畜牧兽医学报  2023, Vol. 54 Issue (5): 1845-1853. DOI: 10.11843/j.issn.0366-6964.2023.05.008    PDF    
羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制
龙琴琴1, 魏敏1, 王雨婷1, 文明1,2, 庞峰1,2     
1. 贵州大学动物科学学院,贵阳 550025;
2. 贵州省动物疫病与兽医公共卫生重点实验室,贵阳 550025
摘要:羊口疮(orf)是由羊口疮病毒(orf virus, ORFV)感染引起的一种高度接触性、嗜上皮性人兽共患传染病,不但阻碍畜牧业发展,而且危害人类健康。ORFV感染诱导宿主强烈的免疫反应和炎症反应,但宿主仍可被ORFV反复感染,主要是因为ORFV在与宿主的长期相互作用过程中,发展和进化出多种免疫逃逸机制。ORFV主要通过抑制干扰素反应、抑制NF-κB信号通路、抑制炎症反应、调控细胞凋亡、细胞周期、自噬和血管增生等方式实现免疫逃逸。ORFV免疫逃逸主要是通过其编码的多个免疫调控蛋白来实现。本文主要对ORFV感染引起的宿主免疫应答、ORFV免疫逃逸机制的最新研究进展进行综述,旨在为orf疫苗研制及综合防控提供重要参考。
关键词羊口疮    羊口疮病毒    免疫应答    免疫逃逸机制    免疫调控蛋白    
The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms
LONG Qinqin1, WEI Min1, WANG Yuting1, WEN Ming1,2, PANG Feng1,2     
1. College of Animal Science, Guizhou University, Guiyang 550025, China;
2. Guizhou Provincial Key Laboratory of Animal Diseases and Veterinary Public Health, Guiyang 550025, China
Abstract: Contagious ecthyma, commonly known as orf, is a highly contagious and epitheliotropic zoonotic infectious disease caused by orf virus (ORFV), blocking the development of animal husbandry and threatening human health. Although ORFV infection can induce strong immune and inflammatory response, the host can be repeatedly infected. This is mainly because ORFV has developed and evolved multiple immune evasion mechanisms during the long-term interaction with the host. ORFV achieves immune evasion mainly by inhibiting interferon response, inhibiting NF-κB signaling pathway, inhibiting inflammatory response, regulating apoptosis, cell cycle, autophagy and vascular proliferation. The immune evasion of ORFV is mainly due to the multiple immunomodulatory proteins encoded by the virus. In this article, the latest research progress on host immune response against ORFV infection and the immune evasion mechanisms of ORFV are summarized, which provides ideas for orf vaccine development and comprehensive prevention and control of the disease.
Key words: orf    orf virus    immune response    immune evasion mechanisms    immunomodulatory protein    

羊传染性脓疱(contagious ecthyma)俗称羊口疮(orf),是由羊口疮病毒(orf virus, ORFV)感染引起的急性接触性、嗜上皮性人兽共患传染病。其主要临床特征为山羊和绵羊等小反刍动物的口、唇、舌、鼻、乳房等部位出现丘疹、囊泡、脓疱和疣状痂皮[1-2]。Orf在全球呈广泛流行趋势,我国绝大部分养羊省份亦报道过该病的暴发。该病一年四季均可发生,春秋季节多发。ORFV感染发病率为20%~60%,继发感染和免疫功能低下动物的死亡率一般低于10%,阻碍了养羊业的发展[3-7]。ORFV为痘病毒科(Poxviridae)副痘病毒属(Parapoxvirus)成员,是线性双链DNA病毒。ORFV粒子大小约260 nm ×160 nm,外观多呈卵圆形,其表面有十字交错的“8”字型螺旋状突起[8]。ORFV基因组大小为130~139 kb,共编码132个蛋白,包含一个大的中央编码区(ORFs009―111)和两个末端反向重复变异区(ORFs001―008、ORFs112―134)。末端变异区主要与病毒毒力、致病机制、宿主范围以及免疫逃逸有关[9-10]

ORFV感染引起局部强烈的免疫应答,但ORFV仍能反复感染易感动物,是因为ORFV在与宿主长期相互作用过程中,进化出多种免疫逃逸机制。ORFV编码多个免疫逃逸蛋白,如干扰素抗性蛋白(IFNR/ORFV020、ORFV057)、NF-κB抑制蛋白(ORFV002、ORFV024、ORFV073、ORFV119、ORFV121、锚蛋白)、白细胞介素样蛋白(vIL-10/ORFV127)、趋化因子结合蛋白(CBP/ORFV112)、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF)抑制因子(GIF/ORFV117)、凋亡调控蛋白(ORFV125、ORFV118、ORFV119)、细胞周期调控蛋白(PACR/ORFV014)和血管内皮生长因子样蛋白(VEGF-E/ORFV132)[11-14]。ORFV通过抑制干扰素反应、NF-κB信号通路和炎症反应,调控细胞凋亡、细胞周期、自噬、血管增生实现免疫逃逸。本文总结了ORFV免疫逃逸机制的国内外最新研究进展,以期为未来orf疫苗研发及防控提供重要参考。

