恒定链(invariant chain, Ii)又名CD74,由Jones等[1]于1979年报道。迄今,禽类、鱼类和哺乳类多种动物的Ii基因已被克隆并报道[2-3]。
1.1 基本结构相同物种Ii的蛋白质结构高度保守,主要由胞浆区(cytoplasmic domain)、跨膜区(transmembrane domain)和网腔区(luminal domain)3个结构域组成,其中网腔区又包含CLIP(the class Ⅱ-associated invariant chain peptides)和三聚体区(trimerization region)。禽类与哺乳动物之间Ii氨基酸序列的同源性在64.9%~92.2%,而鱼、禽和哺乳类之间为33.5%~40.7%[4]。多数动物的Ii存在异构体,其主要差异是在网腔区内有无甲状腺蛋白片段,异构体主要是在基因转录拼接过程中形成的,调节MHC Ⅱ/Ii聚合体的形成[5]。近年来,我国学者先后克隆和分析了鲫鱼、鲢鱼、大黄鱼和番鸭等的Ii基因及其结构特征[3, 6-8],发现鸡Ii能交叉结合鹌鹑的MHC分子[9],并与番鸭Ii有免疫交叉反应[10]。还发现新生仔猪Ii与IgG的Fc受体有关联[10]。
![]() |
动物Ii蛋白质序列来源于基因库(https://www.ncbi.nlm.nih.gov/genbank/): 鸡. AAT36345;鸭. AAX47310;牛. NP_001029907; 小鼠. AAH96435;草鱼. AIY53680 The animal Ii protein sequence comes from the GenBank (https://www.ncbi.nlm.nih.gov/genbank/): Gallus gallus. AAT36345; Anas platyrhynchos. AAX47310; Bos taurus. NP_001029907; Mus musculus. AAH96435; Ctenopharyngodon idella. AIY53680 图 1 动物Ii结构示意图 Fig. 1 Schematic diagram of animals Ii structure |
早期发现,Ii辅助主要组织相容性复合体(major histocompatibility complex, MHC)Ⅱ类分子递呈外源性抗原肽,故被称作MHC Ⅱ相关恒定链(MHC Ⅱ-associated invariant chain)。近年发现,Ii还辅助MHC Ⅰ类分子交叉递呈抗原肽和参与MHC Ⅰ类分子介导的抗病毒免疫应答[11-12]。Ii还是巨噬细胞迁移抑制因子(macrophage migration inhibitory factor, MIF)的受体,它在动物炎症和抗感染等免疫应答中具有调节功能。
1.3 在免疫细胞内参与MHC Ⅱ类分子的组装和转运在抗原提呈细胞(如树突状细胞)内质网内,Ii与MHC Ⅱ类分子的α和β链聚合成三聚体或九聚体(αβIi)3,完成MHC Ⅱ类分子的装配和成熟[13-14]。在Ii引导下,多聚体被转运,经过高尔基体,进入内吞体[15]。Ii的CLIP占据MHC Ⅱ类分子的肽结合区,阻止内源性抗原肽与之结合[16]。被吞噬并经酶解形成的抗原肽进入内吞体,随着Ii从MHC Ⅱ类分子的解离,抗原肽取代CLIP进入MHC Ⅱ类分子的结合区,形成MHC Ⅱ类分子/抗原肽复合物。它们最后被转运到免疫细胞表面[17-18]。
1.4 参与炎症和抗感染免疫的调节Ii在动物炎症反应中具有负调节巨噬细胞迁移的作用[19],并在炎症反应中被MIF激活,形成细胞外信号相关激酶(ERK)通路并诱导星形胶质细胞炎症反应[20],以及特异性地恢复树突状细胞的微泡,增强小神经胶质细胞核转录因子(nuclear factor kappa B, NF-κB) 的活性[21]。Ii在抗感染和抗肿瘤免疫反应中也具有重要作用。在猪圆环病毒感染中,Ii明显增强调节NF-κB信号通路的炎症反应[22],在布鲁氏菌(Brucella abortus)感染中,机体表现出抑制Ii相关的未成熟MHC-Ⅱ分子的表达[23];而在B细胞源的肿瘤发生中,Ii在肿瘤细胞表面表达出现异常[24]。
1.5 增强疫苗效果及其应用基于Ii协助MHC Ⅱ类分子递呈抗原肽的作用[16-18],Ii还被作为免疫载体。最早被应用的是位于CLIP前的4个氨基酸,又称为Ii-key,将其连接抗原肽,可以提高免疫效果[25]。现最常用的是将抗原肽取代Ii的CLIP制备成Ii/抗原肽嵌合体,而直接用作基因疫苗,或者将构建的嵌合体转入腺病毒而制备腺病毒疫苗,也有学者利用Ii的胞质区/跨膜区连接抗原肽[26]。这些基于Ii的疫苗不仅能直接增强特异性免疫反应效果,而且还表现出明显的免疫调节作用[20-24]。
![]() |
表 1 Ii主要免疫功能概览表 Table 1 Overview of main immune functions of Ii |
Ii与MHC Ⅱ类分子的互相作用是基于它们功能结构域之间的结合,其CLIP在结合MHC Ⅱ类分子的抗原结合凹槽中起关键作用[31]。Ii的跨膜区在细胞内转运中起作用,该结构域的缺失或突变会影响该功能[32]。尽管跨膜区和三聚体区参与分子三聚化过程,但不是必需的,因为缺失跨膜区的Ii,其三聚体区还能与MHC Ⅱ类分子形成多亚单位复合物,同样地,如缺失三聚体区,Ii也能与MHC Ⅱ类分子组装成九聚体结构[33]。此外,可溶性MHC Ⅱ类分子与维持自身耐受有关,而Ii与其互相作用,在抗原呈递中起着重要作用[34]。
Ii协助MHC Ⅱ类分子组装、成熟和递呈抗原肽并在内吞体共定位。在Ii引导MHC Ⅰ和Ⅱ类及其相关分子分类进入内吞体途径过程中,细胞膜融合蛋白Vti1b与Ii相互作用调节内吞体。Vti1b结合Ii并定位于内吞体,这种相互作用导致内吞体成熟减慢,从而保证抗原的有效处理和MHC-抗原复合物的装载。在抗原呈递细胞内,敲除Ii基因可加速内吞体成熟;沉默Vti1b基因则抑制Ii的作用而使内吞体成熟延迟[35]。在晚期内吞体,Ii/MHCⅡ复合体在MHC Ⅱ类分子结合抗原肽的同时,Ii被解离并降解,而信号肽肽酶样2a(SPPL2a)在降解Ii中至关重要,因为缺失SPPL2a将改变Ii依赖的模式识别受体途径[36]。
2.2 Ii调节T、B和造血细胞等免疫细胞的功能Ii调节人造血干细胞的数量和CD18的表达。阻断Ii可增加造血干细胞的数量[37]。胸腺上皮细胞(TEC)是T细胞发育、T细胞受体选择和特异性谱系分化不可缺少的细胞,而Ii通过激活NF-κB信号通路,部分控制成熟TEC细胞的数量。Ii缺失导致髓质显著减少,表达CD80的成熟TEC数量则减少,最终阻碍胸腺CD4+T细胞发育[38]。Ii还通过调节B细胞中TLR7(toll-like reptor 7)的转运和信号转导而影响抗原递呈效率。研究发现,在Ii缺失的B细胞内,TLR7不能促进MHCⅠ抗原的交叉提呈,而在缺失TLR7的B细胞中,Ii表达和MHCⅡ抗原递呈能力增强[39]。
