畜牧兽医学报  2023, Vol. 54 Issue (11): 4488-4501. DOI: 10.11843/j.issn.0366-6964.2023.11.006    PDF    
植物多酚在家禽领域应用研究进展
毕睿晨1, 刘相泽1, 胡泽琼1, 杨美雪1, 乔嘉宁1, 黄嘉1, 郭芳申1, 孔令华2, 王忠1     
1. 中国农业大学动物科技学院 动物营养学国家重点实验室, 北京 100193;
2. 滕州合易食品有限公司, 枣庄 277500
摘要:植物多酚是植物的次级代谢产物, 植物来源的多酚按结构常分为黄酮类、非黄酮类和单宁。随着饲用抗生素在全世界畜禽养殖领域的禁用, 植物来源的多酚因其明显的抑菌、抗炎、抗病毒、抗应激、抗氧化等活性引起畜牧生产领域广泛兴趣和关注。本文系统地综述了植物多酚在家禽领域的应用研究进展, 为植物多酚在家禽领域的科学应用提供理论参考。
关键词多酚    家禽    研究进展    
Research Progress on the Application of Plant Polyphenols in Poultry Field
BI Ruichen1, LIU Xiangze1, HU Zeqiong1, YANG Meixue1, QIAO Jianing1, HUANG Jia1, GUO Fangshen1, KONG Linghua2, WANG Zhong1     
1. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
2. Tengzhou He Yi Food Co. Ltd., Zaozhuang 277500, China
Abstract: Plant polyphenols are secondary metabolites of plants, and plant-derived polyphenols are often classified into flavonoids, non-flavonoids and tannins according to their structure. With the ban of feed antibiotics in livestock and poultry farming worldwide, plant-derived polyphenols have attracted wide interest and attention in the field of livestock production because of their obvious antibacterial, anti-inflammatory, antiviral, anti-stress and antioxidant activities. This paper systematically reviews the research progress of plant polyphenols in poultry field, and provides theoretical references for the scientific application of plant polyphenols in poultry field.
Key words: polyphenols    poultry    research progress    

植物多酚是植物特有的次级代谢产物,由共同特征为一个或多个酚羟基的8 000多种化合物组成,几乎存在于植物的各个部位(如根、叶、花、果实和种子)。水果、蔬菜、豆类、坚果、中草药、可可和茶叶中的多酚含量最丰富[1-2]。植物多酚的提取方法主要有溶剂提取法、超声波辅助提取法、微波辅助提取法、生物酶解提取法和超临界CO2萃取法[3]。根据苯环的数量和对化合物的亲和能力不同可以将植物多酚分为黄酮类、非黄酮类和单宁类[4];根据来源不同又可以将植物多酚分为谷物多酚、茶多酚、苹果多酚、葡萄多酚、柑橘多酚、石榴多酚、香蕉皮多酚、核桃多酚、橄榄多酚、肉桂多酚和大豆异黄酮等。

大量研究发现:植物多酚具有促生长、调节脂代谢和糖代谢、抗氧化、免疫调节、抗炎、抵抗病原微生物、抗应激、抗过敏、抗肥胖、预防心血管病和糖尿病以及抗癌等潜在的益生作用[5-6],人类医学上已将其用于预防和治疗肥胖、糖尿病、癌症、关节炎、心血管疾病和神经认知性疾病等。

随着世界各国畜禽养殖业禁用抗生素,畜禽养殖也出现了生产性能下降、肠道疾病发生率和死亡率增加等问题。在禁抗时代,寻找安全、有效和低成本的抗生素替代物以改善畜禽健康和提高畜禽生产效率,已成为动物科学亟待研究和解决的重要课题。鉴于植物多酚的多种生物学功能,本文重点综述了植物多酚在家禽领域的研究进展并分析了影响其作用效果的因素。

1 植物多酚对家禽生产性能及产品品质的影响 1.1 调控生产性能

表 1总结了植物多酚对家禽生产性能的影响。产蛋后期蛋鸡日粮添加厚朴酚(100~300 mg·kg-1),可显著提高产蛋率。适宜剂量的姜黄素、茶多酚、葡多酚、厚朴酚、鞣花酸、红茱萸提取物、单宁和单宁酸可通过提高体增重、影响采食量改善家禽饲料转化效率和控制死亡率改善生产性能。多酚对生产性能的影响受到多酚的来源、添加的剂量、家禽品种、日龄和饲养环境条件等因素影响,并存在很大差异。添加高剂量的植物多酚会使饲粮气味强烈进而造成采食量下降或体重下降且不利于改善料肉比。

表 1 植物多酚对家禽生产性能的调控作用 Table 1 Regulatory effects of plant polyphenols on poultry production performance
1.2 改善产品产量和品质

提高肉鸡屠宰性能、增加胸肌或腿肌产量、改善鸡肉品质、提高鸡肉中营养物质含量、降低腹脂率和延长鸡肉货架期等是家禽科学家和肉鸡养殖者追求的目标之一。有研究发现,肉鸡日粮添加葡多酚、茶多酚、姜黄素、白藜芦醇、槲皮素等具有提高肉鸡屠宰性能和产肉量,改善鸡肉品质、增强鸡肉抗氧化能力、防止鸡肉脂质氧化、延缓异味产生时间,并提高产品颜色的稳定性[23-24]。植物多酚还可以改变鸡肉营养成分组成,肉鸡日粮添加亚麻籽油和槲皮素可改变鸡肉ω-6/ω-3多不饱和脂肪酸的比例,提高鸡肉ω-3多不饱和脂肪酸含量,改善肉品质[23](表 2)。

表 2 植物多酚对家禽产品品质和产量的改善作用 Table 2 Improvement of quality and yield of poultry products by plant polyphenols

蛋鸡饲料添加植物多酚也可改善鸡蛋品质。产蛋中后期蛋鸡日粮添加厚朴酚可显著提高鸡蛋蛋白高度和哈氏单位[16]。蛋鸡饲料添加茶多酚或姜黄素可通过增强输卵管膨大部和子宫部黏膜屏障完整性,促进输卵管黏膜蛋白合成和分泌,或提高卵清蛋白(OVA)相关Y蛋白表达而降低OVA相关X蛋白含量,显著降低β-卵黏蛋白ovomucin的降解,显著提高鸡蛋浓蛋白的含量、蛋白高度和哈氏单位以及鸡蛋抗氧化能力,延长鸡蛋的保存期[29-32]。另外,Wang等[33]报道了日粮添加130 mg·kg-1表没食子儿茶素(epigallocatechin,EGC)可通过调节蛋鸡输卵管p38MAPK-Nrf2/HO-1信号通路,影响输卵管黏膜抗氧化能力和增殖凋亡指数,减轻重金属钒中毒诱发的蛋鸡蛋壳色素下降和抗氧化功能受损。上述研究表明,植物多酚可能通过激活机体抗氧化相关通路改善家禽产品品质。