1 ORFV感染诱导宿主免疫应答

ORFV感染诱导宿主的细胞免疫应答和体液免疫应答,且以细胞免疫应答为主[15]。一旦ORFV侵入易感宿主,多种免疫细胞被激活,大量中性粒细胞、树突状细胞(DC)、B细胞和T细胞不断被募集到感染部位。同时,ORFV感染诱导多种细胞因子如白细胞介素(interleukin)-1β (IL-1β)、IL-8、GM-CSF、IL-2和干扰素-γ(interferon-γ,IFN-γ)的大量释放[16]。在初次感染和再次感染中,CD4+T细胞和DC细胞的累积速度显著高于其它类型细胞。CD4+T细胞是存在于受感染皮肤中数量最多的T淋巴细胞,在清除ORFV过程中扮演着关键角色。清除CD4+T细胞的绵羊在ORFV感染后无法清除皮肤中的ORFV且不产生针对ORFV的抗体[17]。ORFV感染早期主要诱导Th1型免疫应答,外周淋巴细胞释放IFN-γ、肿瘤坏死因子α (tumor necrosis factor-α,TNF-α)、IL-6、IL-8、IL-12和IL-18等细胞因子[18]。对ORFV感染的绵羊使用免疫抑制药物环孢素A处理会导致病情加重,这与皮肤中IL-2和IFN-γ被抑制紧密相关。另一方面,体液免疫在保护易感动物免受ORFV感染过程中并未发挥重要作用。ORFV感染诱导宿主产生的中和抗体非常少,注射抗ORFV血清对ORFV感染的动物几乎无保护作用。ORFV特异性中和抗体的缺乏可能是ORFV能够反复感染宿主的主要原因。

2 ORFV的免疫逃逸机制

研究表明,经ORFV初次感染的动物依然可以在实验或自然条件下再次被该病毒感染,再次感染病变的大小和严重程度会随着每次的感染而减小。这主要是因为ORFV在与宿主长期相互作用过程中,进化出一整套免疫逃逸机制(图 1),逃避宿主免疫应答,多个ORFV编码蛋白参与免疫逃逸过程[19-57](表 1)。

N. 中性粒细胞;E. 嗜酸性粒细胞;DC. 树突状细胞;NK. 自然杀伤细胞;M. 单核细胞 N. Neutrophil; E. Eosinophil; DC. Dendritic cells; NK. Natural killer cell; M. Monocytes 图 1 羊口疮病毒免疫逃逸机制示意图 Fig. 1 Schematic diagram of mechanisms for immune evasion by orf virus
表 1 ORFV免疫逃逸蛋白 Table 1 Immune evasion proteins of ORFV
2.1 ORFV抑制干扰素反应

干扰素(interferon,IFN)在宿主抵御病毒感染过程中发挥至关重要的作用。研究表明,ORFV感染抑制宿主细胞干扰素刺激基因(interferon-stimulated genes,ISGs)的表达。Harvey等[19]用IFN-γ或IFN-α刺激被ORFV感染的HeLa细胞,发现GBP1和MxA均被强烈抑制,表明ORFV抑制Ⅱ型IFN和Ⅰ型IFN诱导的ISGs的表达。进一步研究发现ORFV主要通过其编码蛋白ORFV057降低信号转导与转录激活因子1(signal transducer and activator of transcription 1,STAT1)Tyr701位点的磷酸化水平,抑制IFN诱导的Janus激酶(JAK)/STAT信号通路的激活。即ORFV调控JAK/STAT通路,抑制ISGs的表达实现免疫逃逸。

另一方面,ORFV通过干扰素抗性蛋白ORFV020(IFNR)抑制干扰素反应。双链RNA依赖性蛋白质激酶(double-stranded RNA-dependent protein kinase, PKR)可被病毒dsRNA激活,激活后的PKR使翻译起始因子eIF2α磷酸化,阻碍蛋白质合成,抑制病毒复制[20-21]ORFV020基因编码2种蛋白异构体,一种为全长蛋白OV20,另一种为N端截短蛋白sh20。OV20与sh20亚细胞定位不同,但二者均可直接与PKR和PKR激活剂dsRNA结合,导致PKR失活[22]。OV20还可与HEK293T细胞内PKR激活剂PACT结合,抑制PKR与PACT结合,进而抑制PKR激活[23]。此外,OV20与RNA腺苷脱氨酶1(ADAR1)结合,抑制ADAR1催化的腺苷到肌苷(A-to-I)编辑活性,而ADAR1在ORFV感染时上调OV20蛋白表达水平[24]。最终,OV20通过调控ADAR1依赖性基因的表达促进ORFV复制。Aldaif等[25]研究发现OV20通过拮抗dsRNA激活的RIG-I信号转导抑制IFN-β表达,实现免疫逃逸。

