2. 山东新希望六和集团有限公司, 青岛 266000
2. Shandong Newhope Liuhe Group Co., Ltd., Qingdao 266000, China
铜作为动物的必需微量元素,在动物的生长发育过程中起着重要作用,参与机体的生长发育、生殖、免疫和凝血等生理进程,在三大营养物质、核酸、维生素等代谢过程中发挥关键作用,并且与体内多种酶的活性相关[1-4]。而动物对Cu、Zn等微量元素的利用率很低,尤其是成年动物,在实际生产中多是按照饲养标准限值的最大量添加,高剂量的Cu、Zn不能有效被畜禽机体利用,多数均随粪便排出体外[5-6]。粪便作为有机肥施用后在环境中不断蓄积,对土壤、植被和地下水等都有潜在的危害,由养殖生产导致的环境中Cu、Zn等蓄积问题受到越来越多的关注[7-9]。因此,从源头减量,提高矿物元素利用效率成为控制畜禽养殖粪污重金属排放的关键措施。
植酸普遍存在于植物性饲料中,不能被单胃动物有效利用,常与Ca2+、Mg2+、Fe2+、Zn2+和Cu2+等二价阳离子螯合,降低畜禽对矿物元素的生物学利用率,影响动物的吸收和利用[10-12]。饲料中的植酸可以被植酸酶水解,进而提高P及Cu、Zn等矿物元素的利用率,减少粪便中的排泄量[13-15]。王晶等[16]研究表明,低磷日粮添加500、1 000 U·kg-1植酸酶能有效降低生长猪粪便中Cu、Fe、Mn和Co的含量,并且高剂量效果更加明显。而添加超高水平植酸酶(20 000 U·kg-1)相比于普通水平(500和1 000 U·kg-1)显著改善Zn、Mn等矿物元素的消化率及存留率[17]。陆扬等[18]将断奶仔猪日粮中铜含量从180 mg·kg-1降低到120 mg·kg-1,同时添加500 U·kg-1植酸酶明显提高了Cu的利用率,降低粪Cu含量。当前,已有的研究多集中在植酸酶在猪上对矿物元素的利用及排泄的影响,关于高剂量植酸酶对肉鸡日粮不同铜添加水平下生产性能及Cu利用和排泄的影响报道较少。本研究旨在确定较高剂量植酸酶添加水平对日粮铜减量下肉鸡生产性能及矿物元素利用、重金属元素(以Cu、Zn为代表)排泄量的影响,以期确定植酸酶对饲料中铜等金属元素的释放和利用效率,初步建立基于植酸酶的肉鸡日粮铜减量方法。
1 材料与方法 1.1 试验材料试验用植酸酶购自青岛根源生物技术集团有限公司,植酸酶活性≥50 000 U·g-1;试验用817肉鸡购自本地孵化场。
1.2 试验设计试验选取1日龄体重均匀、健康的雄性817肉鸡480只,随机分为3个处理组,每组8个重复,每个重复20只。对照组(CON)试验日粮Cu添加量为8 mg·kg-1,不添加植酸酶;两个试验组日粮Cu添加量分别为4 mg·kg-1(50% Cu)和0 mg·kg-1 (0% Cu),同时添加1 200 U·kg-1植酸酶。
试验期间,所有试验鸡均采用3层叠层笼养,每笼20只,自由采食饮水,按肉鸡饲养管理要求控制鸡舍温湿度和光照,正常免疫程序免疫,试验期8周。试验日粮为自配粉料,日粮组成及营养水平见表 1。
![]() |
表 1 试验日粮组成和营养水平 Table 1 Composition and nutrients level of experimental diet |
分别于试验第21和42天,每个重复随机选取1只试验鸡称重,使用肝素钠抗凝采血管翅静脉采血,4 ℃、3 000 r·min-1离心15 min,取上清液,-20 ℃保存、待测。试验鸡颈椎错位处死,取胸腺、脾、法氏囊、肝、胫骨称重,按“器官重/鸡重×100”计算器官指数(%);取肝、胫骨样品,-20 ℃保存。
试验第4和7周,每个重复随机选取2只试验鸡,2只1笼为1个重复,进行代谢试验,测定相关元素的表观利用率和排泄量。预试4 d,正试3 d,全收粪法收集试验鸡3 d粪便,按重复充分混合均匀后四分法取样300 g,-20 ℃保存。
饲料、粪样和肝经65 ℃烘干至恒重,回潮24 h,称重,粉碎,制成风干样品,密闭4 ℃保存,待测。胫骨去除表面肌肉和结缔组织后,用0.02%的十二烷基苯磺酸钠溶液浸泡48 h进行脱脂处理,风干,105 ℃烘箱烘干至恒重,粉碎,-20 ℃保存、待测。
1.4 测定指标与方法每周按重复统计试验鸡耗料量,试验开始和结束称取各重复试验鸡重量,计算平均日采食量(ADFI)、日增重(ADG)和料重比(F/G)。
血浆Ca、P含量利用全自动血液生化分析仪测定,试剂盒购自四川迈克生物科技有限公司;血浆Cu、Zn离子含量分别采用络合比色法和锌汞比色法测定,试剂盒购自南京建成生物工程研究所。饲料及胫骨中Ca含量采用高锰酸钾滴定法(GB/T 6436—2002)进行测定,磷含量采用钼黄分光光度法(GB/T 6437—2002)进行测定;饲料、肝和胫骨中Cu、Zn和Mn含量利用电感耦合等离子体原子发射光谱仪(ICP-AES)测定。
1.5 数据分析试验结果用“平均值±标准误”表示,SAS(Version 8.1; SAS Institute Inc., Cary, NC, USA)软件进行统计,采用单因素方差分析(One-way ANOVA),以Duncan’s法进行多重比较,P < 0.05为显著性差异。
2 结果 2.1 植酸酶对不同铜水平日粮肉鸡生产性能的影响结果表明(表 2),在添加1 200 U·kg-1植酸酶条件下,日粮中不添加(0% Cu)或按标准量的50%(50% Cu)添加Cu对试验肉鸡全期的平均日增重、耗料量和料重比均无显著性影响(P>0.05)。
![]() |
