2. 新疆马繁育与运动生理重点实验室, 乌鲁木齐 830052;
3. 新疆农业 大学马产业研究院, 乌鲁木齐 830052;
4. 新疆维吾尔自治区地方国营种马场, 伊犁 835000;
5. 新疆昭苏县伊犁种马场伊犁马测试调训中心, 伊犁 835000
2. Xinjiang Key Laboratory of Horse Breeding and Sports Physiology, Urumqi 830052, China;
3. Institute of Horse Industry, Xinjiang Agricultural University, Urumqi 830052, China;
4. Local State-owned Stud Farm of Xinjiang Uygur Autonomous Region, Yili 835000, China;
5. Yili Horse Test and Training Center, Yili Stud Farm, Zhaosu County, Xinjiang, Yili 835000, China
伊犁马是我国著名的培育品种,是优良的乘挽兼用型,具有力速兼备,适应力强、抗病力强等特点[1-2]。心脏是机体最重要的器官之一,24 h不间断持续工作将血液泵到全身各处,并向周围器官提供必要的元素,如氧气和营养物质,对血液循环系统至关重要,心脏功能关系到各类物质能否运输至机体各部位,完成物质交换[3]。心脏超声是用超声波显示心脏、血管结构的一种检查方法,是目前临床诊断心脏疾病患者时应用较为广泛的一项影像学技术[4]。影响心脏功能的因素有体型结构[5]、运动[6]、生理因素[7]、病理因素[8]等。由于各品种间马匹心脏结构存在差异[9],因此其他品种马匹心脏结构无法完全适用于伊犁马,然而国内对心脏结构和功能的影响因素研究鲜有报道,导致伊犁马心脏的影响因素尚不明确。因此,研究伊犁马体尺与心脏结构和功能参数的关联性,对明确不同体尺伊犁马之间心脏存在哪些差异,以及对伊犁马心脏结构和功能的评估意义重大,同时对后期利用心脏结构和功能参数开展运动马精准选材具有指导性作用。
1 材料与方法 1.1 试验材料本试验所采用马匹为新疆维吾尔自治区地方国营伊犁种马场2岁伊犁马30匹,其中公马15匹,母马15匹,饲养环境相同,健康状况良好。
1.2 试验设备迈瑞M 6兽用便携式彩色多普勒超声系统、耦合剂、畜牧秤、测杖、卷尺。
1.3 试验方法用卷尺和测杖测量每匹马的体长(body length,BL,单位为cm:肩关节大结节可触及部分和坐骨结节可触及部分之间的距离);胸围(thoracic circumference,TC,单位为cm:在鬐甲稍后方,用卷尺绕胸一周的长度);体高(withers height,WH,单位为cm:马肩隆起最高点的高度);体重(body weight, BWT,单位为kg);体表面积(body surface area,BSA,单位为m2,计算公式:BSW=0.101×BWT2/3);管围(pipe circumference,PC,单位为cm:左前肢前臂骨上三分之一处量取水平周径)。
试验使用迈瑞M6兽用便携式彩色多普勒超声系统2.5 MHz在马匹右胸第三到第四或者第四到第五肋骨之间进行二维(2 D)和M型成像各2次。最大成像深度为30 cm,换能器的焦点被固定在5 cm处。最大扇形角为110°。所有超声心动图检查均由同一操作者进行,每个参数取2次测量结果的平均值。采集心脏舒张末期和收缩末期的B模式右胸骨旁长轴、B模式右胸骨旁左室流出道、B/M模式右胸骨旁短轴静态及动态图像。记录心率区间在32~45次·min-1(beatsperminute, bpm)的不连续3个心动周期图像,取得每个参数的平均值。在进行超声心动图记录时,使用心内标志物来确定转导器的位置,以便根据先前公布的方法获得标准化的图像。在右胸骨旁短轴获得共计32个心脏维度指标(表 1)。
$ 左心室射血分数 \mathrm{EF}(\%)=\\ \frac{\operatorname{EDV}(\mathrm{mL})-\mathrm{ESV}(\mathrm{mL})}{\operatorname{EDV}(\mathrm{mL})} \times 100(公式 1); $ |
$ 左心室短轴缩短分数 \mathrm{FS}(\%)=\\ \frac{{{\rm{(LVIDd - LVIDs) \times 100}}}}{{{\rm{LVIDd}}}}\;\;\;\;\;\;\left({{\rm{公式2}}} \right); $ |
$\begin{array}{*{20}{c}} 左室心肌质量 \operatorname{LVM}(\mathrm{g})=1.04 \times\\ \left[ {\left( {{\rm{LVIDd }} + {\rm{ LVFWd }} + {\rm{ IVSd}}{{\rm{ }}}} \right)^3 - {\rm{ LVIDd}}{{\rm{ }}^3}} \right] - 13.6\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad(公式 3); \end{array} $ |
$ 每搏量 \mathrm{SV}(\mathrm{mL})=\mathrm{EDV}(\mathrm{mL})-\mathrm{ESV}(\mathrm{mL})\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad(公式 4); $ |