2.2 ORFV抑制NF-κB信号通路

核因子-κB(nuclear factor kappa-B,NF-κB)信号通路参与调控体内多种生理病理过程,如炎症反应、细胞分化、细胞凋亡、抗病毒感染等[26]。已经证实,ORFV编码多种蛋白抑制NF-κB信号通路。ORFV024是最早被证实对NF-κB通路有抑制作用的ORFV蛋白。ORFV024抑制IkBα的磷酸化和降解,从而抑制NF-κB-p65磷酸化和核易位,最终抑制NF-κB信号通路[27-29];核定位蛋白ORFV002不影响NF-κB-p65磷酸化和核易位,但干扰p300与NF-κB-p65结合,降低NF-κB-p65乙酰化水平,从而抑制NF-κB信号通路[30-31];而ORFV121蛋白能直接与NF-κB-p65结合,抑制NF-κB-p65的磷酸化和入核,从而抑制NF-κB信号通路激活[32];ORFV073抑制IKKα/β、IκBα和NF-κB-p65的磷酸化及NF-κB-p65的核易位,且ORFV073与IKK复合体调控亚单位NEMO相互作用干扰IKK复合体的组装和激活,影响NF-κB信号通路激活[33]。ORFV119蛋白在ORFV感染早期,通过与视网膜母细胞瘤蛋白(pRb)相互作用抑制IKK复合体激活,进而抑制NF-κB信号通路[34]

安雪珂[35]通过pCMV-tag2B真核表达载体构建、Western blot检测和双荧光素酶报告基因系统检测发现ORFV编码的5种锚蛋白,ORFV008、ORFV123、ORFV126、ORFV128和ORFV129对NF-κB信号通路皆有抑制作用。其中ORFV008、ORFV123和ORFV128蛋白均通过抑制磷酸化IkBα蛋白的降解而抑制NF-κB-p65入核,进而抑制NF-κB信号通路活化。

2.3 ORFV抑制炎症反应

ORFV编码一种分泌型免疫调节蛋白,即趋化因子结合蛋白(chemokine binding protein, CBP)。ORFV CBP与其他痘病毒CBP的序列同源性较低,但结构和功能上与CBP-II蛋白相似,以高亲和力结合多种CC型趋化因子,破坏趋化因子梯度,阻断小鼠炎性单核细胞向感染部位募集,还可阻断DC细胞向皮肤炎症部位募集和向外周淋巴结迁移,进而抑制T细胞增殖[36-37]

ORFV编码另一种分泌型免疫调节蛋白,即GM-CSF抑制因子(GIF /ORFV117)。GM-CSF刺激中性粒细胞、单核细胞、嗜酸性粒细胞活化,调控DC细胞分化和抗原呈递,在激活免疫细胞活性和过氧化物酶的产生方面发挥重要作用。IL-2刺激T细胞和NK细胞增殖和活化,对B细胞增殖和巨噬细胞的吞噬作用也有促进作用。GIF是唯一可同时结合GM-CSF和IL-2两种细胞因子的病毒蛋白,抑制GM-CSF和IL-2生物活性[38-39]

哺乳动物IL-10是一种抗炎性细胞因子,同时具有免疫调控功能。其抑制促炎细胞因子的产生及单核细胞、DC细胞和肥大细胞的成熟。同时抑制抗原提呈,间接抑制T细胞活化[40]ORFV127基因编码一种IL-10同源类似物vIL-10,其抑制受刺激的绵羊巨噬细胞和角质形成细胞产生TNF-α和IL-8,抑制外周淋巴细胞产生IFN-γ和GM-CSF。此外,vIL-10抑制单核细胞、DC细胞和肥大细胞被招募到ORFV感染的皮肤部位[41-42]

2.4 ORFV调控细胞凋亡

ORFV可诱导抗原提呈细胞(antigen-presenting cells, APCs)凋亡[43]。腹腔注射ORFV至小鼠体内,发现感染部位大量APCs凋亡,T细胞免疫应答受到抑制。诱导细胞凋亡的蛋白是ORFV自身结构成分,诱导CD95蛋白表达,通过CD95/CD95L通路导致单核细胞和巨噬细胞凋亡。ORFV还可诱导自然状态或实验条件下被感染山羊表皮细胞和淋巴细胞的凋亡,首先观察到真皮细胞的凋亡,随后是T淋巴细胞的凋亡,促进病毒粒子从细胞中释放。