表 2 日粮不同铜水平下添加植酸酶对肉鸡生产性能的影响 Table 2 Effects of phytase supplementation in diets with different copper levels on broiler production performance |
试验第21和42天测定肉鸡的器官指数(表 3)。结果表明,日粮添加1 200 U·kg-1植酸酶条件下,两个测定时间,各处理组肉鸡胸腺、脾脏、法氏囊指数均无显著差异(P>0.05);试验21 d时0% Cu组较CON组肝脏指数明显降低(P < 0.05),而且随日粮Cu水平的降低,肉鸡胫骨指数有增加的趋势(P=0.07)。
![]() |
表 3 日粮不同铜水平下添加植酸酶对肉鸡器官指数的影响 Table 3 Effects of phytase supplementation in diets with different copper levels on organ index of broilers |
21和42 d肉鸡血浆中Ca、P和Cu、Zn含量的测定结果见表 4,除42 d两个Cu减量添加组肉鸡血浆P含量较对照组显著降低外(P < 0.01),其他指标在各处理间均无显著差异(P>0.05)。
![]() |
表 4 日粮不同铜水平下添加植酸酶对肉鸡血浆相关矿物元素含量的影响 Table 4 Effects of phytase supplementation in diets with different copper levels on the content of related mineral elements in plasma of broilers |
肝和胫骨中相关元素含量的测定结果如表 5所示,日粮添加1 200 U·kg-1植酸酶条件下,降低日粮Cu水平对肉鸡肝中Cu、Zn含量均无显著影响(P>0.05),但21 d时,两个铜减量组有降低肝组织中Mn含量的趋势(P=0.05)。各处理组肉鸡胫骨Cu和P含量均无显著差异(P>0.05),21 d时0% Cu组Mn含量较CON组显著增加(P < 0.05),Ca含量有降低的趋势(P=0.05),而Zn(P=0.07)和灰分(P=0.06)含量有增加的趋势;42 d时各处理间各指标均无显著差异(P>0.05)。
![]() |
表 5 日粮不同铜水平下添加植酸酶对肉鸡肝组织和胫骨相关矿物元素含量的影响 Table 5 Effects of phytase supplementation in diets with different copper levels on the content of related mineral elements in liver and tibia of broilers |
代谢试验测定了4周龄和7周龄不同处理肉鸡Cu、Zn、Mn和Ca、P的表观利用率(表 6)。结果表明,在添加1 200 U·kg-1植酸酶条件下,日粮Cu水平降低显著提高试验鸡4周龄时上述元素的表观利用率(P < 0.05),且Cu和Ca、P的表观利用率提高呈现剂量效应,0% Cu、50% Cu组和CON组相比,Cu的表观利用率分别提高151.1%和56.7%,Ca和P的表观利用率分别提高60.3%、24.2%和21.1%、12.1%。7周龄时,50% Cu组试验鸡Cu和Zn表观利用率明显提高(P < 0.05),两个铜减量组Mn表观利用率有增加的趋势(P=0.08),其他处理间各元素的表观利用率没有显著的差异(P>0.05)。
![]() |
表 6 日粮不同铜水平下添加植酸酶对肉鸡相关矿物元素表观利用率的影响 Table 6 Effects of phytase supplementation in diets with different copper levels on the apparent digestibility of related mineral elements of broilers |
试验第4和7周肉鸡各元素排泄量的测定结果表明(表 7),肉鸡日粮中铜减量并添加1 200 U·kg-1植酸酶后,第4周肉鸡粪便中Cu、Zn、Mn和Ca、P的排泄量均显著降低(P < 0.05),0% Cu组肉鸡每日Cu、Zn和Mn的排泄量较CON组分别减少65.0%、34.1%和40.3%,50% Cu组三种元素的日排泄量分别减少36.7%、23.4%和29.9%。第7周的测定结果与相应元素的表观利用率对应,日粮Cu减量后其粪便Cu排泄量显著降低(P < 0.05),0% Cu组和50% Cu组分别较CON组减少52.7%和35.5%,其他各元素的排泄量各处理间无明显差异(P>0.05)。
![]() |
表 7 日粮不同铜水平下添加植酸酶对肉鸡相关矿物元素排泄量的影响 Table 7 Effects of phytase supplementation in diets with different copper levels on the excretion of related mineral elements in feces of broilers |
