奶牛繁殖管理的两个重要步骤:一是在奶牛进入自愿等待期后进行繁殖;二是及早对奶牛进行早孕检查。对奶牛配种后在第二次可能发情之前诊断是否妊娠,可以更早地做出管理决策,并减少奶牛的空怀期,从而缩短产犊间隔,以提高奶牛在利用年限内的繁殖效率,进而提高奶牛场经济效益[1]。因此,奶牛早孕诊断是十分必要和有意义的。如果对奶牛非妊娠的诊断不准确(即假阴性),管理者为减少下一次配种的间隔时间而使用前列腺素(prostaglandin,PG)或其类似物来诱导同期发情或排卵,则会增加医源性妊娠失败率,由此造成的胚胎丢失会带来巨大的经济损失[2]。由于只能对未怀孕的奶牛实施管理干预,所以通过早孕检测准确识别未怀孕的奶牛以避免医源性妊娠损失是至关重要的[3]。此外,生产中对奶牛妊娠的不准确诊断(即假阳性率),会使奶牛错失再次授精机会,并增加后续配种的间隔时间,从而降低早孕检测的有用性和成本效益[4]。目前奶牛繁殖技术实践中,早期妊娠诊断技术有待提高,亟待开发出新型、有效的奶牛早孕诊断技术。本文综述了近年来奶牛早孕诊断技术的最新研究结果,以期为开发和应用切实可靠的奶牛早孕诊断新技术提供参考。
1 直肠诊断(palpation per rectum, PPR)奶牛PPR技术最早出现在19世纪,是较古老的直接诊断奶牛妊娠的方法。奶牛PPR主要是配种后18 d由技术熟练的繁殖技术人员触摸卵巢黄体进行初步妊娠筛选[5]。在此基础上,建立了“胎膜滑动”(fetal membrane slip,FMS)技术,在奶牛配种后29 d压迫孕角让胎膜囊在手指间滑动以感觉胎囊的存在。但有人认为,在妊娠早期经FMS进行早孕检查会增加奶牛医源性妊娠丢失的风险[6]。然而,Romano等[6-7]发现,用FMS技术在奶牛配种后34 d进行奶牛早孕诊断并不影响奶牛胚胎或胎儿存活率,并认为这是一种安全的技术。此外,Bond等[5]对1 216头奶牛配种后37 d进行随机试验,观察到学生触诊组和兽医对照组之间的妊娠丢失没有差异,进一步证明该方法诊断奶牛早期妊娠的安全性。
PPR技术在国内外应用较为广泛,此方法进行妊娠诊断也较安全,不需要仪器设备或实验室操作,并且结果可立即做出判断。然而,繁殖技术人员的技术熟练程度显著影响了应用PPR技术检测的特异性和可靠性,并且该技术很难在更早时间(配种后21 d)内进行准确的妊娠诊断。
2 彩色多普勒超声(color Doppler ultrasonography, CDUS)诊断CDUS技术已经在人类的妊娠检查和疾病探查中广泛应用,然而CDUS技术在动物上的应用相对滞后。黄体是血管化程度最高的器官之一,其功能与流向黄体的血流量密切相关。发育中牛黄体的血流由卵巢动脉直接分支的螺旋动脉供应;排卵后,来自内膜的血管侵入卵泡的腔内,形成一个网络,供应黄体细胞;新生黄体血管可将黄体类固醇输送到体循环中,并为低密度脂蛋白提供循环底物,而低密度脂蛋白则被黄体细胞用于孕酮(progesterone,P4)的生物合成[8]。由此可知,黄体的血流面积(blood flow area,BFA)和血流速度与整个发情周期(包括黄体溶解期)中血浆P4浓度密切相关[9]。
近些年,研究人员开展了CDUS技术在奶牛早孕诊断方面的应用研究[10]。CDUS是根据多普勒效应原理,利用探头探测配种后奶牛黄体血管大小、血流变化并经分析处理后以彩色图像显示出来,以此来进行实时、可视化判断奶牛妊娠状况[11]。研究发现,不但在怀孕动物中检测到流向黄体血液比未怀孕的多,而且客观分析黄体血流与主观分析值之间存在很强的相关性[12]。进而人们对黄体血流在CDUS中所描绘的彩色图像进行评分分级,分为1~ 4级,2级(包括2级)以上确定为妊娠[13]。另外,Lasheen等[14]研究发现,使用CDUS技术的诊断结果与作为黄体功能指标的血浆P4浓度评估结果相似,并且使用此方法没有假阴性。这些结果充分证明CDUS技术在奶牛妊娠诊断中的可行性和可靠性。
Honnens等[15]研究奶牛妊娠前3周子宫血流的变化,发现怀孕的奶牛在受精后第2周就可以检测到子宫血液供应的变化,但此时检测的结果还不足以用来确定奶牛是否妊娠。Hassan等[9]研究妊娠与非妊娠牛在受精后前3周的黄体大小(luteal size,LS)、P4浓度和黄体血流量(luteal blood flow,LBF)是否存在差异,结果表明,妊娠母牛在第7~21天的平均LBF均显著高于未妊娠母牛,且LBF诊断结果相比LS和P4的诊断结果更为敏感。Kanazawa等[8]通过测定奶牛LBF来预测胚胎移植后母牛妊娠情况,发现妊娠第14天的黄体内最大管径处血流面积可作为妊娠诊断的预测指标,其敏感性(85.3%)和特异性(91.7%)均较高。Samir和Kandiel等[16]利用CDUS对妊娠母牛进行黄体血流检测,发现在第17天进行妊娠诊断就有较高的准确性(80.4%),在21 d进行妊娠诊断准确性高达96.4%。此外,研究者们相继进行了应用CDUS技术对奶牛配种后不同时期进行早孕诊断的研究,其结果略有不同,但均显示出较高敏感性、特异性(表 1)。
![]() |
表 1 CDUS技术在奶牛早孕诊断中的应用 Table 1 Application of CDUS technology in early pregnancy diagnosis of dairy cows |
CDUS进行奶牛早孕诊断可以做到实时可视化,且在奶牛配种后17 d就可以进行诊断,在配后21 d进行诊断准确率可达96.4%。CDUS还可监测胎盘、胎儿两者异常风险妊娠[18]。尽管CDUS技术在奶牛早孕诊断中已经显示出明显的优势,但是,CDUS诊断标准目前尚不统一,缺乏对结果的客观分析。因此,需要明确CDUS诊断标准、开发对结果处理的客观分析系统,促进CDUS技术在奶牛早孕诊断中的应用。
3 中红外(mid-infrared, MIR)光谱诊断有研究发现,妊娠奶牛会改变生理功能之间的营养分配,并且随着妊娠阶段的不同而变化,尤其是乳脂和乳蛋白质含量会增加[19]。分子选择性吸收一些特定波长的红外线,会造成分子的振动和转动能级的跃迁,通过检测红外线被吸收的情况可得到物质的红外吸收光谱。红外光谱有很高的特征性,每种物质都有其特定的红外光谱。因而,MIR光谱可用于牛奶成分的检测,进而间接判断奶牛是否妊娠[20]。此外,利用MIR光谱进行预测的范围很广,不局限于牛奶的主要成分,除脂肪和蛋白质含量外,也可以预测牛奶的微量成分(如矿物质和P4)[21]。
Delhez等[22]对8 064头奶牛在配种后不同阶段采集的乳汁进行MIR光谱分析,无论是直接使用光谱数据还是采用光谱差值分析都不足以检测奶牛的妊娠状况;然而,使用怀孕150 d后MIR记录的数据,并通过数学建模能够呈现出良好的拟合精度。Ho和Pryce[20]对7 040头奶牛的16 628份光谱和产奶记录数据进行分析,并对包含不同解释变量的3个模型进行了检验,结果表明,3个模型预测奶牛首次授精后妊娠的准确率分别为0.48、0.69和0.76。由此可知,直接对授精后不同阶段收集的牛奶MIR光谱数据进行差异分析,还不能检测奶牛的早期妊娠状态,仍需进一步开发更为有效的MIR光谱分析预测妊娠的数据处理模型[22]。尽管有关MIR光谱用来进行奶牛早孕诊断尚处于探索阶段,但此方法无疑为奶牛早孕筛查提供了新的见解和方法[23]。