3 Ii激活炎症反应的信号途径与活性结构特征MIF是炎症细胞因子和趋化因子,具有酶活性和免疫调节功能。Ii不仅是MHC Ⅱ类分子的伴侣蛋白,还是MIF的细胞表面受体,两者共同调节各种炎症信号。
3.1 Ii与MIF互相作用,通过多个信号通路产生炎症反应人的MIF是一种同源三聚体,在两个亚单位之间有一个酶腔,以脯氨酸为催化剂,激活受体Ii等活性分子。在三聚体中还有一个溶剂通道,其中第99位的酪氨酸是一个变构位点,可以不同程度调节酶活性、Ii结合和信号传导[40]。此外,Ii通过NF-κB信号通路参与炎症反应。用Ii刺激巨噬细胞,其胞浆和细胞核中磷酸化IκB的水平显著升高[41]。Ii/MIF互相作用还可激活Ras同源基因家族成员而促进巨噬细胞迁移,同时,经丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路触发炎症反应[42]。在MAPK信号通路中,Ii与MIF互相作用还激活胞外调节蛋白激酶(extra cellular regulated protein kinases, ERK)和活化蛋白激酶(c-Jun N-terminal kinase, JNK)信号通路,如用siRNA干扰Ii,促炎细胞因子(包括TNF-α、IL-1β以及细胞因子受体TLR4)在雪旺细胞(Schwann cell)中的转录就会显著降低[43]。最近发现,Ii还对肠道炎症有修复作用。在结肠炎患者中,MIF刺激Ii受体,激活蛋白激酶B和细胞外信号,调节激酶途径促进肠上皮细胞增殖和再生、愈合和维持黏膜屏障完整性,保护宿主肠炎症组织[44]。除了Ii/MIF途径,还存在依赖Ii的其他通路,Ii通过结合和激活受体,如Ii/CD44、CXCR2、CXCR4和CXCR7等,以自分泌和旁分泌方式发挥作用,使一些下游信号通路在体内被激活,如ERK1/2、AMPK和AKT[45]。
3.2 Ii结合MIF分子的活性结构特征位于MIF N-末端的两个位点在活化Ii中起重要作用,这两个位点分子间互相作用将信号从MIF的β2和β4链传播到Ii分子表面,进而活化Ii分子[46]。分子模拟显示,MIF的同源体MIF-2含有与MIF相当的氢键结构,该结构的破坏会减弱MIF-2酶活性和Ii的激活,所以在MIF超家族中存在非重叠功能的保守控制点[47]。Ii/MIF在进化中是保守的蛋白分子,在原虫和植物体内存在天然同源体。如所有疟原虫都编码先天性细胞因子MIF的同源体,它在哺乳动物体内具有调节先天性免疫反应的作用,即通过宿主Ii发出信号,导致炎症反应增强[48]。模式植物拟南芥也存在MIF/d-多巴色素互变异构酶样蛋白,其二级结构特征与MIF相似,并能与Ii和CXCR4结合,也能对动物单核细胞和T细胞产生剂量依赖的趋化活性[49]。使用核磁共振波谱和质谱发现,在氧化环境中,MIF结构发生动态改变,这些潜在的变构位点与激活Ii相关[50]。
4 与Ii关联的分子与疾病Ii与其他多种生物活性分子关联度极高,并与一些疾病发生相关。
4.1 与Ii关联的各种酶类和活性因子一是活性酶类。金属蛋白酶组织抑制剂-1(tissue inhibitor of metalloproteinases-1, TIMP-1)具有促炎性细胞分裂素活性,在其N端结构域内同时具有细胞分裂素和抗蛋白溶解的活性蛋白。Ii是TIMP-1的活性受体,即Ii结合TIMP-1的N端结构域区域与之相互作用,进而触发细胞内ZAP-70激活[51]。在体外,组织蛋白酶L(cathepsin L, CTSL)通过与Ii相互作用而调节黏膜免疫反应,进而抑制病原性微生物(如支原体)的感染[52]。在体内,Ii亚型p41在自身免疫疾病和治疗反应中的差异表达表现出与CSTL酶活性关联[53]。
二是活性分子。C型凝集素(CLEC16A)参与人B细胞中B细胞受体(BCR)依赖的MHC Ⅱ通路,它与表面Ii在人EBV+B细胞系中共表达。敲除CLEC16A基因可上调该细胞表面Ii和MHC的表达[54]。血红素能结合Ii,血红素的配位取决于膜附近的半胱氨酸残基[55]。此外,干扰素γ可以调控Ii、MHCⅡ和MHC Ⅱ类反式激活因子(class Ⅱ transactivator, CIITA)的表达,正辛醇多巴胺(N-octanoyl dopamine, NOD)可降低这些分子的表达[56]。
4.2 与Ii相关疾病由于Ii在免疫应答中的重要作用,在一些特定疾病中往往表现出Ii的异常,如急性髓系白血病。这是一种以快速增殖和复发率高为特征的肿瘤。所有患者的Ii和HLA-DM表达均较高。然而,在HLA-DR水平较低的患者却有较高Ii分子的表达[57]。在大部分肝癌标本中常见Ii大量分布于间质巨噬细胞,而Ii阳性巨噬细胞的高浸润与CD8+的CTL浸润增加有关;同时,如发现肝炎患者的Ii阳性巨噬细胞中出现显著上调与免疫反应相关的通路,表明其预后良好[58]。在肺癌细胞A549中,Ii和CD44均能正常表达和共定位并互相作用。在3个Ii异构体中即使缺失1个异构体,也不影响Ii和CD44互相作用以及它们介导的下游信号NF-κB的活化和PGE2的产生[59]。可溶性Ii(sIi)存在炎症性疾病血清中,其释放受到去整合素和金属蛋白酶介导的细胞表面裂解或半胱氨酸蛋白酶介导的溶酶体裂解的调节[60]。
5 基于免疫增强作用的Ii疫苗载体 5.1 Ii疫苗载体的结构与抗原表位Ii作为疫苗载体被用于增强免疫效果。常用的方法是用抗原肽取代Ii的CLIP片段构建融合蛋白,或者将编码Ii-抗原肽融合基因构建在腺病毒或痘病毒载体中。近年来,围绕优化Ii载体结构以及连接抗原表位的方式有新的探索。用新城疫病毒抗原表位F2连接Ii-key或取代Ii的CLIP,免疫动物后检测抗体水平,发现这两种载体的疫苗在提高动物特异性抗体水平上存在明显差异[61]。Ii的胞浆区/跨膜区作为载体结构可提高动物分泌抗体至9倍水平[26]。在该载体结构中,CLIP与抗原表位NDV-F306连接的位置影响动物抗体水平[62];而串联新城疫病毒(NDV-HN)和法氏囊炎病毒(IBDV-VP2)两种表位,发现被免疫动物产生的两种特异性抗体水平虽然无明显差异,但均比单纯抗原表位免疫组高约3倍,这些研究为Ii载体携带多价表位提供了依据[63]。由于Ii载体具有免疫增强作用,使某些免疫原性较弱的抗原(如寄生虫和肿瘤)也能刺激机体产生有效保护性免疫反应[64],还有一些活性分子,如HER2是一种普遍存在于多种恶性肿瘤中的生长因子,与Ii连接作为融合蛋白,刺激机体产生长期的免疫效果[65]。