大量已有研究表明,日粮添加植酸酶可以改善肉鸡的生产性能,在一定范围内,肉鸡生产性能与植酸酶添加水平呈正相关[19-22],而这种促生长效应与植酸酶的水解能力密切相关。理想状态下,植酸盐完全水解可以产生肌醇、磷酸盐、氨基酸以及被植酸螯合的矿物元素和其它营养物质[23]。但植酸酶的水解能力受到很多因素的限制,如动物相关因素、温度、类型、肠道pH、日粮类型等,其中日粮磷水平对植酸酶影响较大。在仔猪、生长猪、蛋鸡和肉鸡等的研究均表明,日粮磷水平与植酸酶的效应呈负相关,随日粮磷水平的升高,植酸酶的促生长效应降低[24-26]。在日粮相关矿物元素水平对植酸酶应用效果的影响研究中,有报道高锌日粮(猪:1 500 mg·kg-1;鸡:800 mg·kg-1)影响植酸酶的作用,而高铜(鸡:200 mg·kg-1)对其效应没有显著的影响[27]。本试验条件下,日粮中P和Zn的水平按肉鸡标准需要量设置,降低Cu水平后添加1 200 U·kg-1植酸酶对试验肉鸡生产性能没有显著影响,而且对肉鸡胫骨比重有改善作用。这与任善茂等[28]和陆扬等[18]分别在育肥猪和仔猪上的研究结果基本一致,他们的研究表明,降低日粮Cu和Zn水平并添加植酸酶不会影响育肥猪和仔猪的生产性能,但却能有效改善仔猪腹泻率,提高Cu、Zn表观消化率。而Muszyński等[29]在低Cu日粮(4 mg·kg-1)中添加500 U·kg-1植酸酶发现,肉鸡平均日增重显著高于不添加植酸酶的试验组,也表明了植酸酶在日粮Cu水平降低后可以提高日粮中Cu的利用效率,与本研究取得的结果一致。
3.2 日粮添加植酸酶对铜、锌利用效率的影响植酸酶可以释放出被植酸螯合的矿物元素,促进动物机体的吸收利用。已有的研究表明,肉鸡和蛋鸡日粮中添加植酸酶可以显著改善日粮钙、磷等矿物元素的利用率[20, 30-32],促进钙、磷等矿物元素的吸收,提高骨骼灰分含量,改善骨骼和肝组织矿物元素的沉积[33-34]。本研究中,分别减少肉鸡日粮中50%和100%铜的添加量并补充1 200 U·kg-1植酸酶,肉鸡21 d胫骨灰分、Zn和Mn的含量均增加,试验组胫骨Cu含量均低于对照组。已有的研究表明,胫骨不是Cu的主要贮存位置[35],Cu在体内主要贮存于肝,经胆汁排出[36],但整个试验期间试验鸡并未表现出Cu缺乏导致的骨骼发育异常。而且本研究结果表明,降低日粮Cu水平并添加1 200 U·kg-1植酸酶,肉鸡肝组织Cu、Zn含量没有显著性差异,表明较高剂量植酸酶可能对促进日粮Cu水平降低下肉鸡对Cu的高效利用,改善组织沉积有积极的作用。
本研究表明,日粮中添加1 200 U·kg-1植酸酶不仅可以促进Cu、Zn和Mn的沉积,还可以改善其表观利用率,减少排泄量。日粮添加植酸酶后,21 d肉鸡Ca、P、Cu、Zn和Mn的表观利用率均显著升高,且随Cu添加水平降低,肉鸡粪便中Cu、Zn和Mn的排泄量也显著减少;42 d肉鸡Cu排泄量也随日粮Cu水平的降低而显著减少。这与Zeng等[37]的研究结果基本一致,添加植酸酶有效改善了日粮Ca、P和Zn、Mn的表观利用率,随植酸酶水平的增加,Mg和Mn的回肠表观消化率呈线性升高的趋势。Bikker等[12]和Nagata等[38]认为,植酸酶对Cu的效应取决于日粮中Cu、Zn等的含量,但植酸酶的应用可以减少饲粮Zn的添加量。与此类似,本试验条件下,日粮中添加1 200 U·kg-1植酸酶,并减少50%或100% Cu的添加量,对试验肉鸡的生产性能并未产生明显的影响,但Cu的表观利用率明显提高。日粮Cu的源头添加量减少,利用率增加,因此Cu的排泄量减少。
4 结论本试验条件下,在玉米-豆粕型日粮中添加1 200 U·kg-1植酸酶,减少50%或100% Cu添加量,对肉鸡生产性能没有明显影响,但显著提高了肉鸡对Cu、Zn、Mn的表观利用率,明显降低了粪便中Cu、Zn的排泄量。
[1] |
DANTAS F G, REESE S T, FILHO R V O, et al. Effect of complexed trace minerals on cumulus-oocyte complex recovery and in vitro embryo production in beef cattle[J]. J Anim Sci, 2019, 97(4): 1478-1490. DOI:10.1093/jas/skz005 |
[2] |
CANNAS D, LOI E, SERRA M, et al. Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk[J]. Nutrients, 2020, 12(7): 2074. DOI:10.3390/nu12072074 |
[3] |
HOSTETLER C E, KINCAID R L, MIRANDO M A. The role of essential trace elements in embryonic and fetal development in livestock[J]. Vet J, 2003, 166(2): 125-139. DOI:10.1016/S1090-0233(02)00310-6 |
[4] |
ZORODDU M A, AASETH J, CRISPONI G, et al. The essential metals for humans: a brief overview[J]. J Inorg Biochem, 2019, 195: 120-129. DOI:10.1016/j.jinorgbio.2019.03.013 |
[5] |
KORNEGAY E T, HEDGES J D, MARTENS D C, et al. Effect on soil and plant mineral levels following application of manures of different copper contents[J]. Plant Soil, 1976, 45(1): 151-162. DOI:10.1007/BF00011137 |
[6] |