4 干扰素诱导基因(interferon-stimulated genes, ISGs)表达检测奶牛妊娠后14~16 d的胚胎单核细胞产生干扰素τ(interferon-tau, IFNT),IFNT是由172个氨基酸组成的多肽,IFNT也被称为妊娠识别分子[24-25]。IFNT对子宫内膜的局部作用是抑制雌激素受体α的表达,这会抑制子宫内膜细胞中催产素受体的表达,从而通过抑制PG释放到黄体,避免黄体的溶解,以维持妊娠[26]。IFNT还系统地影响黄体活动并调节其它细胞和组织。研究表明,IFNT在体内循环浓度较低,不易检测,因此研究者很少把它作为奶牛早孕诊断的标志物[27]。但IFNT可作用于子宫内膜细胞和循环外周血细胞,可诱导IFNT特异性基因的表达上调[28-29]。IFNT通过ISG15、MX1、MX2和OAS1等激活母体和胚胎组织中的Janus激酶/信号转导和转录激活因子信号通路(Janus kinase-signal transducer and activator of transcription,JAK/STAT),进而刺激胚胎细胞、滋养层细胞、子宫内膜细胞和外周血白细胞(peripheral blood leukocytes,PBLs),以协调“围着床期”母胎之间的相互作用[30]。基于此,人们建立了检测配种后18~20 d妊娠的抗ISG15单克隆抗体的ELISA诊断方法,通过对ISG15的检测进而判断奶牛是否妊娠。
Green等[28]通过检测奶牛PBLs中ISGs的表达来确定人工授精(artificial insemination,AI)后18 d内妊娠情况,结果表明,AI后18 d的血液中ISGs表达量显著增加。Ruhmann等[31]通过对12头牛进行肝活检,收集原代牛肝细胞后用IFNT诱导,结果显示ISG15和MX1表达量较高,并在此基础上运用ELISA证明配种后18 d妊娠奶牛血清中ISG15浓度较高。目前,应用IFNT诱导特定基因表达检测的方法进行奶牛早孕诊断被广泛研究,其研究结果也初步显示出这种方法的可行性和可靠性(表 2)。另外,Kikuchi等[30]研究发现, IFNT增强了粒细胞中HES4和CMPK2的表达,其中HES4是参与细胞分化、早期胚胎发育、细胞功能和Notch信号传导的HES超家族成员之一。CMPK2则表现出核苷二磷酸激酶活性和尿苷酸激酶活性,并与嘧啶脱氧核糖核苷酸从头生物合成和嘧啶代谢有关。因此,除了经典ISGs外,HES4和CMPK2可能在着床过程中作为新的ISGs发挥作用,参与母胎之间的协调,并在胎盘屏障中发挥重要的免疫调节功能。
![]() |
表 2 干扰素τ检测技术应用于奶牛早孕诊断的结果 Table 2 The results of interferon τ detection technology in early pregnancy diagnosis of dairy cows |
综上,通过IFNT诱导特定基因表达检测,ISG15、MX1等可作为奶牛早孕诊断的生物标志物,最早可在14~16 d进行早孕预测[32-34]。但此方法须在实验室进行,操作较为繁琐,时间较长。因此,需要开发类似胶体金试纸条检测的便携方法,有助于在实践中推广应用。另外,ISGs的表达还可反映胚胎的存活能力,因为胚胎释放的IFNT浓度与ISGs的丰度之间存在正相关[35]。研究发现,滋养外胚层的发育和扩张可能与胚胎或胎儿死亡有关,此外,ISGs表达上的变化也可能与妊娠丢失相关[36]。因此,IFNT诱导特定基因表达检测诊断奶牛早孕是必要的,应该继续深入IFNT在奶牛繁殖上的研究。
5 循环核酸(circulating nucleic acids, CNAs)诊断CNAs是在血液中循环的细胞游离的或膜包裹的DNA或RNA,CNAs可能由凋亡细胞释放,并与组蛋白结合,可使CNAs免受核酸酶消化,在健康个体中产生平均大小约为180 bp的片段[37]。目前CNAs研究较多的是microRNAs(miRNAs),其由18~22个核苷酸组成,是小分子非编码RNA的一个亚类,通过mRNA降解和翻译抑制而成为基因表达的关键转录后调节因子。miRNAs可通过不同的机制调节基因的表达,其中包括与靶基因3′非翻译区(UTR)的互补位点配对和抑制其翻译成蛋白质,因此会影响动物的生理功能[38]。miRNAs在生殖系统中有不同作用,能够调控卵泡和黄体的发育、子宫周期、妊娠建立及胚胎发育[39]。在牛胚胎发育早期,包括miR-496和miR-125a在内的一些miRNAs的水平差异显著,这表明它在母体对合子的转录转换中发挥了作用[40]。此外,包括miR-27a和miR-92b在内的几个miRNAs在胎盘发育过程中有不同的表达,它们与滋养层细胞分化和血管生成有关,参与调控胎盘形成[41]。
研究发现,在奶牛妊娠期间胎盘、胚胎组织及子宫内膜凋亡的细胞也会释放特异CNAs,并进入母体外周血液、乳汁、尿液中,且可以进行定量[39]。这与某些miRNAs具有组织或发育阶段特异性的事实相符合,并且CNAs在生物液中性质稳定,可承受极端的环境条件,包括极端的pH、较高的温度、反复冻融以及循环中的RNA酶的消化,故CNAs可以作为检测奶牛早孕的生物标志物[42]。Schanzenbach等[43]在奶牛妊娠第4、12、18、21天的全乳和非妊娠对照奶牛全乳中提取miRNAs,通过验证分析,其中6个miRNAs(BTA-miR-221、BTA-miR-223、BTA-miR-93、BTA-miR-200c、BTA-miR-125b和BTA-miR-15b)表现出差异表达。尽管miRNAs在妊娠与非妊娠母牛乳中有差异表达,但是妊娠动物和情期动物还不足以完全区别。Mayer等[37]在配种后第0、20、40天,从经产妊娠奶牛和非妊娠奶牛收集血清样品,用定量PCR分析CNAs样本,结果在配种后的第20天,与非妊娠牛相比,妊娠奶牛中的重复序列Art2A和BovB的表达显著增加。另外,Gebremedhn等[44]在奶牛配种后19和24 d采集奶牛血清样品进行分析,分别鉴定出8和23个差异表达的miRNAs。因此,血液来源的miRNAs可以作为奶牛早孕状态检测的可行生物标志物[45]。
通过以上可知,经定量PCR分析血清中CNAs可判断奶牛是否妊娠,且在妊娠19 d左右就能检测。CNAs中miRNAs具有稳定性、非侵入性、组织特异性以及检测方法的准确性和快速性等关键特征,已被认为是最佳的生物标志物。然而,由于CNAs分离与测量需在实验室进行,且阳性准确率和阴性准确率仍有待于提高,所以目前仅限于研究,并未用于实践,亟需开发更为高效和方便快捷的循环核酸检测技术。
6 妊娠相关糖蛋白(pregnancy-associated glycoproteins, PAGs)诊断在奶牛和其它反刍类动物中,PAGs是成熟的妊娠标记物[46]。发育中的胎盘双核滋养层细胞分泌的PAGs在母体循环中被发现[47-48]。PAGs是天冬氨酸蛋白酶家族的成员,除了双核细胞分泌PAGs,来自单核绒毛上皮的单核滋养外胚层细胞(binucleate trophectoderm cells,BNCs)也可合成,其中一些细胞从胚胎更紧密地附着在子宫壁和胎盘形成开始的那一刻就分泌到母体的血液中[49-51]。PAGs的可能功能包括激活潜在的生长因子、绒毛-子宫内膜边界的细胞黏附、母体免疫系统调节和营养能力。在整个妊娠期间,BNCs侵袭子宫内膜上皮,并在整个妊娠过程中持续分泌PAGs[52-53]。因此,检测PAGs的存在可以很好地预测奶牛是否妊娠[54]。
