究发现,1,25(OH)2D3通过VDR途径提高了人类骨髓细胞和上皮细胞中hBD2基因的表达,hBD2被证明是VDR转录因子的直接靶标。VDR基因敲除后的小鼠精子异常导致生殖能力降低[26],本研究中,附睾头上皮细胞VDR基因敲除后降低了14种β防御素的表达,β防御素可以通过参与构成精子成熟的微环境来促进精子成熟[27],表明维生素D可能对动物精子的发生有积极影响。本研究结果显示1,25(OH)2D3处理和VDR基因敲除对其中13种山羊附睾头上皮细胞β防御素的表达均有显著影响,这部分β防御素受到了VD/VDR的调控,表明维生素D可以通过上调VDR表达,激活VD/VDR信号通路,从而调控山羊β防御素表达,这与Gombart等[25]研究结果一致。
研究证明β防御素受到多种途径调控,主要有雄激素/雄激素受体、睾丸因子和VD/VDR。Pujianto等[28]研究发现,小鼠β防御素20受到雄激素和睾丸因子的调控,Hu等[29]研究结果也表明雄激素可以调节23种小鼠β防御素的表达,其中12种受到AR直接调控。本研究中1,25(OH)2D3以及VDR基因敲除后对gBD110like基因的表达没有显著影响,推测这种山羊β防御素可能并不受到VD/VDR直接调控,维生素D也可以通过不同途径诱导β防御素的表达[30],Dai等[21]研究发现,维生素D激活PPARγ信号调节角质细胞中hBD3的表达,同样,研究发现维生素D诱导β防御素表达需要NF-κB通路共同作用[31],Merriman等[10]和Kweh等[32]研究表明,维生素D在NF-κB的作用下调控牛乳腺上皮细胞β防御素的表达。维生素D还可以与LPS协同作用诱导β防御素表达,陆路[33]对鸡β防御素研究发现维生素D在LPS免疫应激条件下才发挥对部分鸡肠上皮细胞β防御素基因的免疫调控作用。在LPS刺激下,β防御素基因启动子区域存在NF-κB结合位点被认为是诱导β防御素表达的原因[34]。因此推测山羊β防御素也可能受到其他信号通路或转录因子调控,这需要进一步试验证明。
4 结论1,25(OH)2D3通过上调VD/VDR信号通路关键基因VDR的表达调控山羊附睾头上皮细胞部分β防御素的表达;VDR基因敲除通过抑制VD/VDR信号通路调控山羊附睾头上皮细胞部分β防御素表达。
[1] |
张昱, 孟繁荣, 任有蛇, 等. β防御素126在成年公山羊组织中的表达特性[J]. 中国草食动物科学, 2019, 39(6): 12-15. ZHANG Y, MENG F R, REN Y S, et al. Expression profile of β-defensin126 mRNA in various tissues of adult male goat[J]. China Herbivore Science, 2019, 39(6): 12-15. DOI:10.3969/j.issn.2095-3887.2019.06.003 (in Chinese) |
[2] |
DORIN J R, BARRATT C L R. Importance of β-defensins in sperm function[J]. Mol Human Reprod, 2014, 20(9): 821-826. DOI:10.1093/molehr/gau050 |
[3] |
张春香, 张国林, 郭丽娜, 等. 基于高通量转录组测序的山羊睾丸和附睾头差异表达基因分析[J]. 畜牧兽医学报, 2014, 45(3): 391-401. ZHANG C X, ZHANG G L, GUO L N, et al. Study on differentially expressed genes between caprine testis and epididymis caput based on transcriptomes with high-throughput RNA-seq technology[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(3): 391-401. (in Chinese) |
[4] |
杜海燕. 山羊附睾头β防御素家族表达特点及gBD 124功能分析[D]. 晋中: 山西农业大学, 2018. DU H Y. The expression characteristics of β-defensin family from caprine epididymis and function analysis of gBD 124[D]. Jinzhong: Shanxi Agricultural University, 2018. (in Chinese) |
[5] |
PUJIANTO D A, LOANDA E, SARI P, et al. Sperm-associated antigen 11A is expressed exclusively in the principal cells of the mouse caput epididymis in an androgen-dependent manner[J]. Reprod Biol Endocrinol, 2013, 11: 59. DOI:10.1186/1477-7827-11-59 |
[6] |
SADEGHZADEH M, SHIRPOOR A, NADERI R, et al. Long-term ethanol consumption promotes changes in β-defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats[J]. Mol Reprod Dev, 2019, 86(6): 624-631. DOI:10.1002/mrd.23138 |
[7] |
ISMAILOVA A, WHITE J H. Vitamin D, infections and immunity[J]. Rev Endocr Metab Disord, 2022, 23(2): 265-277. DOI:10.1007/s11154-021-09679-5 |
[8] |
CHRISTAKOS S, DHAWAN P, VERSTUYF A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects[J]. Physiol Rev, 2016, 96(1): 365-408. DOI:10.1152/physrev.00014.2015 |