$ 心输出量 \mathrm{CO}(\mathrm{mL} / \mathrm{min})=\frac{\mathrm{SV}(\mathrm{mL}) \times \mathrm{HR}(\mathrm{bpm})}{1\;000}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad(公式 5); $ |
$ \text { 每搏量指数 } \mathrm{SI}=\frac{\mathrm{SV}(\mathrm{mL})}{\text { 体表面积 }\left(\mathrm{m}^2\right)}\\ \qquad\qquad\qquad\qquad\qquad\qquad(公式 6); $ |
$ 心排量指数\mathrm{CI}=\frac{\mathrm{CO}(\mathrm{mL} / \mathrm{min})}{\text { 体表面积 }\left(\mathrm{m}^2\right)}\\ \qquad\qquad\qquad\qquad\qquad\qquad(公式 7); $ |
$ 舒张期平均左心室壁厚 \mathrm{MWTd}(\mathrm{cm})=\\ \frac{\text { LVFWd + IVSd }}{2}\qquad\qquad\qquad\text { (公式 8); } $ |
$ \text { 左室射血时间 } \operatorname{LVET}(\mathrm{s})=\frac{\mathrm{HR}(\mathrm{bpm})}{60}\\ \qquad\qquad\qquad\qquad\qquad\qquad(公式 9); $ |
$ \begin{array}{r} \text { 相对舒张期壁厚 RWTd }(\mathrm{cm})=\frac{\mathrm{IVSd}+\mathrm{LVFWd}}{\mathrm{LVIDd}} \\ \text { (公式 10); } \end{array} $ |
$ \text { 心脏指数 VTI }=\frac{\mathrm{HR}(\mathrm{bpm}) \times \mathrm{SI}}{1000}(\text { 公式 } 11) \text {; } $ |
$ 左室心肌质量指数{\rm{LV}}\;{\rm{MASS}} -\mathrm{I}=\frac{\mathrm{LVM}(\mathrm{g})}{\text { 体表面积 }\left(\mathrm{m}^2\right)}\\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad(公式 12)。$ |
![]() |
表 1 心脏结构和功能参数 Table 1 Cardiac structural and functional parameters |
通过Excel对测量收集的心脏结构和心脏功能参数以及体尺数据进行初步整理和筛选,用SPSS 26.0统计软件分析体型结构与马匹心脏结构和功能参数间的相关性,进行体尺与心脏结构和功能参数间的逐步线性回归分析,建立最优回归模型,P < 0.05为显著相关,P < 0.01为极显著相关。
2 结果 2.1 体尺与心脏结构参数间的相关性分析由表 2可知,体重、体表面积、体长、胸围与舒张末期左心房内径(left atrial diameter at end-diastole, LADd)呈极显著正相关(P < 0.01);体重和体表面积、胸围与二尖瓣内径(mitral valve diameter, MVD)、舒张末期肺动脉内径(pulmonary artery dia-meter, PAd)呈显著正相关(P < 0.05);体长与MVD呈极显著正相关(P < 0.01),与收缩末期左心室游离壁(end-systolic left ventricular free wall, LVFWs)、左心室心肌质量(left ventricular myocardial mass, LVM)呈显著正相关(P < 0.05);体高与左心室长轴径(left ventricular long axis dia-meter, LVLD)呈极显著正相关(P < 0.01);管围与收缩末期左心房内径(left atrial diameter at end-systole, LADs)、MVD呈显著正相关(P < 0.05)。其他各体尺与心脏结构间相关性均不显著(P>0.05)。
![]() |
表 2 2岁伊犁马体尺与心脏结构参数相关性分析 Table 2 Correlation analysis between body size and cardiac structural parameters in two-year-old Yili horses |
由表 3可知,体重、体表面积、体长、胸围与舒张末期左心室容量(end-diastolic left ventricular volume, EDV)、收缩末期左心室容量(end-systolic left ventricular volume, ESV)呈显著正相关(P < 0.05);体表面积、胸围与射血分数(ejection fraction, EF)呈显著负相关(P < 0.05);体高与EDV、每搏量(stroke volume, SV)呈极显著正相关(P < 0.01),与心输出量(cardiac output, CO)呈显著正相关(P < 0.05);管围与左心室心肌质量指数(left ventricular mass index, LV MASS-I)呈显著负相关(P < 0.05)。其他各体尺间与各心脏功能参数相关性均不显著(P>0.05)。