5.2 Ii疫苗靶向MHCⅡ分子递呈抗原肽,增强体液免疫的功能利用Ii靶向结合MHC Ⅱ类分子的特性,在重组腺病毒中装载Ii与编码恶性疟原虫毒力因子的二聚体(IT4var19和PFCLINvar30 var)融合基因,免疫小鼠后明显增强了针对两种抗原的特异性抗体反应[66]。Ii还可用于产生抗多种不同病原体抗原特异性记忆CD4+T细胞。将构建的Ii-GP61-80(淋巴细胞性脉络膜脑膜炎病毒免疫显性表位)和Ii-PEPCK335-351(利什曼原虫抗原肽)两种融合基因分别转染重组痘苗病毒载体,接种动物可诱导特异性和免疫记忆的CD4+T细胞[67]。用黑色素瘤抗原取代Ii的CLIP的mRNA嵌合体应用到小鼠时,这些结构能够抑制肿瘤生长,提高小鼠存活率。这是因为这些结构可以递呈抗原并激活和诱导肿瘤特异性CD4+T细胞的增殖,不仅诱导高水平的Th1和Th2亚群,还可产生有效的CTL杀伤,提高了小鼠存活率[27]。
5.3 Ii疫苗激活细胞毒性CD8+ T细胞,增强细胞免疫功能Ii疫苗还呈现出增强细胞免疫反应的特性。首先,它具有免疫预防作用。以缺陷型腺病毒5型为载体,装载Ii与小鼠γ-疱疹病毒-68(CD8+ T细胞表位)嵌合体基因。鼻内接种14 d后,明显降低了小鼠潜在感染病毒风险[68]。其次,可以缩短感染后的病原清除时间。腺病毒装载Ii与啮齿类肝炎病毒(rodent hepacivirus, RHV)的非结构(NS)蛋白NS3-NS5B嵌合体基因,接种大鼠,可诱导产生高水平的CD8+T细胞反应。在接种RHV后,42%的接种大鼠在6~8周内清除了感染,而对照组则呈现高水平病毒血症。如提高单次剂量其疗效分别提高至100%和83%[69]。此外,Ii疫苗还可用于连接多价抗原肽。将Ii连接人乳头瘤病毒(HPV)多种早期病毒调节蛋白的抗原肽,以重组腺病毒为载体免疫动物,可增强CD8+ T细胞的细胞毒性反应。特别是所产生的针对融合多肽的T细胞反应水平与单独给药相同[70]。
5.4 Ii疫苗可同时激发CD4+和CD8+T细胞在关于Ii疫苗增强免疫作用的报道中,除了上述分别增强体液免疫和细胞免疫反应外,更重要的是其能同时增强两种免疫反应。以缺陷型腺病毒为载体,转染Ii与编码寨卡病毒(ZIKV)非结构蛋白1和2(NS1/NS2)抗原的融合基因作为疫苗。结果,该疫苗不仅提高了动物产生针对寨卡病毒包膜E蛋白的特异性中和抗体水平,还同时增强和延长了多功能CD8+ T细胞反应,有效地阻止了病毒感染,提高了保护率[71]。在用Ii连接人丙型肝炎病毒(HCV)保守片段(ChAd-Gt1/3和ChAd-Gt1-6)的嵌合体蛋白免疫动物后,也观察到被免疫动物产生高强度、广泛和功能性的CD4+和CD8+T细胞应答,说明Ii疫苗能够增加T细胞反应的幅度、广度和交叉反应性[72]。
6 展望纵观Ii研究成果,Ii已从协助MHC Ⅱ类分子组装成熟和递呈抗原的伴侣蛋白,演变成为一种多功能免疫分子,不仅具有多种调节作用,还可作为靶向疫苗载体。梳理近几年的研究,Ii分子在功能结构域作用、胞内途径、启动信号通路、激活多种免疫应答等分子和基因水平的进展尤为突出,这为今后的研究提供了新途径。
在畜牧兽医领域,随着近年来国内科学研究的快速发展,涉及Ii的基础研究和应用也在逐步深入。除传统养殖的畜禽、家鱼类外,海鱼和特种禽类的Ii也均被克隆研究,不仅丰富了研究材料和数据,也为拓展和推动诸如异构体结构、形成和作用机理提供了新思路。
在兽医领域,疫病防控需要高效、多价和应用简便的疫苗,而Ii载体具有靶向结合MHC分子的疫苗载体特性,又有增强特异性体液和细胞免疫的免疫佐剂优点,所以应用潜力巨大。特别是Ii可作为跨种间通用载体和携带多价不同来源抗原肽的特性,更具有应用前景。但是,仍存在诸多问题尚需解决,比如:Ii载体结构的优化和小型化(如功能片段的确定及其修饰)、探索构建多价(多病原抗原)Ii载体结构中筛选连接肽和高效病毒载体(如腺病毒、痘病毒种型);揭示Ii携带抗原肽在胞内转运途径和激活信号通路的机制等。
在畜牧领域,Ii的多功能特性为提升畜禽生产性能、健康养殖,以及高质量安全产品提供了新思路。如在研究动物免疫去势、免疫调节生长等方面,由于所针对的靶标抗原是自身激素等蛋白小分子,免疫原性低,易产生可逆现象,Ii载体为其提供了获得稳定高效的可能性和探索的新途径。
[1] |
JONES P P, MURPHY D B, HEWGILL D, et al. Detection of a common polypeptide chain in I-A and I-E sub-region immunoprecipitates[J]. Mol mmunol, 1979, 16(1): 51-60. DOI:10.1016/0161-5890(79)90027-0 |
[2] |
ZHONG D L, YU W Y, LIU Y H, et al. Molecular cloning and expression of two chicken invariant chain isoforms produced by alternative splicing[J]. Immunogenetics, 2004, 56(9): 650-656. DOI:10.1007/s00251-004-0726-6 |
[3] |
CHEN F F, LIN H B, LI J C, et al. Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class Ⅱ chaperone protein associates with the class Ⅰ molecule[J]. Fish Shellfish Immunol, 2017, 63: 1-8. DOI:10.1016/j.fsi.2017.01.030 |
[4] |
CHEN F, PAN L, DAI Y, et al. Characteristics of expression of goose invariant chain gene and comparison of its structure among different species[J]. Poult Sci, 2011, 90(8): 1664-1670. DOI:10.3382/ps.2010-01336 |
[5] |
CLOUTIER M, GAUTHIER C, FORTIN J S, et al. The invariant chain p35 isoform promotes formation of nonameric complexes with MHC Ⅱ molecules[J]. Immunol Cell Biol, 2014, 92(6): 553-556. DOI:10.1038/icb.2014.17 |
[6] |
叶显峰, 孟凡涛, 刘洪明, 等. 鲢鱼恒定链cDNA的克隆及其分子结构分析[J]. 淡水渔业, 2013, 43(3): 9-14. YE X F, MENG F T, LIU H M, et al. cDNA cloning and molecular structure analysis of Aristichthys molitrix invariant chain[J]. Freshwater Fisheries, 2013, 43(3): 9-14. DOI:10.3969/j.issn.1000-6907.2013.03.002 (in Chinese) |