早期人们用放射免疫分析法测定PAGs,但由于此法辐射较高,存在一定的安全隐患,目前应用较广的是ELISA方法诊断奶牛早孕[55-56]。ELISA检测PAGs作为奶牛早孕诊断安全性高,且阴性准确率高[57]。Dufour等[52]对519头奶牛配种后28 d进行ELISA测试,其测试结果灵敏度为99.0%,特异度为95.0%。Silva等[58]对1 079头奶牛配种后27 d用ELISA测定血中PAGs进行妊娠诊断,结果与后期直肠超声诊断结果一致,并且用此方法检测有很高的阴性预测准确率。Fosgate等[49]对1 236头奶牛配种后28 d进行血清ELISA检测PAGs,其敏感性为99.4%,特异性为97.4%;检测奶中PAGs的敏感性和特异性分别为99.2%和93.4%。因此,除在血液中检测外,在乳中也可通过检测PAGs进行早孕测定[59]。目前,通过检测配种后27 d血液或乳汁中PAGs含量判断奶牛是否妊娠的方法被广泛研究,结果较令人满意(表 3)。此外,Han等[60]采集牛乳后在2-DE凝胶图像上可见600~700个蛋白质斑点,蛋白质印迹分析表明乳铁蛋白、乳转铁蛋白和alpha-1 G三种蛋白均高于未妊娠奶牛;同时,发现alpha-1 G蛋白在授精后18 d显著表达,在39 d达到高峰,并在整个妊娠过程中持续分泌,由此推测alpha-1 G蛋白也可用于奶牛早孕检测。
![]() |
表 3 奶牛配种后早期应用PAGs检测技术进行早孕诊断的结果 Table 3 The results of early pregnancy diagnosis by PAGs detection technology in dairy cows after mating |
PAGs检测法一般只能在特定条件下进行奶牛早孕诊断,检测技术相对要求较高,虽然开发出了PAGs-ELISA试剂盒,但检测成本也较高[64-65]。PAGs检测法在配种后较早时间进行早孕诊断准确率较高,且敏感性和特异性也较高,但很难在奶牛第一个情期内进行准确的妊娠诊断[66-67]。此外,将PAGs循环浓度用来检测奶牛妊娠时, 需要确定一个更准确的阈值,因此要进行分析改进和更大样本量的研究,以提高其检测准确率。
7 小结与展望如今诸多奶牛早孕诊断方法已被建立,但大多数尚停留在实验室阶段,其检测可靠性也与现代牧场奶牛早孕诊断的需求有一定差距。其中PPR检查法操作需要手法熟练的繁殖技术人员,且很难在配后的第一个情期内进行准确的早孕筛查;CDUS虽能够做到实时检测,但也需要一定的操作技术,且所用设备昂贵;已有PAGs检测等方法虽然能达到准确、简单的早孕检测要求,但存在检测时间长,不能做到实时检测,也不能在配种后更早时间内进行检测等缺点。IFNT诱导特定基因表达和CNAs检测目前仅限于实验室检测,而且对奶牛进行早孕诊断准确率尚有待于提高,这些都需要进行理论和技术的再创新,以便开发更为准确、简便、实用的早孕诊断技术。
研究发现,在母牛妊娠18 d时外周血单核细胞中有IFI6、RSAD2、IFI44、OAS2、LGALS3BP、IFITM2、TNFSF13B等9个孕体诱导基因,并且其中IFI6、RSAD2、IFI44、OAS2和LGALS3BP这5个妊娠标志物的发现比传统诊断方法更早预测阳性妊娠[68]。另外,也有研究报道,母牛妊娠后在胚胎着床过程中会使子宫内膜免疫细胞CD335 NK、CD8T数量和IL-15、IL-10的mRNA丰度增加;同时也发现配种后17 d与非妊娠母牛相比,妊娠母牛吲哚胺2, 3双加氧酶的表达上升15倍[69]。在妊娠早期的这些免疫细胞变化可能与成功妊娠有关。因此,这些新发现的指标也可能成为奶牛早孕诊断的新生物学靶标。
此外,新型多肽kisspeptin在人妊娠期期间的变化以及在人胚胎着床、胎盘形成以及维持妊娠中的作用已成为生殖生物学的研究热点,它是母体妊娠后胎盘所分泌的蛋白[70]。在人妊娠不同阶段,血浆或血液中的kisspeptin水平变化显著,在人妊娠21 d与非孕对照相比,kisspeptin水平明显升高,并且流产后kisspeptin水平显著下降,因此认为它可能作为人早孕诊断和流产检测的另一个重要的潜在生物标志物[70-71]。假设妊娠奶牛血中kisspeptin浓度同人上的变化类似,那么检测kisspeptin的变化将成为一种新的奶牛早孕诊断方法。然而,这些都需要将来做进一步详细、深入的研究。
[1] |
FERNANDES C A D C, PEREIRA J R, SOUZA V O, et al. Timing of early resynchronization protocols affects subsequent pregnancy outcome in dairy cows[J]. Theriogenology, 2021, 167: 61-66. DOI:10.1016/j.theriogenology.2021.03.009 |
[2] |
SZENCI O. Recent possibilities for the diagnosis of early pregnancy and embryonic mortality in dairy cows[J]. Animals (Basel), 2021, 11(6): 1666. |
[3] |
HOLTZ W, NIGGEMEYER H. Reliable identification of pregnant dairy cows by double milk progesterone analysis[J]. Livest Sci, 2019, 228: 38-41. DOI:10.1016/j.livsci.2019.07.014 |
[4] |
BARBATO O, MENCHETTI L, SOUSA N M, et al. Pregnancy-associated glycoproteins (PAGs) concentrations in water buffaloes (Bubalus bubalis) during gestation and the postpartum period[J]. Theriogenology, 2017, 97: 73-77. DOI:10.1016/j.theriogenology.2017.04.021 |
[5] |
BOND R L, MIDLA L T, GORDON E D, et al. Effect of student transrectal palpation on early pregnancy loss in dairy cattle[J]. J Dairy Sci, 2019, 102(10): 9236-9240. DOI:10.3168/jds.2019-16515 |
[6] |