XIONG X, LI Y X, LI W, et al. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture[J]. Resour, Conserv Recycl, 2010, 54(11): 985-990. DOI:10.1016/j.resconrec.2010.02.005 |
[7] |
SHI J C, YU X L, ZHANG M K, et al. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China[J]. J Environ Qual, 2011, 40(6): 1695-1704. DOI:10.2134/jeq2010.0316 |
[8] |
SKŘIVAN M, SKŘIVANOVÁ V, MAROUNEK M. Effect of various copper supplements to feed of laying hens on Cu content in eggs, liver, excreta, soil, and herbage[J]. Arch Environ Contam Toxicol, 2006, 50(2): 280-283. DOI:10.1007/s00244-005-1028-1 |
[9] |
WU G, KANG H B, ZHANG X Y, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities[J]. J Hazard Mater, 2010, 174(1-3): 1-8. DOI:10.1016/j.jhazmat.2009.09.113 |
[10] |
RABOY V. Progress in breeding low phytate crops[J]. J Nutr, 2002, 132(3): 503S-505S. DOI:10.1093/jn/132.3.503S |
[11] |
SINGH P K. Significance of phytic acid and supplemental phytase in chicken nutrition: a review[J]. World Poultry Sci J, 2008, 64(4): 553-580. DOI:10.1017/S0043933908000202 |
[12] |
BIKKER P, VAN DIEPEN J T M, BINNENDIJK G P, et al. Phytase inclusion in pig diets improves zinc status but its effect on copper availability is inconsistent[J]. J Anim Sci, 2012, 90 Suppl 4: 197-199. |
[13] |
JONGBLOED A W, LENIS N P. Alteration of nutrition as a means to reduce environmental pollution by pigs[J]. Livest Prod Sci, 1992, 31(1-2): 75-94. DOI:10.1016/0301-6226(92)90057-B |
[14] |
KORNEGAY E T, HARPER A F, JONES R D, et al. Environmental nutrition: nutrient management strategies to reduce nutrient excretion of swine[J]. Prof Anim Sci, 1997, 13(3): 99-111. DOI:10.15232/S1080-7446(15)31861-1 |
[15] |
CROMWELL G L. Biological availability of phosphorus for pigs[J]. Feedstuffs, 1980, 52(9): 38-42. |
[16] |
王晶, 季海峰, 王四新, 等. 低磷饲粮添加植酸酶对生长猪生长性能、营养物质表观消化率和排泄量的影响[J]. 中国畜牧杂志, 2017, 53(4): 70-75. WANG J, JI H F, WANG S X, et al. Low-phosphorus diet supplemented with phytase on growth performance, apparent nutrient digestibility and fecal excretion of growing pigs[J]. Chinese Journal of Animal Science, 2017, 53(4): 70-75. (in Chinese) |
[17] |
曾志凯. 猪日粮中Buttiauxella植酸酶额外磷释放效应影响因素的研究[D]. 北京: 中国农业大学, 2015. ZENG Z K. Influence factors of extra phosphorus release generated by dietary supplementation of Buttiauxella phytase in pigs[D]. Beijing: China Agricultural University, 2015. (in Chinese) |
[18] |