[7] |
LI M Y, LI Q H, YANG Z J, et al. Identification of cathepsin B from large yellow croaker (Pseudosciaena crocea) and its role in the processing of MHC class Ⅱ-associated invariant chain[J]. Dev Comp Immunol, 2014, 45(2): 313-320. DOI:10.1016/j.dci.2014.03.019 |
[8] |
LIU S J, CHEN F F, WU C, et al. Molecular characterization and tissue-specific expression of invariant chain isoform in Muscovy Duck (Cairina moschata)[J]. Genet Mol Res, 2014, 13(4): 8971-8981. DOI:10.4238/2014.October.31.12 |
[9] |
CHEN F F, WU C, PAN L, et al. Cross-species association of quail invariant chain with chicken and mouse MHC Ⅱ molecules[J]. Dev Comp Immunol, 2013, 40(1): 20-27. DOI:10.1016/j.dci.2013.01.002 |
[10] |
XU F Z, YE H, LIU X L, et al. The intracellular localization and association of porcine Ia-associated invariant chain with the MHC class Ⅰ-related porcine neonatal Fc receptor for IgG[J]. Gene, 2015, 559(1): 9-15. DOI:10.1016/j.gene.2015.01.011 |
[11] |
BASHA G, OMILUSIK K, CHAVEZ-STEENBOCK A, et al. A CD74-dependent MHC class Ⅰ endolysosomal cross-presentation pathway[J]. Nat Immunol, 2012, 13(3): 237-245. DOI:10.1038/ni.2225 |
[12] |
SUGITA M, BRENNER M B. Association of the invariant chain with major histocompatibility complex class Ⅰ molecules directs trafficking to endocytic compartments[J]. J Biol Chem, 1995, 270(3): 1443-1448. DOI:10.1074/jbc.270.3.1443 |
[13] |
ROCHE P A, MARKS M S, CRESSWELL P J. Formation of a nine-subunit complex by HLA class Ⅱ glycoproteins and the invariant chain[J]. Nature, 1991, 354(6352): 392-394. DOI:10.1038/354392a0 |
[14] |
ANDERSON M S, MILLER J. Invariant chain can function as a chaperone protein for class Ⅱ major histocompatibility complex molecules[J]. Proc Natl Acad Sci U S A, 1992, 89(6): 2282-2286. DOI:10.1073/pnas.89.6.2282 |
[15] |
ELLIOTT E A, DRAKE J R, AMIGORENA S, et al. The invariant chain is required for intracellular transport and function of major histocompatibility complex class Ⅱ molecules[J]. J Exp Med, 1994, 179(2): 681-694. DOI:10.1084/jem.179.2.681 |
[16] |
BIJLMAKERS M J, BENAROCH P, PLOEGH H L. Mapping functional regions in the lumenal domain of the class Ⅱ-associated invariant chain[J]. J Exp Med, 1994, 180(2): 623-629. DOI:10.1084/jem.180.2.623 |
[17] |
BREMNES B, MADSEN T, GEDDE-DAH M, et al. An LI and ML motif in the cytoplasmic tail of the MHC-associated invariant chain mediate rapid internalization[J]. J Cell Sci, 1994, 107(7): 2021-2032. DOI:10.1242/jcs.107.7.2021 |
[18] |
SWIER K, MILLER J. Efficient internalization of MHC class Ⅱ-invariant chain complexes is not sufficient for invariant chain proteolysis and class Ⅱ antigen presentation[J]. J Immunol, 1995, 155(2): 630-643. DOI:10.4049/jimmunol.155.2.630 |
[19] |
FAURE-ANDRÉ G, VARGAS P, YUSEFF M I, et al. Regulation of dendritic cell migration by CD74, the MHC class Ⅱ-associated invariant chain[J]. Science, 2008, 322(5908): 1705-1710. DOI:10.1126/science.1159894 |