ROMANO J E, PINEDO P, BRYAN K, et al. Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss, calving rates, and abnormalities in newborn calves[J]. Theriogenology, 2017, 90: 219-227. DOI:10.1016/j.theriogenology.2016.11.004 |
[7] |
ROMANO J E, BRYAN K, RAMOS R S, et al. Effect of early pregnancy diagnosis by per rectum amniotic sac palpation on pregnancy loss, calving rates, and abnormalities in newborn dairy calves[J]. Theriogenology, 2016, 85(3): 419-427. DOI:10.1016/j.theriogenology.2015.09.004 |
[8] |
KANAZAWA T, SEKI M, ISHIYAMA K, et al. Pregnancy prediction on the day of embryo transfer (Day 7) and Day 14 by measuring luteal blood flow in dairy cows[J]. Theriogenology, 2016, 86(6): 1436-1444. DOI:10.1016/j.theriogenology.2016.05.001 |
[9] |
HASSAN M, ARSHAD U, BILAL M, et al. Luteal blood flow measured by Doppler ultrasonography during the first three weeks after artificial insemination in pregnant and non-pregnant Bos indicus dairy cows[J]. J Reprod Dev, 2019, 65(1): 29-36. DOI:10.1262/jrd.2018-084 |
[10] |
DUBUC J, HOULE J, ROUSSEAU M, et al. Short communication: Accuracy of corpus luteum color flow Doppler ultrasonography to diagnose nonpregnancy in dairy cows on day 21 after insemination[J]. J Dairy Sci, 2020, 103(2): 2019-2023. DOI:10.3168/jds.2019-17234 |
[11] |
UTT M D, JOHNSON G L, BEAL W E. The evaluation of corpus luteum blood flow using color-flow Doppler ultrasound for early pregnancy diagnosis in bovine embryo recipients[J]. Theriogenology, 2009, 71(4): 707-715. DOI:10.1016/j.theriogenology.2008.09.032 |
[12] |
SIQUEIRA L G B, AREAS V S, GHETTI A M, et al. Color Doppler flow imaging for the early detection of nonpregnant cattle at 20 days after timed artificial insemination[J]. J Dairy Sci, 2013, 96(10): 6461-6472. DOI:10.3168/jds.2013-6814 |
[13] |
ANDRADE J P N, ANDRADE F S, GUERSON Y B, et al. Early pregnancy diagnosis at 21 days post artificial insemination using corpus luteum vascular perfusion compared to corpus luteum diameter and/or echogenicity in Nelore heifers[J]. Anim Reprod Sci, 2019, 209: 106144. DOI:10.1016/j.anireprosci.2019.106144 |
[14] |
LASHEEN M E, BADR H M, KANDIEL M M M, et al. Predicting early pregnancy in Egyptian buffalo cows via measuring uterine and luteal blood flows, and serum and saliva progesterone[J]. Trop Anim Health Prod, 2018, 50(1): 137-142. DOI:10.1007/s11250-017-1413-6 |
[15] |
HONNENS A, VOSS C, HERZOG K, et al. Uterine blood flow during the first 3 weeks of pregnancy in dairy cows[J]. Theriogenology, 2008, 70(7): 1048-1056. DOI:10.1016/j.theriogenology.2008.06.022 |
[16] |
SAMIR H, KANDIEL M M M. Accuracy of subjective evaluation of luteal blood flow by color Doppler ultrasonography for early diagnosis of pregnancy in Egyptian buffalo[J]. Anim Reprod Sci, 2019, 208: 106129. DOI:10.1016/j.anireprosci.2019.106129 |
[17] |
SCULLY S, BUTLER S T, KELLY A K, et al. Early pregnancy diagnosis on days 18 to 21 postinsemination using high-resolution imaging in lactating dairy cows[J]. J Dairy Sci, 2014, 97(6): 3542-3557. DOI:10.3168/jds.2013-7518 |
[18] |