陆扬, 胡二永, 字正浩, 等. 降铜对植酸酶在断奶仔猪饲粮中应用的影响[J]. 中国农业科学, 2015, 48(14): 2884-2890. LU Y, HU E Y, ZI Z H, et al. Improvement of the effects of phytase application by lowering the high level of copper in piglets diets[J]. Scientia Agricultura Sinica, 2015, 48(14): 2884-2890. DOI:10.3864/j.issn.0578-1752.2015.14.020 (in Chinese) |
[19] |
BEESON L A, WALK C L, BEDFORD M R, et al. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase[J]. Poul Sci, 2017, 96(7): 2243-2253. DOI:10.3382/ps/pex012 |
[20] |
AKTER M, GRAHAM H, IJI P A. Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase[J]. Br Poul Sci, 2016, 57(6): 799-809. DOI:10.1080/00071668.2016.1216943 |
[21] |
MANOBHAVAN M, ELANGOVAN A V, SRIDHAR M, et al. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets[J]. J Anim Physiol Anim Nutr, 2016, 100(1): 93-100. DOI:10.1111/jpn.12341 |
[22] |
COWIESON A J, ACAMOVIC T, BEDFORD M R. Supplementation of corn-soy-based diets with an Eschericia coli-derived phytase: effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy[J]. Poul Sci, 2006, 85(8): 1389-1397. DOI:10.1093/ps/85.8.1389 |
[23] |
DERSJANT-LI Y, AWATI A, SCHULZE H, et al. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors[J]. J Sci Food Agric, 2015, 95(5): 878-896. DOI:10.1002/jsfa.6998 |
[24] |
CAMPBELL G L, BEDFORD M R. Enzyme applications for monogastric feeds: a review[J]. Can J Anim Sci, 1992, 72(3): 449-466. DOI:10.4141/cjas92-058 |
[25] |
GORDON R W, ROLAND D A. Performance of commercial laying hens fed various phosphorus levels, with and without supplemental phytase[J]. Poul Sci, 1997, 76(8): 1172-1177. DOI:10.1093/ps/76.8.1172 |
[26] |
DOS SANTOS T T, SRINONGKOTE S, BEDFORD M R, et al. Effect of high phytase inclusion rates on performance of broilers fed diets not severely limited in available phosphorus[J]. Asian-Australas J Anim Sci, 2013, 26(2): 227-232. DOI:10.5713/ajas.2012.12445 |
[27] |
AUGSPURGER N R, SPENCER J D, WEBEL D M, et al. Pharmacological zinc levels reduce the phosphorus-releasing efficacy of phytase in young pigs and chickens[J]. J Anim Sci, 2004, 82(6): 1732-1739. DOI:10.2527/2004.8261732x |
[28] |
任善茂, 邹艺琛, 陶勇. 降低铜、锌含量添加植酸酶对育肥猪生长性能、养分表观消化率及血清生化指标的影响[J]. 中国畜牧兽医, 2018, 45(11): 3095-3103. REN S M, ZOU Y C, TAO Y. Effects of decreasing Cu and Zn contents and supplementing with phytase on growth performance, nutrients apparent digestibility and serum biochemical indexes of finishing pigs[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(11): 3095-3103. (in Chinese) |