![]() |
表 3 2岁伊犁马体尺与心脏功能参数相关性分析 Table 3 Correlation analysis of horse size and cardiac functional parameters in two-year-old Yili horses |
2岁伊犁马体型结构与心脏结构和功能参数的逐步回归分析见表 4、表 5,拟合分析后得到2岁伊犁马体尺性状与心脏结构和功能参数的多元回归方程见表 6、表 7。以2岁伊犁马体尺为参考性状,以相应的心脏结构参数为预测性状,构建逐步多元回归方程,模型经F检验R2值达极显著(P < 0.01),表明所建立的线性回归方程具有较高的可靠性和良好的线性度。从表 4~5和表 6~7中可得,在体尺与心脏结构参数估计的最优线性回归方程中,除LVM与管围所估测的回归系数为显著水平(P < 0.05),其余均达到了极显著水平(P < 0.01)。方程共纳入了6个体尺变量,其中LVLD与体高的逐步多元回归方程,决定系数最高,R2=0.997。在体尺与心脏功能参数的多元回归方程中,EF与体高预估的回归系数最高,R2=0.996。
![]() |
表 4 心脏结构参数与体尺的逐步多元回归分析 Table 4 Stepwise multiple regression analysis of cardiac structural parameters and body size |
![]() |
表 5 心脏功能参数与体尺的逐步多元回归分析 Table 5 Stepwise multiple regression analysis of cardiac functional parameters and body size |
![]() |
表 6 体尺与心脏结构参数的多元回归方程 Table 6 Multiple regression equation of body size and cardiac structural parameters |
![]() |
表 7 体尺与心脏功能参数的多元回归方程 Table 7 Multiple regression equation of body size and cardiac functional parameters |
在犬[10-11]和人类[12-14]中已经证明超声心动图测量值与体型密切相关,生长发育与心脏尺寸的增加有关,以体重作为心脏参数的回归模型可以很好的反映两者相关性。Al-haidar等[15]对不同马品种进行超声心动图测量,一些测量值与胸围的相关性比与体重的相关性更强,这与本研究的结果一致。说明所有的尺寸都随着生长而增加,未成年马匹需考虑生长因素,不同的品种的生长速度不同[16]。不同的品种间生长特点与生长速度不同[17],纯血马和美国速步马是快速生长的品种,而其他品种的生长速度较慢,例如2岁的卢西塔诺马将达到成年体重的77%[18]。本试验研究的均为2岁的伊犁马,不受年龄的影响,试验结果具有一定代表性。Zucca等[19]使用标准化成像平面通过二维超声心动图(2 D)和M型超声心动图评估95匹美国速步马,构建了一般线性模型,进行多元线性回归分析,在舒张末期左心室内径(left ventricular end-diastolic diameter,LVIDd)、舒张末期右心室内径(right end-diastolic ventricular diameter,RVDd)、主动脉根部内径(the inner diameter of the aortic root,AOD)、LADs中观察到超声心动图测量与体重之间的弱线性关系,本试验结果与其基本一致,但本研究观察到体重与EDV、LADd存在极显著相关,与ESV、MVD、PAd存在显著相关,与LVIDd、RVDd、AOD、LADs这几项指标有相关性,但不显著。品种差异使得心脏结构和功能参数存在差异[20-22],其次运动训练可刺激心脏产生肥大[23-25]。高强度训练会引起马的体重降低,在纯血马美国速度马中观察到与训练有关的左心室尺寸的增加[26-27],表明马匹在接受密集的比赛和耐力训练时左心房尺寸显著增加。本试验研究的马匹未经过调教训练,心脏的维度和功能不受训练的影响,能够真实反映未经训马匹的体尺与心脏功能的相关性,用于日常的马匹心脏功能评估。
3.2 不同伊犁马体尺对心脏功能的影响在人类的研究中表明,机体成长期间超声心动参数的变化主要是由体型决定的[28-29]。Zucca等[19]为标准种赛马的14个超声心动图参数建立了参考范围,在LVIDd、LVFW和AOD中观察到超声心动图测量与体重之间的弱线性关系,但体重对左心室和主动脉测量结果有影响。本试验结果与其基本一致,马匹的超声心动图尺寸与体重相关性很弱,只与SV、CO存在相关性。Schwarzwald等[30]在健康的马和幼驹中,通过研究心率和心电图(electrocardiogram,ECG)时间间隔与体重的相关性,发现较大体型的马品种比小型马品种心率略快,但在将心率处于正常范围内的马进行比较时,除其他因素外,还需将体重纳入考虑因素[31-33]。本试验结果得出,马的体型结构与心率呈负相关,但不显著,这可能是因为所研究的两岁马匹的体型相对一致,测量得出的心率范围相对集中。心脏决定了哺乳动物的每搏量和最大摄氧量(maximal oxygen consumption, VO2 max)[34-36]。不同体型对心脏结构和功能的需求也不相同,体型较高大的人群需要更多的心输出量,以满足机体血液循环[37]。本试验与其结果相同,体高对SV、CO存在显著影响。