此外,脚垫损伤(feet pad disease,FPD)以足底表面坏死性病变为特征,已成为危害肉鸡健康并降低肉鸡生产力的一种常见疾病。有研究表明:粪便黏度增加使凋落物湿度和质量增加,进而增加了FPD的发生频率和严重程度[34],导致全身性细菌感染[35]。日粮添加2 000 mg·kg-1单宁酸可降低肉鸡FPD的发生率和严重程度,但不影响鸡的生长性能和肠道食糜黏度[36];添加700和2 000 mg·kg-1富含单宁的甜板栗木提取物可提高鸡粪便干物质含量[37]。上述结果表明,添加单宁和单宁酸可以减少FPD的发生频率和严重程度,减少细菌感染、提高产品品质[36]

2 植物多酚调控家禽脂代谢

研究发现,家禽日粮添加适宜剂量的橄榄叶(富含黄酮类多酚)可以改善家禽脂质代谢和胆固醇代谢,降低血液和肝中甘油三酯含量,防止脂质过氧化,抑制肝的脂肪变性、抑制肝组织炎症,已被用于改善蛋鸡肝组织健康和产品品质[38]。在肉鸡饲粮中添加2 000 mg·kg-1姜黄素可显著降低肉鸡血浆低密度脂蛋白胆固醇以及血浆和肝中甘油三酯含量,并影响与脂肪生成和分解相关基因的表达进而减少腹脂沉积[8]。植物多酚提高脂类分解代谢的原因可能是通过上调与脂肪运输及分解代谢相关的CPT-1A、酰基辅酶A氧化酶1 (ACOX1)、肝组织 PPAR-γ,腹部脂肪中的脂肪甘油三酯脂肪酶(ATGL)及骨骼肌中的脂蛋白脂肪酶(LPL)等基因表达有关[39]。植物多酚还可以通过影响腺苷酸活化蛋白激酶(AMPK)调节脂代谢。在雄性ROSS308肉鸡日粮中添加80和160 mg·kg-1绿茶多酚可以显著降低肝脂质和腹脂含量,并可以提高AMPKα和乙酰辅酶a羧化酶(acetyl-CoA carboxylase,ACACA)水平改变肝脂质代谢酶活性和表达水平。因此,植物多酚调节脂质代谢、降低机体甘油三酯和胆固醇等的作用,为其在蛋鸡脂肪肝等代谢性疾病预防和治疗中的应用提供了前景。

3 植物多酚缓解家禽氧化应激

植物多酚可以解毒活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)自由基;提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase,GPx)等抗氧化酶活性并中和自由基[40]表 3总结了植物多酚对家禽氧化应激的影响。日粮添加姜黄素(50~200 mg·kg-1)通过增加GPx、谷胱甘肽(glutathione,GSH)水平;提高SOD、谷胱甘肽巯基转移酶(flutathione S-transferase,GST)活性;激活NF-E2相关因子2 (NF-E2-related factor 2,Nrf2)改善肉鸡线粒体抗氧化能力[41-42]或降低血清和肌肉中丙二醛(malondialdehyde,MDA)含量发挥抗氧化和抗热应激作用[43]。当姜黄素添加剂量为200~800 mg·kg-1时,可以通过增强樱桃谷肉鸭空肠黏膜抗氧化酶活性以及SOD1、GPX1、CATHO-1和Nrf2的基因表达提高其抗氧化能力[44]。日粮添加茶多酚可通过提高血清总抗氧化能力(Total antioxidant capacity,T-AOC)和CAT活性,改善北京鸭抗氧化能力[44]

表 3 植物多酚对家禽氧化应激的缓解作用 Table 3 Mitigating effects of plant polyphenols on oxidative stress in poultry

白藜芦醇(200~400 mg·kg-1)可通过降低血浆MDA含量和空肠黏膜蛋白质羰基产物PC、提高肝、脾或肠道CAT、GPx、SOD活性,提高肝或脾中Nrf2和热休克蛋白(Heat Shock Proteins,HSPs)基因和蛋白表达量等缓解高温等诱发肉鸡的氧化应激和肠道炎症[45-47]。此外,一项白藜芦醇缓解H2O2对鸭肠上皮细胞(IDECs)氧化应激的体外研究表明,白藜芦醇能通过PI3K/AKT和P38 MAPK信号通路缓解氧化应激[48]。槲皮素还可激活肉鸡Nrf2-ARE途径,增强抗氧化酶GSH、SOD和CAT的活性,发挥抵抗LPS应激作用[45]

4 植物多酚对家禽肠道健康的影响

肠道是消化、吸收营养物质的主要器官,也是机体最大的免疫器官[51]。大量研究发现,植物多酚通过影响肠道形态、肠道黏膜物理屏障、黏膜免疫屏障和肠道微生物菌群组成影响家禽肠道健康。

4.1 影响肠道黏膜形态

小肠绒毛是直接吸收营养素的部位,小肠绒毛的高度和宽度直接影响动物吸收营养物质的能力[52]。隐窝深度反映上皮细胞更新率,隐窝深度增加证明上皮细胞更新减慢,影响成熟上皮细胞对营养物质的吸收[52]表 4汇总了植物多酚对家禽肠道形态结构和黏膜发育的影响,日粮添加橙皮素、葡多酚、绿原酸、白芦藜醇等,有改善肠道形态结构、促进肠道细胞更新等作用。特别是在热应激状态下,白藜芦醇对肠道形态结构和黏膜屏障的改善作用更明显。但有些研究发现,某些植物多酚对肠道形态结构、肠道黏液素分泌和肠道上皮细胞的更新无明显影响,如苹果多酚和葡多酚,可能与多酚来源以及添加剂量有关。

表 4 植物多酚对家禽肠道形态和黏膜发育的影响 Table 4 Effects of plant polyphenols on intestinal morphology and mucosal development in poultry
4.2 影响肠道上皮细胞紧密连接