ORFV编码多个凋亡抑制因子[44],在感染早期抑制细胞凋亡实现自身复制。ORFV125为Bcl-2样蛋白,是第一个被鉴定的副痘病毒属凋亡抑制因子,定位在线粒体中,能完全抑制紫外线诱导的DNA片段化、Caspase活化和细胞色素c的释放[45]。ORFV125是细胞凋亡线粒体途径的有效抑制因子,与一系列仅含BH3结构域的蛋白如Bik、Puma、DP5、PMAIP1(Noxa)、Bim结合,抑制它们的凋亡活性[46]。此外,ORFV125与活化的Bax相互作用,抑制细胞凋亡[47]。ORFV118是ORFV的另一凋亡抑制因子。体外试验表明ORFV118蛋白抑制山羊睾丸支持细胞(GSCs)凋亡,下调促凋亡蛋白Caspase3、Caspase7、SOCS2的mRNA表达水平,而对凋亡蛋白BaX、BCL2L11、P53、PARP1无影响[48]

ORFV编码一种定位于线粒体的凋亡诱导蛋白ORFV119,ORFV119可通过多种途径诱导细胞凋亡[49-50]:1)上调促凋亡蛋白Smac、Bax和Bak的表达水平、下调抗凋亡蛋白Bcl-2和cIAP-2的表达水平;2)激活Caspase9、Caspase3及切割活化PARP,诱导凋亡发生;3)直接激活Caspase8并诱导促凋亡蛋白BID活化,通过细胞凋亡外源途径诱导凋亡发生。即ORFV119蛋白通过细胞凋亡内源途径和外源途径诱导凋亡。

2.5 ORFV调控细胞周期

后期促进复合体(anaphase promoting complex, APC)是一种多亚单位泛素连接酶,催化核心由APC亚基2(APC2)和亚基11(APC11)组成[51]。其关键功能是维持细胞在G0/G1期,细胞进入S期必须关闭APC功能。所有副痘病毒都编码一个与APC11序列相似的RING-H2蛋白。ORFV014基因编码产物为痘病毒后期促进复合体调节因子(PACR)。PACR可与APC11竞争性结合APC2整合组成APC复合体。PACR的表达导致APC功能受损,细胞进入S期,有利于ORFV复制。此外,PACR基因缺失导致病毒产量显著减少,空斑变小,PACR对于ORFV的复制至关重要[51-52]

2.6 ORFV调控细胞自噬

ORFV感染羊胚胎鼻甲骨细胞(OFTU)后,诱导自噬相关基因LC3发生LC3Ⅰ到LC3Ⅱ的型别转换,P62蛋白表达量减少,同时诱导自噬小体的形成。进一步研究表明,ORFV感染导致p-PI3K(Y467)和p-AKT(S473)表达下降,同时伴随p-TSC2(S1387)表达增加和p-mTOR(S2448)活性的抑制,即ORFV感染可通过PI3K/AKT/mTOR信号通路诱导OFTu细胞自噬。此外,ORFV感染使p-ERK1/2(T202/Y204)表达显著增加,同时上调p-TSC2(S1387)表达,进而抑制p-mTOR活性诱导自噬。即ORFV感染亦可通过MAPK/ERK1/2/mTOR信号通路诱导OFTu细胞自噬[53-54]。ORFV诱导细胞自噬对病毒复制起促进作用。

2.7 ORFV调控血管增生

ORFV感染引起皮肤增生性病变,其中,广泛的血管增生和扩张是典型的组织学特征,此感染表型与ORFV编码的血管内皮生长因子(vascular endothelial growth factor, VEGF)类似物(VEGF-E/ORFV132)密切相关。VEGF-E与哺乳动物VEGF功能相似,可促使表皮细胞增生,引起宿主血管内皮细胞增殖、毛细血管通透性增加,利于病毒复制及结痂形成[55]。结痂中含有丰富的病毒粒子,是ORFV逃避宿主免疫应答的临时庇护所。缺失功能性的VEGF-E,导致病羊的临床症状减轻,ORFV的致病力减弱,表明VEGF-E是ORFV重要的毒力因子。与哺乳动物VEGF不同的是,VEGF-E仅能与VEGF受体2(VEGFR-2)和神经纤毛蛋白1(NRP1)特异性结合,无法与EGFR-1和VEGFR-3结合[56-57]

2.8 基于组学的ORFV免疫逃逸机制研究

近年来,高通量测序技术以及生物信息学迅猛发展,组学为研究ORFV免疫逃逸机制和ORFV与宿主互作机制提供了重要线索。Jia等[58]对ORFV感染的小尾寒羊口腔黏膜进行转录组测序,发现ORFV在感染早期引起宿主细胞强烈的免疫应答,上调或下调凋亡通路相关基因的表达水平,可能通过对凋亡通路的正、负调控实现免疫逃逸。Chen等[59]对ORFV感染的人包皮成纤维细胞(HFF-1)进行了转录组测序,发现ORFV感染影响多个基因的表达,主要涉及抗病毒免疫应答、细胞凋亡、细胞周期以及IFN和p53信号通路。本课题组Pang等[60]对ORFV感染的山羊皮肤成纤维(GSF)细胞进行了转录组测序和miRNA测序,并对差异基因和miRNA进行了联合分析,构建了miRNA-gene调控网络。此外,Pang等[61]首次报道了ORFV感染对GSF细胞环状RNA(circRNA)表达谱的影响。感染组与未感染组相比,共发现151个差异表达circRNA,主要富集在炎症应答调控、上皮结构维持、细胞迁移正调控、泛素蛋白转移酶活性正调控等生物学过程,并基于circRNA可充当miRNA海绵间接调控基因表达的机制构建了circRNA-miRNA-mRNA调控网络[61-62]。Hao等[63]对ORFV感染的GSF细胞进行蛋白质组测序,共鉴定出282个差异表达蛋白,其主要参与病毒结合、信号转导、细胞增殖等生物学过程。ORFV感染导致热休克蛋白HSPA1B表达上调,体外试验证明HSPA1B抑制ORFV复制。高通量测序和生物信息学分析为探究ORFV免疫逃逸机制提供了重要线索,但后续仍需对筛选到的差异表达基因、蛋白质和非编码RNA开展深入研究。