[20] |
SU Y, WANG Y J, ZHOU Y, et al. Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor[J]. Oncotarget, 2017, 8(2): 2719-2730. DOI:10.18632/oncotarget.13739 |
[21] |
TEO B H D, WONG S H. MHC class Ⅱ-associated invariant chain (Ii) modulates dendritic cells-derived microvesicles (DCMV)-mediated activation of microglia[J]. Biochem Biophys Res Commun, 2010, 400(4): 673-678. DOI:10.1016/j.bbrc.2010.08.126 |
[22] |
ZHANG H L, LIU C, CHENG S, et al. Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection[J]. Arch Virol, 2013, 158(11): 2285-2295. DOI:10.1007/s00705-013-1750-3 |
[23] |
VELÁSQUEZ L N, MILILLO M A, DELPINO M V, et al. Brucella abortus down-regulates MHC class Ⅱ by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1)[J]. J Leukoc Biol, 2017, 101(3): 759-773. DOI:10.1189/jlb.4A0416-196R |
[24] |
CHENG S P, LIU C L, CHEN M J, et al. CD74 expression and its therapeutic potential in thyroid carcinoma[J]. Endocr Relat Cancer, 2015, 22(2): 179-190. DOI:10.1530/ERC-14-0269 |
[25] |
ADAMS S, ALBERICIO F, ALSINA J, et al. Biological activity and therapeutic potential of homologs of an Ii peptide which regulates antigenic peptide binding to cell surface MHC class Ⅱ molecules[J]. Arzneimittelforschung, 1997, 47(9): 1069-1077. |
[26] |
CHEN F F, MENG F T, PAN L, et al. Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class Ⅱ molecules[J]. BMC Immunol, 2012, 13: 55. DOI:10.1186/1471-2172-13-55 |
[27] |
SHARBI-YUNGER A, GREES M, CAFRI G, et al. A universal anti-cancer vaccine: chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival[J]. Int J Cancer, 2019, 144(4): 909-921. DOI:10.1002/ijc.31795 |
[28] |
STARODUBOVA E S, ISAGULIANTS M G, KUZMENKO Y V, et al. Fusion to the lysosome targeting signal of the invariant chain alters the processing and enhances the immunogenicity of HIV-1 reverse transcriptase[J]. Acta Nat, 2014, 6(1): 61-68. DOI:10.32607/20758251-2014-6-1-61-68 |
[29] |
JAHN M L, STEFFENSEN M A, CHRISTENSEN J P, et al. Analysis of adenovirus-induced immunity to infection with Listeria monocytogenes: Fading protection coincides with declining CD8 T cell numbers and phenotypic changes[J]. Vaccine, 2018, 36(20): 2825-2832. DOI:10.1016/j.vaccine.2018.03.080 |
[30] |
XIAO N, LI K, ZHU X D, et al. CD74+ macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2022, 71(1): 57-69. DOI:10.1007/s00262-021-02962-z |
[31] |
DIJKSTRA J M, YAMAGUCHI T. Ancient features of the MHC class Ⅱ presentation pathway, and a model for the possible origin of MHC molecules[J]. Immunogenetics, 2019, 71(3): 233-249. DOI:10.1007/s00251-018-1090-2 |
[32] |
THIBODEAU J, MOULEFERA M A, BALTHAZARD R. On the structure-function of MHC class Ⅱ molecules and how single amino acid polymorphisms could alter intracellular trafficking[J]. Hum Immunol, 2019, 80(1): 15-31. DOI:10.1016/j.humimm.2018.10.001 |
[33] |
CLOUTIER M, FORTIN J S, THIBODEAU J. The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCⅡ into nonamers[J]. BMC Immunol, 2021, 22(1): 56. DOI:10.1186/s12865-021-00444-6 |
