畜牧兽医学报  2021, Vol. 52 Issue (8): 2107-2114. DOI: 10.11843/j.issn.0366-6964.2021.08.004    PDF    
内源性逆转录病毒的转录表达与宿主功能关系的研究进展
白少川, 张乐超, 葛琳涵, 郭艳丽, 王德贺, 李兰会     
河北农业大学动物科技学院, 保定 071000
摘要:内源性逆转录病毒(ERVs)是几百万年前感染并整合进宿主基因组中,通过孟德尔规律进行遗传的逆转录病毒的遗留物。ERVs具有重要的生物学功能,对宿主表型、生产性能、胚胎发育及免疫调节等方面发挥重要作用。本文对内源性逆转录病毒的基因组结构、表观修饰和整合位点效应的活性调控及其与宿主胚胎发育、免疫调控等进行综述,为深入了解内源性逆转录病毒在基因组的功能及其对宿主的影响与进化提供参考。
关键词内源性逆转录病毒    转录调控    整合位点    免疫    
Research Progress of Relation between Transcriptional Expression of Endogenous Retrovirus and Host Function
BAI Shaochuan, ZHANG Lechao, GE Linhan, GUO Yanli, WANG Dehe, LI Lanhui*     
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
Abstract: Endogenous retroviruses (ERVs) are the remains of ancient retroviruses that were infected and integrated into the host genome millions of years ago and inherited through Mendelian law. ERVs have important biological functions and play important roles influencing host phenotype, productivity, embryonic development and immune regulation. In this article, the genomic structure, activity regulation of ERVs by epigenetic modification and integration locus was reviewed. The relation between host embryonic development, immune regulation and ERVs was also discussed. It was expected to provide reference for further exploring the function of endogenous retrovirus in the genome and its influence and evolution in the host.
Key words: endogenous retrovirus    transcriptional regulation    integration locus    immune    

内源性逆转录病毒(endogenous retrovirus,ERVs)属于长末端重复(LTR)逆转座子中的一类,普遍存在于所有脊椎动物的基因组中,是外源性逆转录病毒整合在宿主基因组并按孟德尔规律遗传的基因序列。脊椎动物基因组中ERVs已经嵌入数百万年,鸡[1]、牛[2]、人[3]和鼠[4]基因组中ERVs分别占到1.3%、3.2%、8%和10%。

ERVs是古老病毒感染的“化石”,自侵入宿主生殖细胞后随世代进化积累了大量突变,以阻止其组装感染性病毒粒子,不能感染宿主细胞。虽然多数ERVs已经失活,但是有些仍能在宿主基因组中转座生成大量拷贝。新整合的ERVs对邻近基因的表达产生调控作用,成为宿主进化的“发动机”,另外,其不受控制的扩展和表达也是对宿主生命的威胁。ERVs整合诱导宿主产生新的适应性遗传变异和感染抗性,但也产生自发的免疫缺陷、癌变、神经性退行性变化等负面效应[5]。现代全基因测序和重测序技术积累了大量基因组数据,有利推动了ERVs的进化、功能性、调控机制等研究。本文对ERVs的结构、整合机制、在宿主的表达调控及其进化对宿主功能影响的研究进行综述,为深入挖掘ERVs与宿主的共进化调控机制提供借鉴和参考。

1 ERVs的生成及其基因组结构 1.1 ERVs的生成

侵入到宿主的外源病毒,用自身的逆转录酶将病毒基因组RNA转录为cDNA,利用整合酶将cDNA整合到宿主基因组中,完成自身基因组在宿主细胞的部署。之后,整合的原病毒转录为RNA,利用宿主的核糖体机制繁殖后代,产生更多的病毒形成对宿主的感染。一般情况下,逆转录病毒仅感染宿主体细胞,偶尔整合进入宿主生殖细胞,则以原病毒基因组形式永久地与宿主细胞DNA相结合,定位保持在染色体组上,并作为宿主基因组的一部分按孟德尔规律进行垂直传递遗传,从而形成了ERVs[4]。ERVs随宿主基因组世代遗传,对宿主基因组进化具有重要作用。

1.2 ERVs的基因组结构

ERVs全长7~11 kb,其典型结构为5′ LTR-gag-pol-env-LTR 3′。LTR区在病毒RNA基因组逆转录过程中形成,是逆转录病毒表达的调控中心,包含有调控RNA转录的启动子、增强子、聚腺苷酸化位点,以及多种转录因子结合位点;gagpolenv是ERV的结构基因,5′LTR区与gag基因间有引物结合位点(PBS),3′LTR区与env基因间有多嘌呤区(PPT)。PBS是逆转录过程中细胞tRNA的结合位点,PPT是正链DNA生成中引物结合的位点。由于LTR区的同源重组或非同源重组,大多数的ERVs内部编码区序列缺失,或者只剩下LTR区(solo-LTR),只有极少数整合较晚的ERVs仍保留有完整的基因组结构。