肠道上皮细胞通过调节细胞旁通透性的细胞连接复合体紧密结合在一起,对物理屏障的完整性起重要作用[51]。在天府蛋种鸡日粮中添加400 mg·kg-1槲皮素和200 mg·kg-1VE,可以显著提高老龄蛋种鸡肠道紧密连接蛋白Occludin、Claudin-1和ZO-1的表达[58]。在25周龄罗曼灰蛋鸡日粮中添加600 mg·kg-1白藜芦醇可以上调Occludin、Claudin-1和Mucin-1的表达,但是对ZO-1和Mucin-2基因表达的影响较小[59]。付晶等[60]的试验表明,在乳鸽饲粮中添加不同剂量(100、200、400 mg·kg-1)的茶多酚可以提高十二指肠OccludinZO-1和Claudin-3 mRNA表达量,并降低Claudin-2表达。肠道紧密连接蛋白表达水平越高,肠道上皮细胞连接越紧密,更易抵抗病原微生物的入侵和定植。添加单宁和大豆异黄酮也可以使文昌鸡十二指肠和回肠紧密连接蛋白(OccludinClaudin-1、ZO-1)mRNA表达提高[61]。这些研究表明,适宜剂量的植物多酚对家禽的肠道黏膜屏障完整性有保护作用。

4.3 影响肠道微生物菌群组成和功能

肠道微生物在家禽的肠道发育、饲料消化吸收、免疫和健康中起着关键作用。研究发现,多数日粮多酚被大肠微生物转化成阿魏酸、咖啡酸等小分子酚类化合物,这些小分子化合物可直接影响肠道健康和肠道微生物组成,如提高肠道菌群α-多样性,促进肠道有益菌属,如艾克曼菌(Akkermansia)、芽孢杆菌属(Bacillus)、Blautia属、乳杆菌属(Lactobacillus)、拟杆菌属(Bacteroides)、普雷沃菌属(Prevotella)、瘤胃球菌属(Ruminococcus)、Dorea属、肠球菌属(Enterococcus)和Lachnoclostridium等相对丰度的增加,抑制肠道潜在有害菌(如肠杆菌科变形菌门、大肠杆菌、沙门菌、幽门螺旋杆菌、金黄色葡萄球菌和李斯特杆菌等)的入侵和定植,这可能是多酚发挥抗菌、抗炎或抗氧化作用,维护肠道屏障的机制之一[62-65]。然而也有研究表明,一些植物多酚对肠道有益菌如乳酸菌群、双歧杆菌等存在抑制作用(表 5)。

表 5 肠道菌群-多酚互作及其对肠道的影响 Table 5 Intestinal flora-polyphenol interactions and their effects on the intestinal tract

在家禽上的研究发现:植物多酚具有“益生元样效应”,明显影响家禽肠道微生物区系[72]。多数植物多酚可促进家禽肠道乳酸杆菌属、双歧杆菌属[64-65]和某些降解多糖的有益拟杆菌属的生长,并抑制肠道病原菌的生长以及毒力基因的表达等。白藜芦醇、槲皮素、葡多酚、茶多酚、蓝莓多酚、石榴多酚和一些酚酸能降低肠道中的病原微生物的数量(表 6)。上述研究表明植物多酚对家禽肠道微生物菌群的调节作用可能是通过其抗菌效应和益生元样效应实现的。

表 6 植物多酚对家禽肠道微生物菌群组成和功能的调节作用 Table 6 Modulatory effects of plant polyphenols on the composition and function of intestinal microflora in chickens
5 植物多酚免疫调节作用

畜禽研究发现,多酚可通过提高机体免疫球蛋白总量来增强宿主体液免疫功能[75];提高嗜酸性粒细胞吞噬活性[76];影响肠道黏膜免疫[77];提高肠道杯状细胞数量[55];影响脾的免疫功能[73]。植物多酚的剂量与其免疫调节作用有密切关系。Ramah等[78]报道高剂量的单宁酸(30 000 mg·kg-1)可通过降低肉鸡胸腺、脾、盲肠淋巴结等的CD4+、CD8+、CD4+CD8+和γδ+ T细胞数量和脾组织细胞因子mRNA表达量等对免疫系统起抑制作用,而日粮添加低剂量单宁酸(500 mg·kg-1)可显著提高肉鸡脾组织CD4+CD8+亚群和γδ+T细胞比例、盲肠淋巴结CD4+CD8+亚群和盲肠扁桃体B细胞数量以及IFN-γ mRNA表达量对免疫系统表现出积极调控作用;此外,Lee等[79]研究发现,添加板栗单宁通过显著提高盲肠白细胞介素-6(interleukin-6,IL-6)和白细胞介素-10(interleukin-10,IL-10)的表达量促进肠道健康并提高饲料转化效率;板栗单宁还可以通过影响JAK-STAT信号通路调节宿主免疫反应[80]。张海军等[81]研究发现,葡多酚对肉仔鸡的免疫器官发育无显著影响,但适宜剂量(7.5 mg·kg-1)葡多酚有增加肉仔鸡外周血中CD3+、CD8+、αβ和γδT细胞数量的潜力,高剂量(>15 mg·kg-1)却降低了各类淋巴细胞数量。这些研究说明:植物多酚的免疫调节作用呈现剂量依赖性效应,即适宜剂量的植物多酚对细胞免疫功能可能有改善作用,而高剂量的植物多酚可能抑制细胞免疫反应。

6 植物多酚控制病原微生物感染

家禽生产过程中常伴随着细菌(如沙门菌、致病性大肠杆菌、产气荚膜梭菌、弯曲杆菌等)、病毒(如禽流感病毒(AIV)、新城疫病毒(NDV)、传染性支气管炎病毒(IBV)、传染性法氏囊病毒(IBDV)、鸭登布苏病毒(DTMUV)和鸭乙型肝炎病毒(DHBV)等)、支原体(如败血性支原体MG和滑液囊支原体MS)和寄生虫(如球虫、绦虫、组织滴虫等)感染引起的疾病。这些细菌、病毒和寄生虫常诱发家禽出现临床型和亚临床病理表现。家禽亚临床病例常无明显症状和无典型内脏器官病理变化,仅表现生产性能缓慢下降、饲料消化吸收率下降和饲料转化率降低[82]等,常被饲养者忽视。抗病毒药、抗生素分别在预防和治疗家禽亚临床型病毒病、细菌性疾病中发挥了重要作用。然而随着抗生素在饲料添加剂中的禁用,畜禽肠道内病原微生物载量增加,畜禽面临的应激威胁增加。研究发现,有些植物多酚可用于控制家禽某些病原微生物诱发的亚临床病例。