[34] |
SHISHIDO T, KOHYAMA M, NAKAI W, et al. Invariant chain p41 mediates production of soluble MHC class Ⅱ molecules[J]. Biochem Biophys Res Commun, 2019, 509(1): 216-221. DOI:10.1016/j.bbrc.2018.12.106 |
[35] |
MARGIOTTA A, FREI D M, SENDSTAD I H, et al. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b[J]. J Cell Sci, 2020, 133(19): jcs244624. |
[36] |
GRADTKE A C, MENTRUP T, LEHMANN C H K, et al. Deficiency of the intramembrane protease SPPL2a alters antimycobacterial cytokine responses of dendritic cells[J]. J Immunol, 2021, 206(1): 164-180. DOI:10.4049/jimmunol.2000151 |
[37] |
BECKER-HERMAN S, ROZENBERG M, HILLEL-KARNIEL C, et al. CD74 is a regulator of hematopoietic stem cell maintenance[J]. PLoS Biol, 2021, 19(3): e3001121. DOI:10.1371/journal.pbio.3001121 |
[38] |
WANG H X, ZHANG Q, ZHANG J Y, et al. CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway[J]. FASEB J, 2021, 35(5): e21535. |
[39] |
TOHME M, MAISONNEUVE L, ACHOUR K, et al. Correction: TLR7 trafficking and signaling in B cells is regulated by the MHCⅡ-associated invariant chain[J]. J Cell Sci, 2021, 134(20): jcs259376. DOI:10.1242/jcs.259376 |
[40] |
SKEENS E, PANTOURIS G, SHAH D, et al. A cysteine variant at an allosteric site alters MIF dynamics and biological function in homo-and heterotrimeric assemblies[J]. Front Mol Biosci, 2022, 9: 783669. DOI:10.3389/fmolb.2022.783669 |
[41] |
ZHU B H, WU G S, WANG C, et al. Soluble cluster of differentiation 74 regulates lung inflammation through the nuclear factor-κB signaling pathway[J]. Immunobiology, 2020, 225(5): 152007. DOI:10.1016/j.imbio.2020.152007 |
[42] |
WANG Y J, WEI S M, SONG H H, et al. Macrophage migration inhibitory factor derived from spinal cord is involved in activation of macrophages following gecko tail amputation[J]. FASEB J, 2019, 33(12): 14798-14810. DOI:10.1096/fj.201801966RRR |
[43] |
SONG H H, ZHU Z W, ZHOU Y, et al. MIF/CD74 axis participates in inflammatory activation of schwann cells following sciatic nerve injury[J]. J Mol Histol, 2019, 50(4): 355-367. DOI:10.1007/s10735-019-09832-0 |
[44] |
FARR L, GHOSH S, JIANG N, et al. CD74 signaling links inflammation to intestinal epithelial cell regeneration and promotes mucosal healing[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(1): 101-112. DOI:10.1016/j.jcmgh.2020.01.009 |
[45] |
JANKAUSKAS S S, WONG D W L, BUCALA R, et al. Evolving complexity of MIF signaling[J]. Cell Signal, 2019, 57: 76-88. DOI:10.1016/j.cellsig.2019.01.006 |
[46] |
PARKINS A, SKEENS E, MCCALLUM C M, et al. The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation[J]. Biophys J, 2021, 120(18): 3893-3900. DOI:10.1016/j.bpj.2021.08.025 |
[47] |
CHEN E, REISS K, SHAH D, et al. A structurally preserved allosteric site in the MIF superfamily affects enzymatic activity and CD74 activation in D-dopachrome tautomerase[J]. J Biol Chem, 2021, 297(3): 101061. DOI:10.1016/j.jbc.2021.101061 |