3.3 伊犁马体尺与心脏维度、心脏机能间的逐步多元回归方程在畜禽选育过程中,不同生长阶段的体重和体尺指标能够反映其生长发育的情况。李涛等[38]和孙国虎[39]通过构建多元回归方程,探究对其影响最大的因素。在统计学中,R2值越大,回归方程越优[40]。本试验多个相关性指标中,EDV与多个性状的相关性呈显著水平,通过构建逐步多元回归方程得出与体高的回归系数最高,R2=0.984,说明体高是EDV的最主要预测指标;LADd与体重、体表面积、体长、胸围等多个性状呈极显著相关水平,并且LADd与体长预估的回归方程系数最高,R2=0.996,说明体长是LADd的最主要预测指标,可通过回归模型预测2岁伊犁马的LADd。
4 结论本研究发现,2岁伊犁马的体尺与心脏结构和功能参数之间存在相关性,尤其是EDV、ESV以及LADd;体高与EDV、SV、CO存在相关性;体表面积和胸围与EF存在相关性。体尺与心脏结构和功能参数的回归模型R2值均高于0.9,达极显著水平。故本研究拟合的12个线性回归模型均可用于生产实践的心脏预测,对于马匹的心脏评估具有重要意义。
[1] |
李涛涛, 聂清清, 王芊与, 等. 基于SWOT分析伊犁马产业发展策略探索[J]. 农业技术与装备, 2023(5): 54-56. LI T T, NIE Q Q, WANG Q Y, et al. Research on the development strategy of Yili Horse Industry based on SWOT analysis[J]. Agricultural Technology & Equipment, 2023(5): 54-56. (in Chinese) |
[2] |
姚新奎, 欧阳文, 谭晓海, 等. 新疆特色马产业探析[J]. 新疆农业科学, 2007, 44(2): 199-205. YAO X K, OUYANG W, TAN X H, et al. Exploration on featured horse industry in Xinjiang[J]. Xinjiang Agricultural Sciences, 2007, 44(2): 199-205. DOI:10.3969/j.issn.1001-4330.2007.02.020 (in Chinese) |
[3] |
袁婺洲, 张亚楠. 心脏发育和疾病的表观遗传调控机制[J]. 生命科学研究, 2022, 26(1): 1-12. YUAN W Z, ZHANG Y N. Epigenetic mechanisms involved in heart development and disease[J]. Life Science Research, 2022, 26(1): 1-12. (in Chinese) |
[4] |
陈春强, 王燕, 郭雷, 等. 心脏超声斑点成像技术对冠状动脉粥样硬化性心脏病的诊断价值分析[J]. 局解手术学杂志, 2023, 32(3): 266-270. CHEN C Q, WANG Y, GUO L, et al. Diagnostic value of cardiac ultrasonic speckle imaging in coronary atherosclerotic heart disease[J]. Journal of Regional Anatomy and Operative Surgery, 2023, 32(3): 266-270. (in Chinese) |
[5] |
张冠男, 杨贤罡, 李媛, 等. 不同体重水平中年人群心肺功能的比较研究[J]. 当代体育科技, 2016(6): 183-185. ZHANG G N, YANG X G, LI Y, et al. Comparison of cardiopulmonary function in middle-aged people with different body weight levels[J]. Contemporary Sports Technology, 2016(6): 183-185. (in Chinese) |
[6] |
王建文, 姚新奎, 曾亚琦, 等. 不同比赛途程伊犁马赛前心率变异性比较与分析[J]. 西北农业学报, 2020, 29(9): 1304-1309. WANG J W, YAO X K, ZENG Y Q, et al. Comparison of Yili horse's pre-match heart rate variability in different race distances[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(9): 1304-1309. (in Chinese) |
[7] |