6.1 控制病原菌感染

多项体外研究表明,茶多酚和EGCG[83]可以增加细菌内膜的通透性,抑制细菌ATP合成酶、DNA旋转酶、二氢叶酸还原酶、过氧化氢酶等的表达,干扰细胞膜电位使细胞代谢紊乱,而达到抑菌效果[84]。对香豆酸可以通过破坏细菌细胞膜并结合细菌基因组DNA表现出双重杀菌活性[85]。EGCG和白藜芦醇在体外可通过抑制禽致病性大肠杆菌(APEC)生物膜形成、根除生物膜和抑制细菌的运动表现其抗菌活性[86-87]。单宁、槲皮素和绿原酸等[88]可通过螯合铁离子、结合氢或酶的非特异性反应发挥抑菌作用[89]。在鸡肝癌细胞中添加蔓越莓果渣可以通过抑制肠炎沙门菌的黏附、侵袭和诱导细胞抗氧化基因的表达保护细胞免受细胞损伤[90]。此外,单宁与一些短、中链脂肪酸(C4~C20)协同作用可增强体外抗大肠杆菌、沙门菌、产气荚膜梭菌及弯曲杆菌的能力[91-92]

单宁可通过抗生物膜形成和抗运动抑制大肠杆菌生长[93];通过抗群体感应和抗毒力因子抑制沙门菌生长[94];通过结合弯曲杆菌细胞内蛋白质和酶抑制弯曲杆菌生长[95];通过破坏产气荚膜梭菌细胞膜稳定结构抑制产气荚膜梭菌生长。

有体内试验表明,家禽日粮中添加多种植物多酚可以发挥抗菌和缓解肠道炎症的作用。肉鸡日粮添加鞣花酸(EA)可通过降低机体溶菌酶活性、调节肠道微生物菌群,减轻因产气荚膜梭菌诱发的肠道坏死性肠炎[15],添加板栗单宁也可以减少由产气荚膜梭菌感染导致肠道病变的肉鸡数量[21]。在受肠炎沙门菌感染的1日龄Cobb500肉鸡日粮中添加0.3%和0.5%的红叶山茱萸提取物可以发挥与抗生素相同的抑菌效果[96]

6.2 控制病毒感染

在犬肾细胞(MDCK)为模型的研究中发现EGCG、儿茶素没食子酸酯(ECG)可有效抑制甲型流感病毒和乙型流感病毒(IVB)的复制;同时发现,EGCG比ECG、EGC有更强的抑制禽流感病毒神经氨酸酶NA和病毒基因组RNA合成的作用[97-98]。体内抗DHBV研究发现,白茶提取物(活性成分主要为茶多酚)对DHBV的抑制率最高可达73.7%,与抗病毒化药拉米夫定对照组接近。DHBV感染的雏鸭模型口服绿原酸后,鸭乙肝病毒血症显著减轻,且效果优于阳性对照组拉米夫定,特别是停用绿原酸后3 d,抗病毒化药拉米夫定处理组HBV的DNA水平有明显反弹,而绿原酸处理组仍有持续抑制作用[99]。Zhu等[100]在日粮添加300~600 mg·kg-1的EGCG可通过调节Ⅰ型干扰素表达抑制DTMUV的感染,降低病毒体外载量和减轻病毒诱发的机体组织炎症损伤。Abaidullah等[101]使用高浓度绿原酸(400 mg·kg-1)通过降低炎症因子水平和增加免疫球蛋白含量发挥明显的抗传染性支气管炎病毒(IBV)的作用。Li等[102]用215 μg绿原酸对每枚胚蛋处理后接种IBDV,观察到明显的抗病毒作用。Lee等[103]给鸡补充绿茶副产品,发现其抗禽流感病毒亚型H9N2的效果呈明显剂量依赖性。

6.3 控制球虫感染

球虫病是一种由艾美耳虫科原生动物引起的最普遍和最有害的家禽肠道寄生虫病之一[104]。茶多酚通过抑制未孢子化的卵囊成熟、直接杀灭孢子化卵囊以及提高机体免疫能力发挥抗球虫作用[105]。在AA肉鸡日粮中添加1%绿茶粉可以显著减少10日龄时柔嫩艾美耳球虫的卵囊数[106]。在黄羽肉鸡日粮中添加茶多酚通过提高乳酸菌、双歧杆菌丰度,降低血清内毒素含量,改善肠道形态, 恢复由柔嫩艾美耳球虫感染造成的生产性能下降[107]。此外,单宁也可以控制球虫感染。日粮添加适宜剂量的单宁可通过调控肠道微生物和黏膜免疫反应来控制鸡球虫感染,或通过增强肠道抗氧化能力减轻感染柔嫩艾美耳球虫鸡的临床症状[49]。在雄性Cobb 500肉鸡日粮中添加500 mg·kg-1五倍子单宁酸可以使排泄物中球虫卵囊总数减少并降低感染艾美耳球虫的肉鸡肠道病变评分[108]。然而,将单宁酸剂量增加到10 000 mg·kg-1时会使已经接种球虫疫苗后感染球虫的鸡排泄物中球虫卵囊的总数增加,这可能是由于高剂量单宁抑制了抗球虫疫苗的活性和免疫系统的发育[109]