[48] |
GARCIA A B, SIU E, DU X, et al. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria[J]. FASEB J, 2021, 35(12): e21997. |
[49] |
SINITSKI D, GRUNER K, BRANDHOFER M, et al. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs[J]. J Biol Chem, 2020, 295(3): 850-867. DOI:10.1016/S0021-9258(17)49940-6 |
[50] |
SKEENS E, GADZUK-SHEA M, SHAH D, et al. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery[J]. Structure, 2022, 30(6): 840-850.e6. DOI:10.1016/j.str.2022.03.007 |
[51] |
SCHOEPS B, ECKFELD C, FLÜTER L, et al. Identification of invariant chain CD74 as a functional receptor of tissue inhibitor of metalloproteinases-1 (TIMP-1)[J]. J Biol Chem, 2021, 297(3): 101072. DOI:10.1016/j.jbc.2021.101072 |
[52] |
ZHANG N, GAO P, YIN B, et al. Cathepsin L promotes secretory IgA response by participating in antigen presentation pathways during Mycoplasma Hyopneumoniae infection[J]. PLoS One, 2019, 14(4): e0215408. DOI:10.1371/journal.pone.0215408 |
[53] |
CLANCHY F I L, BORGHESE F, BYSTROM J, et al. Disease status in human and experimental arthritis, and response to TNF blockade, is associated with MHC class Ⅱ invariant chain (CD74) isoform expression[J]. J Autoimmun, 2022, 128: 102810. DOI:10.1016/j.jaut.2022.102810 |
[54] |
RIJVERS L, MELIEF M J, VAN LANGELAAR J, et al. The role of autoimmunity-related gene CLEC16A in the B cell receptor-mediated HLA class Ⅱ pathway[J]. J Immunol, 2020, 205(4): 945-956. DOI:10.4049/jimmunol.1901409 |
[55] |
KUPKE T, KLARE J P, BRÜGGER B. Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis[J]. Commun Biol, 2020, 3(1): 73. DOI:10.1038/s42003-020-0800-0 |
[56] |
HOFMANN B B, KRAPP N, LI Y C, et al. N-Octanoyl-Dopamine inhibits cytokine production in activated T-cells and diminishes MHC-class-Ⅱ expression as well as adhesion molecules in IFNγ-stimulated endothelial cells[J]. Sci Rep, 2019, 9(1): 19338. DOI:10.1038/s41598-019-55983-1 |
[57] |
ANTOHE I, TANASA M P, DǍSCǍLESCU A, et al. The MHC-Ⅱ antigen presentation machinery and B7 checkpoint ligands display distinctive patterns correlated with acute myeloid leukaemias blast cells HLA-DR expression[J]. Immunobiology, 2021, 226(1): 152049. DOI:10.1016/j.imbio.2020.152049 |
[58] |
XIAO N, LI K S, ZHU X D, et al. CD74+ macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2022, 71(1): 57-69. DOI:10.1007/s00262-021-02962-z |
[59] |
AL ABDULMONEM W, RASHEED Z, ALJOHANI A S M, et al. Absence of CD74 isoform at 41 kDa prevents the heterotypic associations between CD74 and CD44 in human lung adenocarcinoma-derived cells[J]. Immunol Invest, 2021, 50(8): 891-905. DOI:10.1080/08820139.2020.1790594 |
[60] |
FUKUDA Y, BUSTOS M A, CHO S N, et al. Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma[J]. Cell Death Dis, 2022, 13(2): 117. DOI:10.1038/s41419-022-04552-y |
[61] |
孟凡涛, 陈芳芳, 余为一. 两种基于恒定链活性片段载体在增强抗体分泌中作用的比较[J]. 中国免疫学杂志, 2012, 28(8): 728-732. MENG F T, CHEN F F, YU W Y. Comparison of effect of two vector based on invariant chain segments on the increasing antibody production[J]. Chinese Journal of Immunology, 2012, 28(8): 728-732. DOI:10.3969/j.issn.1000-484X.2012.08.012 (in Chinese) |