PANARACE M, GARNIL C, MARFIL M, et al. Transrectal Doppler sonography for evaluation of uterine blood flow throughout pregnancy in 13 cows[J]. Theriogenology, 2006, 66(9): 2113-2119. DOI:10.1016/j.theriogenology.2006.03.040 |
[19] |
LAINÉ A, BASTIN C, GRELET C, et al. Assessing the effect of pregnancy stage on milk composition of dairy cows using mid-infrared spectra[J]. J Dairy Sci, 2017, 100(4): 2863-2876. DOI:10.3168/jds.2016-11736 |
[20] |
HO P N, PRYCE J E. Predicting the likelihood of conception to first insemination of dairy cows using milk mid-infrared spectroscopy[J]. J Dairy Sci, 2020, 103(12): 11535-11544. DOI:10.3168/jds.2020-18589 |
[21] |
HO P N, BONFATTI V, LUKE T D W, et al. Classifying the fertility of dairy cows using milk mid-infrared spectroscopy[J]. J Dairy Sci, 2019, 102(11): 10460-10470. DOI:10.3168/jds.2019-16412 |
[22] |
DELHEZ P, HO P N, GENGLER N, et al. Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy?[J]. J Dairy Sci, 2020, 103(4): 3264-3274. DOI:10.3168/jds.2019-17473 |
[23] |
TOLEDO-ALVARADO H, VAZQUEZ A I, DE LOS CAMPOS G, et al. Diagnosing pregnancy status using infrared spectra and milk composition in dairy cows[J]. J Dairy Sci, 2018, 101(3): 2496-2505. DOI:10.3168/jds.2017-13647 |
[24] |
SPENCER T E, FORDE N, LONERGAN P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants[J]. J Dairy Sci, 2016, 99(7): 5941-5950. DOI:10.3168/jds.2015-10070 |
[25] |
YOSHINO H, KIZAKI K, IGA K, et al. Use of a prediction method for early pregnancy status utilizing receiver operating characteristic curve analysis of peripheral blood leukocyte interferon-stimulated genes in Japanese-Black cattle[J]. Anim Reprod Sci, 2020, 214: 106283. DOI:10.1016/j.anireprosci.2020.106283 |
[26] |
YOSHINO H, TOJI N, SASAKI K, et al. A predictive threshold value for the diagnosis of early pregnancy in cows using interferon-stimulated genes in granulocytes[J]. Theriogenology, 2018, 107: 188-193. DOI:10.1016/j.theriogenology.2017.11.014 |
[27] |
HAQ I U, HAN Y, ALI T, et al. Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle[J]. Reprod Biol, 2016, 16(4): 255-260. DOI:10.1016/j.repbio.2016.10.001 |
[28] |
GREEN J C, OKAMURA C S, POOCK S E, et al. Measurement of interferon-tau (IFN-τ) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18-20 d after insemination in dairy cattle[J]. Anim Reprod Sci, 2010, 121(1-2): 24-33. |
[29] |
KOWALCZYK A, CZERNIAWSKA-PIĄ TKOWSKA E, WRZECIŃSKA M. The importance of interferon-tau in the diagnosis of pregnancy[J]. Biomed Res Int, 2021, 2021: 9915814. |
[30] |
KIKUCHI M, KIZAKI K, SHIGENO S, et al. Newly identified interferon tau-responsive Hes family BHLH transcription factor 4 and cytidine/uridine monophosphate kinase 2 genes in peripheral blood granulocytes during early pregnancy in cows[J]. Domest Anim Endocrinol, 2019, 68: 64-72. DOI:10.1016/j.domaniend.2019.01.006 |
[31] |
RUHMANN B, GILLER K, HANKELE A K, et al. Interferon-τ induced gene expression in bovine hepatocytes during early pregnancy[J]. Theriogenology, 2017, 104: 198-204. DOI:10.1016/j.theriogenology.2017.07.051 |
[32] |