[9] |
MERRIMAN K E, KWEH M F, POWELL J L, et al. Multiple β-defensin genes are upregulated by the vitamin D pathway in cattle[J]. J Steroid Biochem Mol Biol, 2015, 154: 120-129. DOI:10.1016/j.jsbmb.2015.08.002 |
[10] |
MERRIMAN K E, POWELL J L, SANTOS J E P, et al. Intramammary 25-hydroxyvitamin D3 treatment modulates innate immune responses to endotoxin-induced mastitis[J]. J Dairy Sci, 2018, 101(8): 7593-7607. DOI:10.3168/jds.2017-14143 |
[11] |
YOSHIZAWA T, HANDA Y, UEMATSU Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning[J]. Nat Genet, 1997, 16(4): 391-396. DOI:10.1038/ng0897-391 |
[12] |
KINUTA K, TANAKA H, MORIWAKE T, et al. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads[J]. Endocrinology, 2000, 141(4): 1317-1324. DOI:10.1210/endo.141.4.7403 |
[13] |
LU L, LI S M, ZHANG L, et al. Expression of β-defensins in intestines of chickens injected with vitamin D3 and lipopolysaccharide[J]. Genet Mol Res, 2015, 14(2): 3330-3337. DOI:10.4238/2015.April.13.12 |
[14] |
NELSON C D, REINHARDT T A, LIPPOLIS J D, et al. Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements[J]. Nutrients, 2012, 4(3): 181-196. DOI:10.3390/nu4030181 |
[15] |
CAMPBELL Y, FANTACONE M L, GOMBART A F. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism[J]. Eur J Nutr, 2012, 51(8): 899-907. DOI:10.1007/s00394-012-0415-4 |
[16] |
ZHOU A N, LI L, ZHAO G P, et al. Vitamin D3 inhibits Helicobacter pylori infection by activating the VitD3/VDR-CAMP pathway in mice[J]. Front Cell Infect Microbiol, 2020, 10: 566730. DOI:10.3389/fcimb.2020.566730 |
[17] |
WANG T T, DABBAS B, LAPERRIERE D, et al. Direct and indirect induction by 1, 25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin β2 innate immune pathway defective in Crohn disease[J]. J Biol Chem, 2010, 285(4): 2227-2231. DOI:10.1074/jbc.C109.071225 |
[18] |
靳辉. VD通过VDR-PI3K/Akt-Nrf2信号通路抵抗绵羊附睾上皮细胞氧化应激作用的研究[D]. 晋中: 山西农业大学, 2020. JIN H. Study on VD resistance to the oxidative stress of epididymal epithelial cells of sheep through VDR-PI3K/Akt-Nrf2 signaling pathway[D]. Jinzhong: Shanxi Agricultural University, 2020. (in Chinese) |
[19] |
JI S F, ZHOU L X, SUN Z F, et al. Small molecules facilitate single factor-mediated sweat gland cell reprogramming[J]. Mil Med Res, 2022, 9(1): 13. |
[20] |
MARTENS P J, GYSEMANS C, VERSTUYF A, et al. Vitamin D's effect on immune function[J]. Nutrients, 2020, 12(5): 1248. DOI:10.3390/nu12051248 |
[21] |
DAI X J, SAYAMA K, TOHYAMA M, et al. PPARγ mediates innate immunity by regulating the 1α, 25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes[J]. J Dermatol Sci, 2010, 60(3): 179-186. DOI:10.1016/j.jdermsci.2010.09.008 |
[22] |
KRUTZIK S R, HEWISON M, LIU P T, et al. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway[J]. J Immunol, 2008, 181(10): 7115-7120. DOI:10.4049/jimmunol.181.10.7115 |