[62] |
王瑞靖, 陈芳芳, 余为一. 恒定链CLIP的2个片段在增强体液免疫效果的比较[J]. 微生物学报, 2014, 54(3): 338-344. WANG R J, CHEN F F, YU W Y. Effect difference between two segments in invariant chain CLIP on humoral immune[J]. Acta Microbiologica Sinica, 2014, 54(3): 338-344. DOI:10.13343/j.cnki.wsxb.2014.03.011 (in Chinese) |
[63] |
熊冉, 艾珊珊, 萧晟. 基于恒定链载体不同抗原表位串联嵌合体免疫原性分析[J]. 中国兽医学报, 2019, 39(8): 1460-1465. XIONG R, AI S S, XIAO C. Influence of series multiepitopes on immune enhancement mediated by invariant chain functional segments[J]. Chinese Journal of Veterinary Science, 2019, 39(8): 1460-1465. DOI:10.16303/j.cnki.1005-4545.2019.08.07 (in Chinese) |
[64] |
NEUKIRCH L, FOUGEROUX C, ANDERSSON A M C, et al. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities[J]. Expert Rev Vaccines, 2020, 19(1): 25-41. DOI:10.1080/14760584.2020.1711054 |
[65] |
MCCARTHY P M, CLIFTON G T, VREELAND T J, et al. AE37:A HER2-targeted vaccine for the prevention of breast cancer recurrence[J]. Expert Opin Investig Drugs, 2021, 30(1): 5-11. DOI:10.1080/13543784.2021.1849140 |
[66] |
FOUGEROUX C, TURNER L, BOJESEN A M, et al. Modified MHC class Ⅱ-associated invariant chain induces increased antibody responses against Plasmodium falciparum antigens after adenoviral vaccination[J]. J Immunol, 2019, 202(8): 2320-2331. DOI:10.4049/jimmunol.1801210 |
[67] |
HOBBS S J, HARBOUR J C, YATES P A, et al. Vaccinia virus vectors targeting peptides for MHC class Ⅱ presentation to CD4+ T cells[J]. Immunohorizons, 2020, 4(1): 1-13. DOI:10.4049/immunohorizons.1900070 |
[68] |
BOILESEN D R, RAGONNAUD E, LAURSEN H, et al. CD8+ T cells induced by adenovirus-vectored vaccine are capable of preventing establishment of latent murine γ-herpesvirus 68 infection[J]. Vaccine, 2019, 37(22): 2952-2959. DOI:10.1016/j.vaccine.2019.04.034 |
[69] |
ATCHESON E, LI W Q, BLISS C M, et al. Use of an outbred rat hepacivirus challenge model for design and evaluation of efficacy of different immunization strategies for hepatitis c virus[J]. Hepatology, 2020, 71(3): 794-807. DOI:10.1002/hep.30894 |
[70] |
NECKERMANN P, BOILESEN D R, WILLERT T, et al. Design and immunological validation of Macaca fascicularis papillomavirus type 3 based vaccine candidates in outbred mice: basis for future testing of a therapeutic papillomavirus vaccine in NHPs[J]. Front Immunol, 2021, 12: 761214. DOI:10.3389/fimmu.2021.761214 |
[71] |
NAZERAI L, BUUS S, STRYHN A, et al. Efficient control of zika virus infection induced by a non-replicating adenovector encoding zika virus NS1/NS2 antigens fused to the MHC class Ⅱ-associated invariant chain[J]. Viruses, 2021, 13(11): 2215. DOI:10.3390/v13112215 |
[72] |
DONNISON T, VON DELFT A, BROWN A, et al. Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes[J]. Vaccine, 2020, 38(32): 5036-5048. DOI:10.1016/j.vaccine.2020.05.042 |
(编辑 范子娟)