DALMASO DE MELO G, MELLO B P, FERREIRA C A, et al. Applied use of interferon-tau stimulated genes expression in polymorphonuclear cells to detect pregnancy compared to other early predictors in beef cattle[J]. Theriogenology, 2020, 152: 94-105. DOI:10.1016/j.theriogenology.2020.04.001 |
[33] |
BATRA K, KUMAR A, MAAN S, et al. Recombinant interferon stimulated protein 15 (rISG15) as a molecular marker for detection of early pregnancy in Bubalus bubalis[J]. Anim Reprod Sci, 2018, 197: 106-116. DOI:10.1016/j.anireprosci.2018.08.018 |
[34] |
PANDA B S K, MOHAPATRA S K, CHAUDHARY D, et al. Proteomics and transcriptomics study reveals the utility of ISGs as novel molecules for early pregnancy diagnosis in dairy cows[J]. J Reprod Immunol, 2020, 140: 103148. DOI:10.1016/j.jri.2020.103148 |
[35] |
ZHANG T, GUO S, ZHOU H, et al. Endometrial extracellular matrix rigidity and IFNτ ensure the establishment of early pregnancy through activation of YAP[J]. Cell Prolif, 2021, 54(2): e12976. |
[36] |
POHLER K G, REESE S T, FRANCO G A, et al. New approaches to diagnose and target reproductive failure in cattle[J]. Anim Reprod, 2020, 17(3): e20200057. DOI:10.1590/1984-3143-ar2020-0057 |
[37] |
MAYER J, SOLLER J T, BECK J, et al. Early pregnancy diagnosis in dairy cows using circulating nucleic acids[J]. Theriogenology, 2013, 79(1): 173-179. DOI:10.1016/j.theriogenology.2012.09.024 |
[38] |
GHAFOURI-FARD S, SHOOREI H, TAHERI M. The role of microRNAs in ectopic pregnancy: A concise review[J]. Noncoding RNA Res, 2020, 5(2): 67-70. DOI:10.1016/j.ncrna.2020.04.002 |
[39] |
IOANNIDIS J, DONADEU F X. Circulating miRNA signatures of early pregnancy in cattle[J]. BMC Genomics, 2016, 17(1): 184. DOI:10.1186/s12864-016-2529-1 |
[40] |
TESFAYE D, WORKU D, RINGS F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach[J]. Mol Reprod Dev, 2009, 76(7): 665-677. DOI:10.1002/mrd.21005 |
[41] |
SU L J, ZHAO S H, ZHU M J, et al. Differential expression of microRNAs in porcine placentas on days 30 and 90 of gestation[J]. Reprod Fertil Dev, 2010, 22(8): 1175-1182. DOI:10.1071/RD10046 |
[42] |
GUELFI G, STEFANETTI V, DE LUCA S, et al. Serum microRNAs in buffalo cows: potential biomarkers of pregnancy[J]. Res Vet Sci, 2017, 115: 294-300. DOI:10.1016/j.rvsc.2017.06.001 |
[43] |
SCHANZENBACH C I, KIRCHNER B, ULBRICH S E, et al. MicroRNA of whole milk samples are not suitable for pregnancy detection in cattle[J]. Gene, 2019, 692: 17-21. DOI:10.1016/j.gene.2018.12.068 |
[44] |
GEBREMEDHN S, SALILEW-WONDIM D, HOELKER M, et al. Exploring maternal serum microRNAs during early pregnancy in cattle[J]. Theriogenology, 2018, 121: 196-203. DOI:10.1016/j.theriogenology.2018.08.020 |
[45] |
ZHAO G, GUO S, JIANG K F, et al. MiRNA profiling of plasma-derived exosomes from dairy cows during gestation[J]. Theriogenology, 2019, 130: 89-98. DOI:10.1016/j.theriogenology.2019.03.001 |
[46] |
REESE S T, PEREIRA M H C, EDWARDS J L, et al. Pregnancy diagnosis in cattle using pregnancy associated glycoprotein concentration in circulation at day 24 of gestation[J]. Theriogenology, 2018, 106: 178-185. DOI:10.1016/j.theriogenology.2017.10.020 |
[47] |