3 小结与展望

ORFV在与宿主的长期相互作用过程中,进化出多种免疫逃逸机制,如抑制干扰素反应、抑制NF-κB信号通路、抑制炎症反应、调控细胞凋亡、细胞周期、自噬、血管增生等。但ORFV是否还编码其它免疫调控蛋白实现免疫逃逸尚不清楚。后续可通过基因缺失病毒构建、酵母双杂交、免疫共沉淀等手段进行研究。天然免疫是机体抵抗病毒感染的第一道防线,通过模式识别受体(PRRs)识别病毒核酸、蛋白质、多糖等病原相关分子模式(PAMPs),产生相应免疫应答抵抗病毒感染。ORFV是否通过调控Toll样受体、RIG-I受体、DNA识别受体、NOD样受体介导的信号转导实现免疫逃逸有待深入探究[64]。虽然学者已通过转录组、miRNA测序、蛋白质组等高通量测序手段对ORFV与宿主的互作机制开展了初步研究,后续仍需针对发现的差异表达基因、蛋白质和非编码RNA开展深入的功能研究。此外,还可借助新兴的一些高通量测序技术如翻译组、代谢组、甲基化测序以及通过多组学的联合分析为揭示ORFV的免疫逃逸机制提供新的线索。目前还没有治疗orf的特效药物,已开发的灭活疫苗或连续传代弱毒疫苗效果并不理想,无法对易感动物提供迟久保护力,且存在毒力返强的威胁。因此,开发新型、安全、有效的orf疫苗是当务之急。构建多免疫调控基因缺失的ORFV减毒活疫苗很可能是未来orf疫苗开发的一个重要方向。