7 小结

本论文综述了常见植物多酚在家禽科学研究和生产领域应用进展,并分析了影响植物多酚作用效果的因素,为家禽领域植物多酚的研究、开发、推广和科学应用提供理论参考。

参考文献
[1]
TANGNEY C C, RASMUSSEN H E. Polyphenols, inflammation, and cardiovascular disease[J]. Curr Atheroscler Rep, 2013, 15(5): 324. DOI:10.1007/s11883-013-0324-x
[2]
GRASSIA M, SALVATORI G, ROBERTI M, et al. Polyphenols, methylxanthines, fatty acids and minerals in cocoa beans and cocoa products[J]. J Food Meas Charact, 2019, 13(3): 1721-1728. DOI:10.1007/s11694-019-00089-5
[3]
郝霄鹏. 植物多酚的提取工艺、生物学功能及其在动物生产中应用的研究进展[J]. 饲料研究, 2021, 44(23): 153-156.
HAO X P. Research progress on extraction process, biological function and application of plant polyphenols in animal production[J]. Feed Research, 2021, 44(23): 153-156. (in Chinese)
[4]
LIPIŃSKI K, MAZUR M, ANTOSZKIEWICZ Z, et al. Polyphenols in monogastric nutrition-a review[J]. Ann Anim Sci, 2017, 17(1): 41-58. DOI:10.1515/aoas-2016-0042
[5]
DI LORENZO C, COLOMBO F, BIELLA S, et al. Polyphenols and human health: the role of bioavailability[J]. Nutrients, 2021, 13(1): 273. DOI:10.3390/nu13010273
[6]
AL-MNASER A, DAKHEEL M, ALKANDARI F, et al. Polyphenolic phytochemicals as natural feed additives to control bacterial pathogens in the chicken gut[J]. Arch Microbiol, 2022, 204(5): 253. DOI:10.1007/s00203-022-02862-5
[7]
RUAN D, WU S W, FOUAD A M, et al. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens[J]. Food Funct, 2022, 13(22): 11811-11824. DOI:10.1039/D2FO02598A
[8]
XIE Z L, SHEN G Z, WANG Y, et al. Curcumin supplementation regulates lipid metabolism in broiler chickens[J]. Poult Sci, 2019, 98(1): 422-429. DOI:10.3382/ps/pey315
[9]
WANG D F, HUANG H F, ZHOU L L, et al. Effects of dietary supplementation with turmeric rhizome extract on growth performance, carcass characteristics, antioxidant capability, and meat quality of Wenchang broiler chickens[J]. Ital J Anim Sci, 2015, 14(3): 3870. DOI:10.4081/ijas.2015.3870
[10]
VIVEROS A, CHAMORRO S, PIZARRO M, et al. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks[J]. Poult Sci, 2011, 90(3): 566-578. DOI:10.3382/ps.2010-00889
[11]
IHAFSA S H A, IBRAHIM S A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102(1): 268-275. DOI:10.1111/jpn.12688
[12]
BRENES A, VIVEROS A, GOÑI I, et al. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens[J]. Poult Sci, 2008, 87(2): 307-316. DOI:10.3382/ps.2007-00297
[13]
FRÓES H G, JÁCOME I M T D, TAVARES R A, et al. Grape (Vitis vinifera) pomace flour as pigment agent of quail eggs[J]. Rev Bras Cienc Avic, 2018, 20(1): 183-188. DOI:10.1590/1806-9061-2017-0561
[14]
AO X, KIM I H. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks[J]. Poult Sci, 2020, 99(4): 2078-2086. DOI:10.1016/j.psj.2019.12.014
[15]
TANG Y, ZHANG X Y, WANG Y N, et al. Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota[J]. J Anim Sci Biotechnol, 2022, 13(1): 47. DOI:10.1186/s40104-022-00694-3
[16]
CHEN F, ZHANG H, DU E C, et al. Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens in the late phase of the laying cycle[J]. Poult Sci, 2021, 100(2): 835-843. DOI:10.1016/j.psj.2020.10.047
[17]
ERINLE T J, MACISAAC J, YANG C B, et al. Effect of red osier dogwood extract on growth performance, blood biochemical parameters, and gut functionality of broiler chickens challenged or unchallenged intraperitoneally with Salmonella enteritidis lipopolysaccharide[J]. Poult Sci, 2022, 101(7): 101861. DOI:10.1016/j.psj.2022.101861
[18]
李瑞卿. 茶渣饲料对浙东白鹅生长性能、屠宰性能及肠道发育的影响研究[D]. 乌鲁木齐: 新疆农业大学, 2022.
LI R Q. Effect of tea residue feed on growth performance, slaughter performance and intestinal development of Zhedong white goose[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
[19]
SCHIAVONE A, GUO K, TASSONE S, et al. Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks[J]. Poult Sci, 2008, 87(3): 521-527. DOI:10.3382/ps.2007-00113
[20]
JAMROZ D, WILICZKIEWICZ A, SKORUPIŃSKA J, et al. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens[J]. Br Poult Sci, 2009, 50(6): 687-699. DOI:10.1080/00071660903191059
[21]
REDONDO E A, REDONDO L M, BRUZZONE O A, et al. Effects of a blend of chestnut and quebracho tannins on gut health and performance of broiler chickens[J]. PLoS One, 2022, 17(1): e0254679. DOI:10.1371/journal.pone.0254679
[22]
STARČEVIĆ K, KRSTULOVIĆ L, BROZIĆ D, et al. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds[J]. J Sci Food Agric, 2015, 95(6): 1172-1178. DOI:10.1002/jsfa.6805
[23]
MADSEN H L, BERTELSEN G. Spices as antioxidants[J]. Trends Food Sci Technol, 1995, 6(8): 271-277. DOI:10.1016/S0924-2244(00)89112-8
[24]
MAESTRE R, MICOL V, FUNES L, et al. Incorporation and interaction of grape seed extract in membranes and relation with efficacy in muscle foods[J]. J Agric Food Chem, 2010, 58(14): 8365-8374. DOI:10.1021/jf100327w
[25]
ADEYEMI K, BALOGUN M, BABALOLA O, et al. Dietary supplementation of Solanum aethiopicum and Solanecio biafrae leaves alters stress and immune responses, antioxidant status, and meat quality in broilers raised in a hot-dry environment[J]. Br Poult Sci, 2022, 63(1): 82-90. DOI:10.1080/00071668.2021.1963675
[26]
SIERŻANT K, KORZENIOWSKA M, PÓŁBRAT T, et al. The use of an optimised concentration of quercetin limits peroxidation of lipids in the meat of broiler chickens fed a diet containing flaxseed oil rich in omega-3[J]. Animal, 2022, 16(8): 100603. DOI:10.1016/j.animal.2022.100603
[27]
YU Q F, FANG C K, MA Y J, et al. Dietary resveratrol supplement improves carcass traits and meat quality of Pekin ducks[J]. Poult Sci, 2021, 100(3): 100802. DOI:10.1016/j.psj.2020.10.056
[28]
ZHANG J F, HU Z P, LU C H, et al. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers[J]. J Agric Food Chem, 2015, 63(15): 3880-3886. DOI:10.1021/jf505889b