GATEA A O, SMITH M F, POHLER K G, et al. The ability to predict pregnancy loss in cattle with ELISAs that detect pregnancy associated glycoproteins is antibody dependent[J]. Theriogenology, 2018, 108: 269-276. DOI:10.1016/j.theriogenology.2017.12.021 |
[48] |
NORTHROP E J, RICH J J J, RHOADES J R, et al. Comparison of two bovine serum pregnancy tests in detection of artificial insemination pregnancies and pregnancy loss in beef cattle[J]. PLoS One, 2019, 14(1): e211179. |
[49] |
FOSGATE G T, MOTIMELE B, GANSWINDT A, et al. A Bayesian latent class model to estimate the accuracy of pregnancy diagnosis by transrectal ultrasonography and laboratory detection of pregnancy-associated glycoproteins in dairy cows[J]. Prev Vet Med, 2017, 145: 100-109. DOI:10.1016/j.prevetmed.2017.07.004 |
[50] |
MERCADANTE P M, RIBEIRO E S, RISCO C, et al. Associations between pregnancy-associated glycoproteins and pregnancy outcomes, milk yield, parity, and clinical diseases in high-producing dairy cows[J]. J Dairy Sci, 2016, 99(4): 3031-3040. DOI:10.3168/jds.2015-10595 |
[51] |
BARBATO O, GUELFI G, BARILE V L, et al. Using real-time PCR to identify pregnancy-associated glycoprotein 2 (PAG-2) in water buffalo (Bubalus bubalis) blood in early pregnancy[J]. Theriogenology, 2017, 89: 106-113. DOI:10.1016/j.theriogenology.2016.09.038 |
[52] |
DUFOUR S, DUROCHER J, DUBUC J, et al. Bayesian estimation of sensitivity and specificity of a milk pregnancy-associated glycoprotein-based ELISA and of transrectal ultrasonographic exam for diagnosis of pregnancy at 28-45 days following breeding in dairy cows[J]. Prev Vet Med, 2017, 140: 122-133. DOI:10.1016/j.prevetmed.2017.03.008 |
[53] |
AYAD A, SOUSA N M, SULON J, et al. Correlation of five radioimmunoassay systems for measurement of bovine plasma pregnancy-associated glycoprotein concentrations at early pregnancy period[J]. Res Vet Sci, 2009, 86(3): 377-382. DOI:10.1016/j.rvsc.2008.10.003 |
[54] |
POHLER K G, PEREIRA M H C, LOPES F R, et al. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds[J]. J Dairy Sci, 2016, 99(2): 1584-1594. DOI:10.3168/jds.2015-10192 |
[55] |
KAREN A, SOUSA N M D, BECKERS J F, et al. Comparison of a commercial bovine pregnancy-associated glycoprotein ELISA test and a pregnancy-associated glycoprotein radiomimmunoassay test for early pregnancy diagnosis in dairy cattle[J]. Anim Reprod Sci, 2015, 159: 31-37. DOI:10.1016/j.anireprosci.2015.05.005 |
[56] |
MOUSSAFIR Z, ALLAI L, EL KHALIL K, et al. Could a bovine pregnancy rapid test be an alternative to a commercial pregnancy-associated glycoprotein ELISA test in dairy cattle?[J]. Anim Reprod Sci, 2018, 192: 78-83. DOI:10.1016/j.anireprosci.2018.02.016 |
[57] |
BRAGANÇA G M, MONTEIRO B M, ALBUQUERQUE R D S, et al. Using pregnancy-associated glycoproteins to provide early pregnancy diagnosis in Nelore cows[J]. Livest Sci, 2018, 214: 278-281. DOI:10.1016/j.livsci.2018.06.018 |
[58] |
SILVA E, STERRY R A, KOLB D, et al. Accuracy of a pregnancy-associated glycoprotein ELISA to determine pregnancy status of lactating dairy cows twenty-seven days after timed artificial insemination[J]. J Dairy Sci, 2007, 90(10): 4612-4622. DOI:10.3168/jds.2007-0276 |