袁鑫鑫, 孟军, 姚新奎, 等. 不同妊娠状态伊犁马心率变异性变化规律研究[J]. 中国畜牧兽医, 2022, 49(10): 3925-3931. YUAN X X, MENG J, YAO X K, et al. Study on the change pattern of heart rate variability of Yili horse in different pregnancy states[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(10): 3925-3931. DOI:10.16431/j.cnki.1671-7236.2022.10.025 (in Chinese) |
[8] |
陈香凝, 刘萌萌. 猫肥厚型心肌病与心肌纤维化[J]. 畜牧兽医学报, 2023, 54(1): 80-87. CHEN X N, LIU M M. Hypertrophic cardiomyopathy and myocardial fibrosis in cats[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 80-87. (in Chinese) |
[9] |
SLEEPER M M, DURANDO M M, HOLBROOK T C, et al. Comparison of echocardiographic measurements in elite and nonelite Arabian endurance horses[J]. Am J Vet Res, 2014, 75(10): 893-898. |
[10] |
BROWN D J, RUSH J E, MACGREGOR J, et al. M-mode echocardiographic ratio indices in normal dogs, cats, and horses: a novel quantitative method[J]. J Vet Intern Med, 2003, 17(5): 653-662. |
[11] |
吴世广, 朱志雄. 犬左心室超声检查[J]. 兽医导刊, 2019(8): 183. WU S G, ZHU Z X. Echocardiography of the left ventricle was performed in the dogs[J]. Veterinary Orientation, 2019(8): 183. (in Chinese) |
[12] |
MORRISON S A, MOISE N S, SCARLETT J, et al. Effect of breed and body weight on echocardiographic values in four breeds of dogs of differing somatotype[J]. J Vet Intern Med, 1992, 6(4): 220-224. |
[13] |
卢志南, 孙兴国, MAO S S, 等. 正常人左心室功能指标的参考值及其预计公式的初步研究报告[J]. 中国应用生理学杂志, 2015, 31(4): 332-336. LU Z N, SUN X G, MAO S S, et al. Normal reference values and predict equations of heart function[J]. Chinese Journal of Applied Physiology, 2015, 31(4): 332-336. (in Chinese) |
[14] |
NEILAN T G, PRADHAN A D, KING M E, et al. Derivation of a size-independent variable for scaling of cardiac dimensions in a normal paediatric population[J]. Eur J Echocardiogr, 2009, 10(1): 50-55. |
[15] |
AL-HAIDAR A, FARNIR F, DELEUZE S, et al. Effect of breed, sex, age and body weight on echocardiographic measurements in the equine species[J]. Res Vet Sci, 2013, 95(1): 255-260. |
[16] |
PINAR O, SANCAK A A. Effects of different heart dimensions on race performance in thorougbred race horses[J]. Acta Sci Vet, 2018, 46(1): 7. |
[17] |
TAKAHASHI Y, TAKAHASHI T, MUKAI K, et al. Effect of speed and leading or trailing limbs on surface muscle activities during canter in thoroughbred horses[J]. PLoS One, 2023, 18(5): e0286409. |
[18] |
FRADINHO M J, BESSA R J B, FERREIRA-DIAS G, et al. Growth and development of the Lusitano horse managed on grazing systems[J]. Livest Sci, 2016, 186: 22-28. |