[29] |
MUSZY ŃSKI S, TOMASZEWSKA E, KWIECIEŇ M, et al. Effect of dietary phytase supplementation on bone and hyaline cartilage development of broilers fed with organically complexed copper in a Cu-deficient diet[J]. Biol Trace Elem Res, 2018, 182(2): 339-353. DOI:10.1007/s12011-017-1092-1 |
[30] |
BABATUNDE O O, COWIESON A J, WILSON J W, et al. Influence of age and duration of feeding low-phosphorus diet on phytase efficacy in broiler chickens during the starter phase[J]. Poul Sci, 2019, 98(6): 2588-2597. DOI:10.3382/ps/pez014 |
[31] |
PONGMANEE K, KVHN I, KORVER D R. Effects of phytase supplementation on eggshell and bone quality, and phosphorus and calcium digestibility in laying hens from 25 to 37 wk of age[J]. Poul Sci, 2020, 99(5): 2595-2607. DOI:10.1016/j.psj.2019.12.051 |
[32] |
EL-HACK M E A, ALAGAWANY M, ARIF M, et al. The uses of microbial phytase as a feed additive in poultry nutrition-a review[J]. Ann Anim Sci, 2018, 18(3): 639-658. DOI:10.2478/aoas-2018-0009 |
[33] |
AJITH S, SHET D, GHOSH J, et al. Effect of immobilized fungal phytase on growth performance and bone traits of broilers fed with low dietary calcium and phosphorus[J]. Vet World, 2018, 11(6): 758-764. DOI:10.14202/vetworld.2018.758-764 |
[34] |
REN P, CHEN J X, WEDEKIND K, et al. Interactive effects of zinc and copper sources and phytase on growth performance, mineral digestibility, bone mineral concentrations, oxidative status, and gut morphology in nursery pigs[J]. Trans Anim Sci, 2020, 4(2): 783-798. DOI:10.1093/tas/txaa083 |
[35] |
WAZIR S M, GHOBRIAL I. Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy[J]. J Community Hosp Intern Med Perspect, 2017, 7(4): 265-268. DOI:10.1080/20009666.2017.1351289 |
[36] |
SPEARS J W. Reevaluation of the metabolic essentiality of the minerals-Review[J]. Asian-Australas J Anim Sci, 1999, 12(6): 1002-1008. DOI:10.5713/ajas.1999.1002 |
[37] |
ZENG Z K, LI Q Y, ZHAO P F, et al. A new Buttiauxella phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet[J]. J Anim Sci, 2016, 94(2): 629-638. DOI:10.2527/jas.2015-9143 |
[38] |
NAGATA A K, RODRIGUES P B, ALVARENGA R R, et al. Energy and protein levels in diets containing phytase for broilers from 22 to 42 days of age: Performance and nutrient excretion[J]. Rev Bras Zootecn, 2011, 40(8): 1718-1724. DOI:10.1590/S1516-35982011000800014 |
(编辑 范子娟)