[29]
CHEN X Y, LI T, HE K Q, et al. Dietary green tea powder supplementation enriched egg nutrients and physicochemical property in an indigenous chickenbreed[J]. Poult Sci, 2021, 100(1): 388-395. DOI:10.1016/j.psj.2020.10.001
[30]
XIA B, LIU Y L, SUN D, et al. Effects of green tea powder supplementation on egg production and egg quality in laying hens[J]. J Appl Anim Res, 2018, 46(1): 927-931. DOI:10.1080/09712119.2018.1431240
[31]
WANG J P, JIA R, CELI P, et al. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs[J]. Food Funct, 2020, 11(1): 534-543. DOI:10.1039/C9FO02157D
[32]
OBIANWUNA U E, OLEFORUH-OKOLEH V U, WANG J, et al. Natural products of plants and animal origin improve albumen quality of chicken eggs[J]. Front Nutr, 2022, 9: 875270. DOI:10.3389/fnut.2022.875270
[33]
WANG J, YUAN Z, ZHANG K, et al. Epigallocatechin-3-gallate protected vanadium-induced eggshell depigmentation via P38MAPK-Nrf2/HO-1 signaling pathway in laying hens[J]. Poult Sci, 2018, 97(9): 3109-3118. DOI:10.3382/ps/pey165
[34]
THØFNER I C N, POULSEN L L, BISGAARD M, et al. Correlation between footpad lesions and systemic bacterial infections in broiler breeders[J]. Vet Res, 2019, 50(1): 38. DOI:10.1186/s13567-019-0657-8
[35]
CENGIZ Ö, HESS J B, BILGILI S F. Feed enzyme supplementation does not ameliorate foot pad dermatitis in broiler chickens fed on a corn-soyabean diet[J]. Br Poult Sci, 2012, 53(4): 401-407. DOI:10.1080/00071668.2012.711467
[36]
CENGIZ Ö, KÖKSAL B H, TATLI O, et al. Effect of dietary tannic acid supplementation in corn- or barley-based diets on growth performance, intestinal viscosity, litter quality, and incidence and severity of footpad dermatitis in broiler chickens[J]. Livest Sci, 2017, 202: 52-57. DOI:10.1016/j.livsci.2017.05.016
[37]
REZAR V, SALOBIR J. Effects of tannin-rich sweet chestnut (Castanea sativa mill.) wood extract supplementation on nutrient utilisation and excreta dry matter content in broiler chickens[J]. Eur Poult Sci, 2014, 78.
[38]
BILAL R M, LIU C J, ZHAO H H, et al. Olive oil: nutritional applications, beneficial health aspects and its prospective application in poultry production[J]. Front Pharmacol, 2021, 12: 723040. DOI:10.3389/fphar.2021.723040
[39]
代燕丽, 邹宇晓, 刘凡, 等. 植物多酚干预脂质代谢紊乱作用机制研究进展[J]. 中国中药杂志, 2015, 40(21): 4136-4141.
DAI Y L, ZOU Y X, LIU F, et al. Review: plant polyphenols modulate lipid metabolism and related molecular mechanism[J]. China Journal of Chinese Materia Medica, 2015, 40(21): 4136-4141. (in Chinese)
[40]
MADKOUR M, SALMAN F M, EL-WARDANY I, et al. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation[J]. J Therm Biol, 2022, 103: 103169. DOI:10.1016/j.jtherbio.2021.103169
[41]
ZHANG J F, BAI K W, SU W P, et al. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase Ⅱ detoxifying enzyme systems in broiler chickens[J]. Poult Sci, 2018, 97(4): 1209-1219. DOI:10.3382/ps/pex408
[42]
ZHANG J F, HU Z P, LU C H, et al. Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway[J]. J Anim Sci, 2015, 93(4): 1656-1665. DOI:10.2527/jas.2014-8244
[43]
AKHAVAN-SALAMAT H, GHASEMI H A. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status[J]. Trop Anim Health Prod, 2016, 48(1): 181-188. DOI:10.1007/s11250-015-0941-1
[44]
RUAN D, ZHU Y W, FOUAD A M, et al. Dietary curcumin enhances intestinal antioxidant capacity in ducklings via altering gene expression of antioxidant and key detoxification enzymes[J]. Poult Sci, 2019, 98(9): 3705-3714. DOI:10.3382/ps/pez058
[45]
ZHANG C, ZHAO X H, YANG L, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers[J]. Poult Sci, 2017, 96(12): 4325-4332. DOI:10.3382/ps/pex266
[46]
WANG C, ZHAO F, LI Z, et al. Effects of resveratrol on growth performance, intestinal development, and antioxidant status of broilers under heat stress[J]. Animals (Basel), 2021, 11(5): 1427.
[47]
LIU L L, FU C X, YAN M L, et al. Resveratrol modulates intestinal morphology and HSP70/90, NF-κB and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress[J]. Food Funct, 2016, 7(3): 1329-1338. DOI:10.1039/C5FO01338K
[48]
ZHOU N, TIAN Y, WU H Z, et al. Protective effect of resveratrol on immortalized duck intestinal epithelial cells exposed to H2O2[J]. Molecules, 2022, 27(11): 3542. DOI:10.3390/molecules27113542
[49]
WANG M L, SUO X, GU J H, et al. Influence of grape seed proanthocyanidin extract in broiler chickens: effect on chicken coccidiosis and antioxidant status[J]. Poult Sci, 2008, 87(11): 2273-2280. DOI:10.3382/ps.2008-00077
[50]
SUN L, XU G Q, DONG Y Y Y, et al. Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway[J]. Molecules, 2020, 25(5): 1053. DOI:10.3390/molecules25051053
[51]
ULLUWISHEWA D, RACHEL C A, WARREN C M, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components[J]. J Nutr, 2011, 141(5): 769-776. DOI:10.3945/jn.110.135657
[52]
吴姝, 蒋步云, 宋泽和, 等. 植物多酚对黄羽肉鸡抗氧化性能、肠道形态及肉品质的影响[J]. 动物营养学报, 2018, 30(12): 5118-5126.
WU S, JIANG B Y, SONG Z H, et al. Effects of botanical polyphenol on antioxidant capacity, intestinal morphology and meat quality of yellow broilers[J]. Chinese Journal of Animal Nutrition, 2018, 30(12): 5118-5126. (in Chinese)
[53]
KAMBOH A A, ZHU W Y. Individual and combined effects of genistein and hesperidin on immunity and intestinal morphometry in lipopolysacharide-challenged broiler chickens[J]. Poult Sci, 2014, 93(9): 2175-2183. DOI:10.3382/ps.2014-03971
[54]
COLOMBINO E, FERROCINO I, BIASATO I, et al. Dried fruit pomace inclusion in poultry diet: growth performance, intestinal morphology and physiology[J]. J Anim Sci Biotechnol, 2020, 11: 63. DOI:10.1186/s40104-020-00464-z
[55]