[59] |
LAWSON B C, SHAHZAD A H, DOLECHECK K A, et al. A pregnancy detection assay using milk samples: Evaluation and considerations[J]. J Dairy Sci, 2014, 97(10): 6316-6325. DOI:10.3168/jds.2014-8233 |
[60] |
HAN R X, KIM H R, DIAO Y F, et al. Detection of early pregnancy-specific proteins in Holstein milk[J]. J Proteomics, 2012, 75(11): 3221-3229. DOI:10.1016/j.jprot.2012.03.029 |
[61] |
SINEDINO L D P, LIMA F S, BISINOTTO R S, et al. Effect of early or late resynchronization based on different methods of pregnancy diagnosis on reproductive performance of dairy cows[J]. J Dairy Sci, 2014, 97(8): 4932-4941. DOI:10.3168/jds.2013-7887 |
[62] |
RICCI A, CARVALHO P D, AMUNDSON M C, et al. Factors associated with pregnancy-associated glycoprotein (PAG) levels in plasma and milk of Holstein cows during early pregnancy and their effect on the accuracy of pregnancy diagnosis[J]. J Dairy Sci, 2015, 98(4): 2502-2514. DOI:10.3168/jds.2014-8974 |
[63] |
MAYO L M, MOORE S G, POOCK S E, et al. Technical note: Validation of a chemical pregnancy test in dairy cows that uses whole blood, shortened incubation times, and visual readout[J]. J Dairy Sci, 2016, 99(9): 7634-7641. DOI:10.3168/jds.2016-11224 |
[64] |
ALKAN H, KIVRAK M B, SATILMIS F, et al. Detection of twin pregnancies in ewes by pregnancy-associated glycoprotein assay and transabdominal ultrasonography[J]. Domest Anim Endocrinol, 2020, 72: 106399. DOI:10.1016/j.domaniend.2019.106399 |
[65] |
MIDDLETON E L, PURSLEY J R. Short communication: Blood samples before and after embryonic attachment accurately determine non-pregnant lactating dairy cows at 24 d post-artificial insemination using a commercially available assay for pregnancy-specific protein B[J]. J Dairy Sci, 2019, 102(8): 7570-7575. DOI:10.3168/jds.2018-15961 |
[66] |
FILHO R V O, FRANCO G A, REESE S T, et al. Using pregnancy associated glycoproteins (PAG) for pregnancy detection at day 24 of gestation in beef cattle[J]. Theriogenology, 2020, 141: 128-133. DOI:10.1016/j.theriogenology.2019.09.014 |
[67] |
REESE S T, GEARY T W, FRANCO G A, et al. Pregnancy associated glycoproteins (PAGs) and pregnancy loss in high vs sub fertility heifers[J]. Theriogenology, 2019, 135: 7-12. DOI:10.1016/j.theriogenology.2019.05.026 |
[68] |
ROCHA C C, ANDRADE S C D S, DE MELO G D, et al. Early pregnancy-induced transcripts in peripheral blood immune cells in Bos indicus heifers[J]. Sci Rep, 2020, 10(1): 13733. DOI:10.1038/s41598-020-70616-8 |
[69] |
OTT T L. Symposium review: Immunological detection of the bovine conceptus during early pregnancy[J]. J Dairy Sci, 2019, 102(4): 3766-3777. DOI:10.3168/jds.2018-15668 |
[70] |
HU K L, ZHAO H C, YU Y, et al. Kisspeptin as a potential biomarker throughout pregnancy[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 240: 261-266. DOI:10.1016/j.ejogrb.2019.07.016 |
[71] |
HU K L, ZHANG Y L, YANG Z, et al. Predictive value of serum kisspeptin concentration at 14 and 21 days after frozen-thawed embryo transfer[J]. Reprod Biomed Online, 2019, 39(1): 161-167. DOI:10.1016/j.rbmo.2019.03.202 |
(编辑 范子娟)