[23] |
LAVIGNE A C, MENGUS G, GANGLOFF Y G, et al. Human TAFⅡ55 interacts with the vitamin D3 and thyroid hormone receptors and with derivatives of the retinoid X receptor that have altered transactivation properties[J]. Mol Cell Biol, 1999, 19(8): 5486-5494. DOI:10.1128/MCB.19.8.5486 |
[24] |
GUO L H, CHEN W G, ZHU H T, et al. Helicobacter pylori induces increased expression of the vitamin D receptor in immune responses[J]. Helicobacter, 2014, 19(1): 37-47. DOI:10.1111/hel.12102 |
[25] |
GOMBART A F, BORREGAARD N, KOEFFLER H P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3[J]. FASEB J, 2005, 19(9): 1067-1077. DOI:10.1096/fj.04-3284com |
[26] |
KOVACS C S, WOODLAND M L, FUDGE N J, et al. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice[J]. Am J Physiol Endocrinol Metab, 2005, 289(1): E133-E144. DOI:10.1152/ajpendo.00354.2004 |
[27] |
LAI Y P, LI D Q, LI C W, et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury[J]. Immunity, 2012, 37(1): 74-84. DOI:10.1016/j.immuni.2012.04.010 |
[28] |
PUJIANTO D A, MULIAWATI D, RIZKI M D, et al. Mouse defensin beta 20 (Defb20) is expressed specifically in the caput region of the epididymis and regulated by androgen and testicular factors[J]. Reprod Biol, 2020, 20(4): 536-540. DOI:10.1016/j.repbio.2020.09.003 |
[29] |
HU S G, ZOU M, YAO G X, et al. Androgenic regulation of beta-defensins in the mouse epididymis[J]. Reprod Biol Endocrinol, 2014, 12: 76. DOI:10.1186/1477-7827-12-76 |
[30] |
CAMPBELL Y, FANTACONE M L, GOMBART A F. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism[J]. Eur J Nutr, 2012, 51(8): 899-907. DOI:10.1007/s00394-012-0415-4 |
[31] |
WANG T T, DABBAS B, LAPERRIERE D, et al. Direct and indirect induction by 1, 25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin β2 innate immune pathway defective in Crohn disease[J]. J Biol Chem, 2010, 285(4): 2227-2231. DOI:10.1074/jbc.C109.071225 |
[32] |
KWEH M F, MERRIMAN K E, NELSON C D. Short communication: inhibition of DNA methyltransferase and histone deacetylase increases β-defensin expression but not the effects of lipopolysaccharide or 1, 25-dihydroxyvitamin D3 in bovine mammary epithelial cells[J]. J Dairy Sci, 2019, 102(6): 5706-5712. DOI:10.3168/jds.2018-16141 |
[33] |
陆路. 脂多糖和维生素D对鸡肠上皮细胞β-防御素表达的影响[D]. 雅安: 四川农业大学, 2015. LU L. Effect of lipopolysaccharide and vitamin D on expression of β-defensins in chicken intestinal epithelial cells[D]. Ya 'an: Sichuan Agricultural University, 2015. (in Chinese) |
[34] |
YANG W, MOLENAAR A, KURTS-EBERT B, et al. NF-κB factors are essential, but not the switch, for pathogen-related induction of the bovine β-defensin 5-encoding gene in mammary epithelial cells[J]. Mol Immunol, 2006, 43(3): 210-225. DOI:10.1016/j.molimm.2005.02.003 |
(编辑 孟培)