CHAMORRO S, ROMERO C, BRENES A, et al. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens[J]. Food Funct, 2019, 10(3): 1444-1454. DOI:10.1039/C8FO02465K
[56]
ZHANG X H, ZHAO Q Q, CI X T, et al. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A[J]. Poult Sci, 2020, 99(12): 6606-6618. DOI:10.1016/j.psj.2020.09.082
[57]
DONG Y Y, LEI J Q, ZHANG B K. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil[J]. Poult Sci, 2020, 99(10): 4892-4903. DOI:10.1016/j.psj.2020.06.028
[58]
AMEVOR F K, CUI Z F, DU X X, et al. Supplementation of dietary quercetin and vitamin E promotes the intestinal structure and immune barrier integrity in aged breeder hens[J]. Front Immunol, 2022, 13: 860889. DOI:10.3389/fimmu.2022.860889
[59]
DING X M, CAI C Y, JIA R, et al. Dietary resveratrol improved production performance, egg quality, and intestinal health of laying hens under oxidative stress[J]. Poult Sci, 2022, 101(6): 101886. DOI:10.1016/j.psj.2022.101886
[60]
付晶, 邓珊, 陈艾玲, 等. 茶多酚对乳鸽十二指肠形态发育、抗氧化功能和紧密连接蛋白基因mRNA表达的影响[J]. 东北农业大学学报, 2021, 52(12): 31-39.
FU J, DENG S, CHEN A L, et al. Effects of tea polyphenols (TP) on morphological development, antioxidant function and mRNA expression level of intestinal tight junction protein genes in duodenum of squabs[J]. Journal of Northeast Agricultural University, 2021, 52(12): 31-39. (in Chinese)
[61]
LI X, SUN R P, LIU Q W, et al. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens[J]. Front Vet Sci, 2023, 9: 1073659. DOI:10.3389/fvets.2022.1073659
[62]
黄小丹, 陈梦雨, 黄文洁, 等. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136.
HUANG X D, CHEN M Y, HUANG W J, et al. Progress based on metabolomics: plant polyphenols and their gut health benefit[J]. Biotechnology Bulletin, 2021, 37(1): 123-136. (in Chinese)
[63]
KUMAR SINGH A, CABRAL C, KUMAR R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency[J]. Nutrients, 2019, 11(9): 2216. DOI:10.3390/nu11092216
[64]
WAN M L Y, CO V A, EL-NEZAMI H. Dietary polyphenol impact on gut health and microbiota[J]. Crit Rev Food Sci Nutr, 2021, 61(4): 690-711. DOI:10.1080/10408398.2020.1744512
[65]
SELMA M V, ESPÍN J C, TOMÁS-BARBERÁN F A. Interaction between phenolics and gut microbiota: role in human health[J]. J Agric Food Chem, 2009, 57(15): 6485-6501. DOI:10.1021/jf902107d
[66]
SURAI P F. Polyphenol compounds in the chicken/animal diet: from the past to the future[J]. J Anim Physiol Anim Nutr (Berl), 2014, 98(1): 19-31. DOI:10.1111/jpn.12070
[67]
HAJATI H, HASSANABADI A, GOLIAN A G, et al. The effect of grape seed extract and vitamin C feed supplements on carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress[J]. Iran J Appl Anim Sci, 2015, 5(1): 155-165.
[68]
MATTIO L M, DALLAVALLE S, MUSSO L, et al. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens[J]. Sci Rep, 2019, 9(1): 19525. DOI:10.1038/s41598-019-55975-1
[69]
SAMUEL K G, WANG J, YUE H Y, et al. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks[J]. Poult Sci, 2017, 96(8): 2768-2775. DOI:10.3382/ps/pex091
[70]
LIU H N, LIU Y, HU L L, et al. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens[J]. Poult Sci, 2014, 93(2): 347-353. DOI:10.3382/ps.2013-03225
[71]
BRENES A, VIVEROS A, CHAMORRO S, et al. Use of polyphenol-rich grape by-products in monogastric nutrition.A review[J]. Anim Feed Sci Tech, 2016, 211: 11-17.
[72]
IQBAL Y, COTTRELL J J, SULERIA H A R, et al. Gut microbiota-polyphenol interactions in chicken: a review[J]. Animals (Basel), 2020, 10(8): 1391.
[73]
DAS Q, ISLAM R, LEPP D, et al. Gut microbiota, blood metabolites, and spleen immunity in broiler chickens fed berry pomaces and phenolic-enriched extractives[J]. Front Vet Sci, 2020, 7: 150. DOI:10.3389/fvets.2020.00150
[74]
AHMED S T, YANG C J. Effects of dietary Punica granatum L. by-products on performance, immunity, intestinal and fecal microbiology, and odorous gas emissions from excreta in broilers[J]. J Poult Sci, 2017, 54(2): 157-166. DOI:10.2141/jpsa.0160116
[75]
HASTED T L, SHARIF S, BOERLIN P, et al. Immunostimulatory potential of fruits and their extracts in poultry[J]. Front Immunol, 2021, 12: 641696. DOI:10.3389/fimmu.2021.641696
[76]
ISLAM R, OOMAH D B, DIARRA M S. Potential immunomodulatory effects of non-dialyzable materials of cranberry extract in poultry production[J]. Poult Sci, 2017, 96(2): 341-350. DOI:10.3382/ps/pew302
[77]
VIERA K, KATARÍNA B, MARTIN L, et al. The influence of farmatan® and flimabend® on the mucosal immunity of broiler chicken[J]. Poult Sci, 2019, 98(3): 1161-1166. DOI:10.3382/ps/pey517
[78]
RAMAH A, YASUDA M, OHASHI Y, et al. Different doses of tannin reflect a double-edged impact on broiler chicken immunity[J]. Vet Immunol Immunopathol, 2020, 220: 109991. DOI:10.1016/j.vetimm.2019.109991
[79]
LEE A, DAL PONT G C, FARNELL M B, et al. Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca[J]. Poult Sci, 2021, 100(1): 47-54. DOI:10.1016/j.psj.2020.09.085
[80]
LEE A, DAL PONT G C, BATTAGLIA M, et al. Role of JAK-STAT pathway in broiler chicks fed with chestnut tannins[J]. Animals (Basel), 2021, 11(2): 337.
[81]
张海军, 徐磊, 岳洪源, 等. 葡多酚对肉鸡生产性能和免疫机能的影响[J]. 中国畜牧兽医, 2012, 39(3): 99-103.
ZHANG H J, XU L, YUE H Y, et al. Effect of grape procyanidins on growth performance and immune function in broilers[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(3): 99-103. (in Chinese)
[82]
MAGNE K, MERETE H. Barley inclusion and avoparcin supplementation in broiler diets.: 2.clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis[J]. Poult Sci, 1992, 71(7): 1145-1153. DOI:10.3382/ps.0711145
[83]
NAVARRO-MARTINEZ M D, NAVARRO-PERAN E, CABEZAS-HERRERA J, et al. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother, 2005, 49(7): 2914-2920. DOI:10.1128/AAC.49.7.2914-2920.2005