[19] |
ZUCCA E, FERRUCCI F, CROCI C, et al. Echocardiographic measurements of cardiac dimensions in normal standardbred racehorses[J]. J Vet Cardiol, 2008, 10(1): 45-51. |
[20] |
TRACHSEL D S, GIRAUDET A, MASO D, et al. Relationships between body dimensions, body weight, age, gender, breed and echocardiographic dimensions in young endurance horses[J]. BMC Vet Res, 2016, 12(1): 226. |
[21] |
VERNEMMEN I, VERA L, VAN STEENKISTE G, et al. Reference values for 2-dimensional and M-mode echocardiography in Friesian and warmblood horses[J]. J Vet Intern Med, 2020, 34(6): 2701-2709. |
[22] |
NAGEL C, MELCHERT M, AURICH C, et al. Differences in endocrine and cardiac changes in mares and her fetus before, during, and after parturition in horses of different size[J]. Animals (Basel), 2020, 10(9): 1577. |
[23] |
VALETTE J P, ROBERT C, DENOIX J M. Use of linear and non-linear functions to describe the growth of young sport-and race-horses born in Normandy[J]. Animal, 2008, 2(4): 560-565. |
[24] |
YOUNG L E. Cardiac responses to training in 2-year-old thoroughbreds: an echocardiographic study[J]. Equine Vet J Suppl, 1999, 31(30): 195-198. |
[25] |
OLÁH A, SAYOUR A A, RUPPERT M, et al. Dynamics of exercise training and detraining induced cardiac adaptations[J]. Curr Opin Physiol, 2023, 33: 100657. |
[26] |
BUHL R, ERSBØLL A K. Echocardiographic evaluation of changes in left ventricular size and valvular regurgitation associated with physical training during and after maturity in Standardbred trotters[J]. J Am Vet Med Assoc, 2012, 240(2): 205-212. |
[27] |
BUHL R, ERSBØLL A K, ERIKSEN L, et al. Changes over time in echocardiographic measurements in young standardbred racehorses undergoing training and racing and association with racing performance[J]. J Am Vet Med Assoc, 2005, 226(11): 1881-1887. |
[28] |
张美玲, 汪军, 王松利, 等. 6~8岁儿童心脏结构和功能指标与体表面积的相关性[J]. 中国学校卫生, 2018, 39(5): 719-722. ZHANG M L, WANG J, WANG S L, et al. Correlation between cardiac structure and function index and body surface area of children aged 6-8 years[J]. Chinese Journal of School Health, 2018, 39(5): 719-722. (in Chinese) |
[29] |
KIM S T, HELMERS M R, IYENGAR A, et al. Assessing predicted heart mass size matching in obese heart transplant recipients[J]. J Heart Lung Transplant, 2021, 40(8): 805-813. |