参考文献
[1]
KASSA T. A review on human orf: a neglected viral zoonosis[J]. Res Rep Trop Med, 2021, 12: 153-172.
[2]
CHEN D X, WANG R X, LONG M J, et al. Identification of in vitro and in vivo oncolytic effect in colorectal cancer cells by orf virus strain NA1/11[J]. Oncol Rep, 2021, 45(2): 535-546.
[3]
SAHU B P, MAJEE P, SINGH R R, et al. Recombination drives the emergence of orf virus diversity: evidence from the first complete genome sequence of an Indian orf virus isolate and comparative genomic analysis[J]. Arch Virol, 2022, 167(7): 1571-1576. DOI:10.1007/s00705-022-05443-5
[4]
KHALAFALLA A I, ELHAG A E, ISHAG H Z A. Field investigation and phylogenetic characterization of orf virus (ORFV) circulating in small ruminants and pseudocowpoxvirus (PCPV) in dromedary camels of eastern Sudan[J]. Heliyon, 2020, 6(3): e03595. DOI:10.1016/j.heliyon.2020.e03595
[5]
ZHOU Y L, GUAN J Y, LV L J, et al. Complete genomic sequences and comparative analysis of two orf virus isolates from Guizhou Province and Jilin province, China[J]. Virus Genes, 2022, 58(5): 403-413. DOI:10.1007/s11262-022-01918-4
[6]
CHEN H Q, LI W, KUANG Z Z, et al. The whole genomic analysis of orf virus strain HN3/12 isolated from Henan province, central China[J]. BMC Vet Res, 2017, 13(1): 260. DOI:10.1186/s12917-017-1178-1
[7]
VENKATESAN G, DE A K, ARYA S, et al. Molecular evidence and phylogenetic analysis of orf virus isolates from outbreaks in Tripura state of North-East India[J]. VirusDisease, 2018, 29(2): 216-220. DOI:10.1007/s13337-018-0442-8
[8]
SHEHATA A A, ELSHEIKH H A, ABD-ELFATAH E B. Molecular detection and characterization of orf virus from goats in Egypt[J]. Open Vet J, 2022, 12(2): 273-280. DOI:10.5455/OVJ.2022.v12.i2.16
[9]
KARKI M, VENKATESAN G, KUMAR A, et al. Genetic analysis of two viroceptor genes of orf virus[J]. Arch Virol, 2022, 167(7): 1577-1582. DOI:10.1007/s00705-022-05447-1
[10]
YAO X T, PANG M, WANG T X, et al. Genomic features and evolution of the parapoxvirus during the past two decades[J]. Pathogens, 2020, 9(11): 888. DOI:10.3390/pathogens9110888
[11]
WANG R X, WANG Y, LIU F, et al. Orf virus: a promising new therapeutic agent[J]. Rev Med Virol, 2019, 29(1): e2013. DOI:10.1002/rmv.2013
[12]
庞峰, 龙琴琴, 程振涛. 羊口疮病毒编码的NF-κB抑制基因研究进展[J]. 中国兽医学报, 2022, 42(4): 813-817, 823.
PANG F, LONG Q Q, CHENG Z T. Research progress of NF-κB inhibitory gene encoded by orf virus[J]. Chinese Journal of Veterinary Science, 2022, 42(4): 813-817, 823. DOI:10.16303/j.cnki.1005-4545.2022.04.31 (in Chinese)
[13]
张孟然, 丛潇, 顾月月, 等. 羊口疮病毒主要基因组编码蛋白及其功能[J]. 动物医学进展, 2022, 43(4): 96-101.
ZHANG M R, CONG X, GU Y Y, et al. Main genome coding proteins and functions of orf virus[J]. Progress in Veterinary Medicine, 2022, 43(4): 96-101. (in Chinese)
[14]
BUKAR A M, JESSE F F A, ABDULLAH C A C, et al. Immunomodulatory strategies for parapoxvirus: current status and future approaches for the development of vaccines against orf virus infection[J]. Vaccines (Basel), 2021, 9(11): 1341. DOI:10.3390/vaccines9111341
[15]
HAIG D M, MCINNES C J. Immunity and counter-immunity during infection with the parapoxvirus orf virus[J]. Virus Res, 2002, 88(1-2): 3-16. DOI:10.1016/S0168-1702(02)00117-X
[16]
FLEMING S B, WISE L M, MERCER A A. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin[J]. Viruses, 2015, 7(3): 1505-1539. DOI:10.3390/v7031505
[17]
LLOYD J B, GILL H S, HAIG D M, et al. In vivo T-cell subset depletion suggests that CD4+ T-cells and a humoral immune response are important for the elimination of orf virus from the skin of sheep[J]. Vet Immunol Immunopathol, 2000, 74(3-4): 249-262. DOI:10.1016/S0165-2427(00)00178-1
[18]
ANZILIERO D, WEIBLEN R, KREUTZ L C, et al. Inactivated Parapoxvirus ovis induces a transient increase in the expression of proinflammatory, Th1-related, and autoregulatory cytokines in mice[J]. Braz J Med Biol Res, 2014, 47(2): 110-118. DOI:10.1590/1414-431X20133358
[19]
HARVEY R, MCCAUGHAN C, WISE L M, et al. Orf virus inhibits interferon stimulated gene expression and modulates the JAK/STAT signalling pathway[J]. Virus Res, 2015, 208: 180-188. DOI:10.1016/j.virusres.2015.06.014
[20]
CESARO T, MICHIELS T. Inhibition of PKR by Viruses[J]. Front Microbiol, 2021, 12: 757238. DOI:10.3389/fmicb.2021.757238
[21]