[84]
MAHFUZ S, SHANG Q H, PIAO X S. Phenolic compounds as natural feed additives in poultry and swine diets: a review[J]. J Anim Sci Biotechnol, 2021, 12(1): 48. DOI:10.1186/s40104-021-00565-3
[85]
HELENO S A, FERREIRA I C F R, ĆIRIĆ A, et al. Coprinopsis atramentaria extract, its organic acids, and synthesized glucuronated and methylated derivatives as antibacterial and antifungal agents[J]. Food Funct, 2014, 5(10): 2521-2528. DOI:10.1039/C4FO00490F
[86]
RUAN X C, DENG X L, TAN M L, et al. In vitro antibiofilm activity of resveratrol against avian pathogenic Escherichia coli[J]. BMC Vet Res, 2021, 17(1): 249. DOI:10.1186/s12917-021-02961-3
[87]
VIDIGAL P G, MVSKEN M, BECKER K A, et al. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm[J]. PLoS One, 2014, 9(4): e92876. DOI:10.1371/journal.pone.0092876
[88]
杨慧, 曲也直, 高雅然, 等. 植物多酚-蛋白质复合物生物活性及应用研究进展[J]. 食品科学, 2022, 43(3): 258-266.
YANG H, QU Y Z, GAO Y R, et al. Recent advances in understanding the biological activities and applications of polyphenol-protein complexes[J]. Food Science, 2022, 43(3): 258-266. (in Chinese)
[89]
SCALBERT A. Antimicrobial properties of tannins[J]. Phytochemistry, 1991, 30(12): 3875-3883. DOI:10.1016/0031-9422(91)83426-L
[90]
AHMED N, EL-FATEH M, AMER M S, et al. Antioxidative and cytoprotective efficacy of ethanolic extracted cranberry pomace against Salmonella enteritidis infection in chicken liver cells[J]. Antioxidants (Basel), 2023, 12(2): 460. DOI:10.3390/antiox12020460
[91]
MANNELLI F, MINIERI S, TOSI G, et al. Effect of chestnut tannins and short chain fatty acids as anti-microbials and as feeding supplements in broilers rearing and meat quality[J]. Animals (Basel), 2019, 9(9): 659.
[92]
SCICUTELLA F, MANNELLI F, DAGHIO M, et al. Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: a review[J]. Antibiotics (Basel), 2021, 10(8): 1010. DOI:10.3390/antibiotics10081010
[93]
DAKHEEL M M, ALKANDARI F A H, MUELLER-HARVEY I, et al. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli[J]. Lett Appl Microbiol, 2020, 70(3): 165-172. DOI:10.1111/lam.13253
[94]
SIVASANKAR C, JHA N K, GHOSH R, et al. Anti quorum sensing and anti virulence activity of tannic acid and it's potential to breach resistance in Salmonella enterica Typhi/Paratyphi A clinical isolates[J]. Microb Pathog, 2020, 138: 103813. DOI:10.1016/j.micpath.2019.103813
[95]
NAGAYAMA K, IWAMURA Y, SHIBATA T, et al. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome[J]. J Antimicrob Chemother, 2002, 50(6): 889-893. DOI:10.1093/jac/dkf222
[96]
ERINLE T J, BOULIANNE M, ADEWOLE D. Red osier dogwood extract vs.trimethoprim-sulfadiazine (Part 2).Pharmacodynamic effects on ileal and cecal microbiota of broiler chickens challenged orally with Salmonella Enteritidis[J]. Poult Sci, 2023, 102(4): 102550. DOI:10.1016/j.psj.2023.102550
[97]
黄深惠, 汤有志, 周雪梦, 等. 茶多酚体内外抗流感病毒作用研究[J]. 茶叶科学, 2010, 30(4): 302-308.
HUANG S H, TANG Y Z, ZHOU X M, et al. Study on anti-influenza virus effect of tea polyphenols in vitro and in vivo[J]. Journal of Tea Science, 2010, 30(4): 302-308. (in Chinese)
[98]
卫飞, 凌佳馨, 李宁, 等. 表没食子儿茶素没食子酸酯对甲型流感病毒致宿主细胞氧化应激损伤的影响[J]. 中国实验方剂学杂志, 2012, 18(24): 212-216.
WEI F, LING J X, LI N, et al. Protection in vitro of epigallocatechin gallate on oxidative stress induced by influenza infection[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2012, 18(24): 212-216. (in Chinese)
[99]
金秀, 姚站馨, 郭长江, 等. 植物化学物抗病毒作用的研究进展[J]. 营养学报, 2020, 42(2): 183-186, 192.
JIN X, YAO Z X, GUO C J, et al. Advances in research on antiviral effects of phytochemicals[J]. Acta Nutrimenta Sinica, 2020, 42(2): 183-186, 192. (in Chinese)
[100]
ZHU Y Q, GU X X, ZHANG M, et al. Epigallocatechin-3-gallate exhibits antiviral effects against the duck Tembusu virus via blocking virus entry and upregulating type Ⅰ interferons[J]. Poult Sci, 2021, 100(4): 100989.
[101]
ABAIDULLAH M, PENG S W, SONG X, et al. Chlorogenic acid is a positive regulator of MDA5, TLR7 and NF-κB signaling pathways mediated antiviral responses against Gammacoronavirus infection[J]. Int Immunopharmacol, 2021, 96: 107671.
[102]
LI Y J, YANG D F, JIA Y Y, et al. Research Note: anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs[J]. Poult Sci, 2021, 100(4): 100987.
[103]
LEE H J, LEE Y N, YOUN H N, et al. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens[J]. Poult Sci, 2012, 91(1): 66-73.
[104]
GRILLI G, BORGONOVO F, TULLO E, et al. A pilot study to detect coccidiosis in poultry farms at early stage from air analysis[J]. Biosyst Eng, 2018, 173: 64-70.
[105]
蔡海莹, 汪丽伟, 徐晓娟, 等. 茶多酚抗柔嫩艾美尔球虫的效果及作用机制[J]. 中国兽医学报, 2014, 34(3): 427-430, 470.
CAI H Y, WANG L W, XU X J, et al. Effect of tea polyphenol on anti-Eimeria tenella[J]. Chinese Journal of Veterinary Science, 2014, 34(3): 427-430, 470. (in Chinese)
[106]
刘雪, 杜叶叶, 李涛, 等. 饲料添加剂对感染球虫肉鸡早期肠道健康的影响[J]. 中国农业大学学报, 2018, 23(11): 80-87.
LIU X, DU Y Y, LI T, et al. Effects of feed additives on the intestinal health of broilers during the early period of coccidial infection[J]. Journal of China Agricultural University, 2018, 23(11): 80-87. (in Chinese)
[107]
李登辉. 茶多酚对感染球虫肉鸡肠道微生态影响及其作用机理研究[D]. 合肥: 安徽农业大学, 2015.
LI D H. The influence of tea polyphenol on the intestinal microecology of broiler by Eimeria challenge[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese)
[108]
TONDA R M, RUBACH J K, LUMPKINS B S, et al. Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge[J]. Poult Sci, 2018, 97(9): 3031-3042.
[109]
MANSOORI B, MODIRSANEI M. Effects of dietary tannic acid and vaccination on the course of coccidiosis in experimentally challenged broiler chicken[J]. Vet Parasitol, 2012, 187(1-2): 119-122.

(编辑   范子娟)