[30] |
SCHWARZWALD C C, KEDO M, BIRKMANN K, et al. Relationship of heart rate and electrocardiographic time intervals to body mass in horses and ponies[J]. J Vet Cardiol, 2012, 14(2): 343-350. |
[31] |
PANDEY A, PATEL K V. Sex, lean body mass, and cardiac performance[J]. Sci Transl Med, 2022, 14(667): eadd5297. |
[32] |
WU Y J, LI Z Y, DU B W, et al. Different associations of systolic blood pressure and body mass index with cardiac structure and function in young children[J]. Hypertension, 2022, 79(11): 2583-2592. |
[33] |
DOMINO M, BOROWSKA M, TROJAKOWSKA A, et al. The effect of rider: horse bodyweight ratio on the superficial body temperature of horse's thoracolumbar region evaluated by advanced thermal image processing[J]. Animals (Basel), 2022, 12(2): 195. |
[34] |
ALBERTI E, STUCCHI L, STANCARI G, et al. Indirect blood pressure measurement in horses: is there an influence of age, sex, breed, bodyweight, and cardiac diseases on pressure values?[J]. J Equine Vet Sci, 2019, 79: 139-144. |
[35] |
STEDING K, ENGBLOM H, BUHRE T, et al. Relation between cardiac dimensions and peak oxygen uptake[J]. J Cardiovasc Magn Reson, 2010, 12(1): 8. |
[36] |
CRISPI F, BERNARDINO G, SEPULVEDA-MARTINEZ A, et al. Unique cardiac remodeling in young adults born small for gestational age with subsequent central obesity[J]. Eur Heart J, 2022, 43(S2): ehac544.1838. |
[37] |
陈小龙. 肥胖与过低体重对普通大学生心功能的影响[J]. 中国体育科技, 2006, 42(2): 74-76. CHEN X L. Effects of obesity and lower body weight on cardiac function of college students[J]. China Sport Science and Technology, 2006, 42(2): 74-76. (in Chinese) |
[38] |
李涛, 张梅, 刘建明, 等. 新疆褐牛体重与体尺指标的相关及回归分析[J]. 浙江农业学报, 2021, 33(7): 1177-1183. LI T, ZHANG M, LIU J M, et al. Correlation and regression analysis on body mass and body size index of Xinjiang brown cattle[J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1177-1183. (in Chinese) |
[39] |
孙国虎. 杜湖杂种羔羊体尺与体重的多元线性回归及经济效益分析[J]. 甘肃畜牧兽医, 2022, 52(2): 36-39. SUN G H. Multiple linear regression and economic benefit analysis of body size and body weight of Duhu hybrid lamb[J]. Gansu Animal Husbandry and Veterinary, 2022, 52(2): 36-39. (in Chinese) |
[40] |
YAPUNCICH G S, CHURCHILL S E, CAMERON N, et al. Morphometric panel regression equations for predicting body mass in immature humans[J]. Am J Phys Anthropol, 2018, 166(1): 179-195. |
(编辑 郭云雁)