CHUKWURAH E, FARABAUGH K T, GUAN B J, et al. A tale of two proteins: PACT and PKR and their roles in inflammation[J]. FEBS J, 2021, 288(22): 6365-6391. DOI:10.1111/febs.15691
[22]
TSENG Y Y, LIN F Y, CHENG S F, et al. Functional analysis of the short isoform of orf virus protein OV20. 0[J]. J Virol, 2015, 89(9): 4966-4979. DOI:10.1128/JVI.03714-14
[23]
TSENG Y Y, LIAO G R, SEN G C, et al. Regulation of PACT-mediated protein kinase activation by the OV20. 0 protein of orf virus[J]. J Virol, 2015, 89(22): 11619-11629. DOI:10.1128/JVI.01739-15
[24]
LIAO G R, TSENG Y Y, TSENG C Y, et al. Adenosine deaminase acting on RNA 1 associates with orf virus OV20. 0 and enhances viral replication[J]. J Virol, 2019, 93(7): e01912-18.
[25]
ALDAIF B A, MERCER A A, FLEMING S B. The parapoxvirus orf virus inhibits IFN-β expression induced by dsRNA[J]. Virus Res, 2022, 307: 198619. DOI:10.1016/j.virusres.2021.198619
[26]
YU H, LIN L B, ZHANG Z Q, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5(1): 209. DOI:10.1038/s41392-020-00312-6
[27]
DENG L Y, ZENG Q R, WANG M S, et al. Suppression of NF-κB activity: a viral immune evasion mechanism[J]. Viruses, 2018, 10(8): 409. DOI:10.3390/v10080409
[28]
DIEL D G, DELHON G, LUO S, et al. A novel inhibitor of the NF-κB signaling pathway encoded by the parapoxvirus orf virus[J]. J Virol, 2010, 84(8): 3962-3973. DOI:10.1128/JVI.02291-09
[29]
LONG M J, WANG Y Y, CHEN D X, et al. Identification of host cellular proteins LAGE3 and IGFBP6 that interact with orf virus protein ORFV024[J]. Gene, 2018, 661: 60-67. DOI:10.1016/j.gene.2018.03.089
[30]
DIEL D G, LUO S, DELHON G, et al. A nuclear inhibitor of NF-κB encoded by a poxvirus[J]. J Virol, 2011, 85(1): 264-275. DOI:10.1128/JVI.01149-10
[31]
CHEN D X, ZHENG Z W, XIAO B, et al. Orf virus 002 protein targets ovine protein S100A4 and inhibits NF-κB signaling[J]. Front Microbiol, 2016, 7: 1389.
[32]
DIEL D G, LUO S, DELHON G, et al. Orf virus ORFV121 encodes a novel inhibitor of NF-κB that contributes to virus virulence[J]. J Virol, 2011, 85(5): 2037-2049. DOI:10.1128/JVI.02236-10
[33]
KHATIWADA S, DELHON G, NAGENDRAPRABHU P, et al. A parapoxviral virion protein inhibits NF-κB signaling early in infection[J]. PLoS Pathog, 2017, 13(8): e1006561. DOI:10.1371/journal.ppat.1006561
[34]
NAGENDRAPRABHU P, KHATIWADA S, CHAULAGAIN S, et al. A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-κB signaling[J]. PLoS Pathog, 2017, 13(12): e1006779. DOI:10.1371/journal.ppat.1006779
[35]
安雪珂. 羊口疮病毒编码的锚蛋白抑制NF-κB信号通路的分子机制研究[D]. 兰州: 兰州大学, 2019.
AN X K. Molecular mechanism of the inhibition of NF-κB signaling pathway by Ankyrin repeat proteins of orf virus[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
[36]
FLEMING S B, MCCAUGHAN C, LATEEF Z, et al. Deletion of the chemokine binding protein gene from the parapoxvirus Orf virus reduces virulence and pathogenesis in sheep[J]. Front Microbiol, 2017, 8: 46.
[37]
MARTINS M, RODRIGUES F S, JOSHI L R, et al. Orf virus ORFV112, ORFV117 and ORFV127 contribute to ORFV IA82 virulence in sheep[J]. Vet Microbiol, 2021, 257: 109066. DOI:10.1016/j.vetmic.2021.109066
[38]
DEANE D, MCINNES C J, PERCIVAL A, et al. Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2[J]. J Virol, 2000, 74(3): 1313-1320. DOI:10.1128/JVI.74.3.1313-1320.2000
[39]
DEANE D, UEDA N, WISE L M, et al. Conservation and variation of the parapoxvirus GM-CSF-inhibitory factor (GIF) proteins[J]. J Gen Virol, 2009, 90(Pt 4): 970-977.
[40]
WISE L, MCCAUGHAN C, TAN C K, et al. Orf virus interleukin-10 inhibits cytokine synthesis in activated human THP-1 monocytes, but only partially impairs their proliferation[J]. J Gen Virol, 2007, 88(Pt 6): 1677-1682.
[41]
BENNETT J R, LATEEF Z, FLEMING S B, et al. Orf virus IL-10 reduces monocyte, dendritic cell and mast cell recruitment to inflamed skin[J]. Virus Res, 2016, 213: 230-237. DOI:10.1016/j.virusres.2015.12.015
[42]
WISE L M, STUART G S, JONES N C, et al. Orf virus IL-10 and VEGF-E act synergistically to enhance healing of cutaneous wounds in mice[J]. J Clin Med, 2020, 9(4): 1085. DOI:10.3390/jcm9041085
[43]
HOSAMANI M, SCAGLIARINI A, BHANUPRAKASH V, et al. Orf: an update on current research and future perspectives[J]. Expert Rev Anti-Infect Ther, 2009, 7(7): 879-893. DOI:10.1586/eri.09.64
[44]
SURAWEERA C D, HINDS M G, KVANSAKUL M. Poxviral strategies to overcome host cell apoptosis[J]. Pathogens, 2020, 10(1): 6. DOI:10.3390/pathogens10010006
[45]
WESTPHAL D, LEDGERWOOD E C, HIBMA M H, et al. A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus orf virus[J]. J Virol, 2007, 81(13): 7178-7188. DOI:10.1128/JVI.00404-07
[46]
WESTPHAL D, LEDGERWOOD E C, TYNDALL J D A, et al. The Orf virus inhibitor of apoptosis functions in a Bcl-2-like manner, binding and neutralizing a set of BH3-only proteins and active Bax[J]. Apoptosis, 2009, 14(11): 1317-1330. DOI:10.1007/s10495-009-0403-1
[47]
SURAWEERA C D, HINDS M G, KVANSAKUL M. Structural investigation of orf virus Bcl-2 homolog ORFV125 interactions with BH3-motifs from BH3-Only proteins Puma and Hrk[J]. Viruses, 2021, 13(7): 1374. DOI:10.3390/v13071374
[48]
王宪军, 向华, 张旭梅, 等. 羊口疮病毒ORFV118蛋白对山羊睾丸支持细胞周期、凋亡及免疫细胞因子的影响[J]. 华北农学报, 2022, 37(1): 222-231.
WANG X J, XIANG H, ZHANG X M, et al. Effects of ORFV118 on cell cycle, apoptosis and the immune-related cytokines in goat testicular sertoli cells[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(1): 222-231. (in Chinese)
[49]
LI W, CHEN H Q, DENG H, et al. Orf virus encoded protein ORFV119 induces cell apoptosis through the extrinsic and intrinsic pathways[J]. Front Microbiol, 2018, 9: 1056. DOI:10.3389/fmicb.2018.01056
[50]
陈慧芹. 羊口疮病毒119蛋白诱导细胞凋亡分子机制的研究[D]. 广州: 南方医科大学, 2017.
CHEN H Q. The molecular mechanisms of cell apoptosis induced by orf virus(ORFV)119 Protein[D]. Guangzhou: Southern Medical University, 2017. (in Chinese)
[51]
MO M, FLEMING S B, MERCER A A. Orf virus cell cycle regulator, PACR, competes with subunit 11 of the anaphase promoting complex for incorporation into the complex[J]. J Gen Virol, 2010, 91(Pt 12): 3010-3015.
[52]
MO M, FLEMING S B, MERCER A A. Cell cycle deregulation by a poxvirus partial mimic of anaphase-promoting complex subunit 11[J]. Proc Natl Acad Sci U S A, 2009, 106(46): 19527-19532.
[53]
LAN Y G, WANG G L, SONG D G, et al. Role of autophagy in cellular response to infection with orf virus Jilin isolate[J]. Vet Microbiol, 2016, 193: 22-27.
[54]
吕丽君. 羊传染性脓疱病毒感染诱导OFTu细胞自噬的分子机制初步研究[D]. 长春: 吉林大学, 2021.
LV L J. Molecular mechanisms of autophagy induced by ORFV in OFTu cells[D]. Changchun: Jilin University, 2021. (in Chinese)
[55]
SAVORY L J, STACKER S A, FLEMING S B, et al. Viral vascular endothelial growth factor plays a critical role in orf virus infection[J]. J Virol, 2000, 74(22): 10699-10706.
[56]
WISE L M, INDER M K, REAL N C, et al. The vascular endothelial growth factor (VEGF)-E encoded by orf virus regulates keratinocyte proliferation and migration and promotes epidermal regeneration[J]. Cell Microbiol, 2012, 14(9): 1376-1390.
[57]
KARKI M, KUMAR A, ARYA S, et al. Circulation of orf viruses containing the NZ7-like vascular endothelial growth factor (VEGF-E) gene type in India[J]. Virus Res, 2020, 281: 197908.
[58]
JIA H J, ZHAN L L, WANG X X, et al. Transcriptome analysis of sheep oral mucosa response to Orf virus infection[J]. PLoS One, 2017, 12(10): e0186681.
[59]
CHEN D X, LONG M J, XIAO B, et al. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus[J]. Oncotarget, 2017, 8(35): 58668-58685.
[60]
PANG F, WANG X Y, CHEN Z, et al. Integrated analysis of differentially expressed miRNAs and mRNAs in goat skin fibroblast cells in response to Orf virus infection reveals that cfa-let-7a regulates thrombospondin 1 expression[J]. Viruses, 2020, 12(1): 118.
[61]
PANG F, ZHANG M M, YANG X J, et al. Genome-wide analysis of circular RNAs in goat skin fibroblast cells in response to Orf virus infection[J]. PeerJ, 2019, 7: e6267.
[62]
庞峰. 羊口疮病毒感染影响宿主细胞circRNAs、mRNAs和miRNAs表达的研究[D]. 海口: 海南大学, 2019.
PANG F. The effects of orf virus infection on the expression of circRNAs, mRNAs and miRNAs in host cells[D]. Haikou: Hainan University, 2019. (in Chinese)
[63]
HAO J H, KONG H J, YAN M H, et al. Inhibition of orf virus replication in goat skin fibroblast cells by the HSPA1B protein, as demonstrated by iTRAQ-based quantitative proteome analysis[J]. Arch Virol, 2020, 165(11): 2561-2587.
[64]
周荣云, 何珊, 朱美芹, 等. 天然免疫DNA模式识别受体的抗感染研究进展[J]. 中国动物传染病学报, 2018, 26(5): 1-9.
ZHOU R Y, HE S, ZHU M Q, et al. Advances of innate immune DNA recognition receptors against infection[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26(5): 1-9. (in Chinese)

(编辑   白永平)