由于ERVs与宿主具有相同的单碱基替换速率(10-9·年-1),比原外源病毒的进化速率(10-3·年-1) 慢106,所以保留了外源病毒相似的基因组序列,使ERVs成为逆转录病毒基因组的“化石记录”,从而由ERVs的基因组结构变化可以推断其与宿主的长期进化关系[6],利用ERVs的整合分析揭示了Kihnu绵羊的古老起源[7]。这些基因序列曾被认为是“冗余废弃物”或“无用”DNA,不具备任何功能,但是,越来越多的研究发现ERVs参与早期的胚胎发育、肿瘤发生、免疫紊乱以及免疫系统正常功能等生理、病理活动。

2 ERVs的活性抑制

虽然重组等变异造成ERVs序列的不完整,但宿主基因组仍有具备完整结构和转座转录活性的ERVs,宿主进化出多种机制严密调控成年体细胞和胚胎发育过程逆转座和ERVs转录表达的发生[8]

2.1 ERVs的表观修饰沉默

ERVs一般陷入在异染色质内,被宿主的第一道防线表观修饰机制沉默,哺乳动物5-甲基化胞嘧啶是典型的抑制性表观修饰方式之一[9],DNA的甲基化通过胞嘧啶脱氨基酶家族诱导人ERV(HERV)基因组5-甲基化胞嘧啶脱氨基突变为胸腺嘧啶,导致错义突变或失活,从而抑制HERV的复制,保持宿主基因组的稳定性[10]。甲基化水平低的2日龄鸡法氏囊和心组织ALV-E1表达高于甲基化水平高的35日龄鸡的表达,证明了甲基化对ERVs表达的调控作用[11]。Kuse等[12]发现LTR甲基化程度影响猫ERVs的复制能力,并且LTR区的A>T突变影响了启动子活性,低活性的T型ERVs在猫基因组中生成了更多拷贝。Chung等[13]发现双重miRNA抑制猪ERV-B的表达效率达到86%。

组蛋白修饰参与沉默早期胚胎干细胞的ERVs表达[14]。组蛋白去甲基化酶(KDM1A)、辅阻抑物(KAP1)和组蛋白去乙酰化酶(HDAC)参与沉默过程,KDM1A沉默ERVs的启动子,而组蛋白甲基转移酶(ZFP42)与gag基因表达有关[15-17]。小鼠胚胎细胞的脑池病毒粒子(IAP)沉默是由组蛋白甲基转移酶(SETDB1)和KAP1介导的,IAP的5′UTR区可能通过KRAB-ZFPs招募KAP1和SETDB1完成沉默[7, 18-19]

2.2 ERVs的整合位点效应

外源病毒倾向于整合在细胞的开放染色体,尤其是蛋白编码基因附近,尽管内源病毒可能具有相似的生物偏好,但人工或自然选择可能剔除有害的内源病毒元件。Lee等[1]发现鸡全长GGERV10(Gallus gallus endogenous retrovirus 10)偏向定位于高AT含量(59.01% vs 57.08%)的低基因密度区(3.83 vs 20.41个基因·Mb-1)。Mason等[20-21]利用obsERVer检测地方鸡基因组974种ALV-E整合,被发现的鸡ALV-E增加到1 300种;但只有1.5%整合在基因编码区外显子中,显著低于4.9%的随机整合频率。商业种鸡群体中编码区的ALV-E有显著的剔除特征(26.7% vs 51.8%的随机整合),在蛋白编码基因上下游10 kb范围内有8倍的富集特征(32.9% vs 4.1%的随机整合),地方鸡群体中分别是40.7%和17.5%[21]。这反映了商品鸡比地方鸡更强的人工选择,剔除了有害ALV-E整合,增强了有利效应。

基因组数据分析揭示ERVs一般反向整合于功能基因外部,与随机整合理论矛盾,由于正向整合对典型剪切信号的潜在干扰,表明宿主自身强的净化选择效应[22]。禽EAV-HP反向整合在SLCO1B3基因5′UTR区形成绿壳蛋表型[23]TYR基因内含子4的ALV反向整合造成鸡的隐性白羽表型[24]。另外,整合位点侧翼poly-A重复与ALV整合连锁,有色羽不存在poly-A,但红原鸡存在[25]。Poly-A与隐性白羽鸡ALV整合的连锁,侧面证明了负向选择作用,poly-A缺失的ALV整合个体可能由于机体的严重危害而被净化。

3 ERVs与宿主的共生关系

ERVs在宿主体内的相对稳定性,以及不同宿主同源序列的保守性表明ERVs和宿主间存在长期进化共生关系。ERVs表达参与哺乳动物的胎盘生成和胚胎发育是被研究最典型的宿主征用功能,其与宿主表型、胚胎发育和免疫调节的关系正被逐渐揭示。

3.1 ERVs整合与胎盘的融合性早期胚胎发育

被甲基化、乙酰化等抑制活性的ERVs在生殖细胞生成和受精卵发育的重编程时期,转录转座活性失控,ERVs编码蛋白合胞素就是被哺乳动物驯化为自身细胞功能的很好案例[26]。胎盘形成过程中HERV-W和HERV-FRD的env基因分别生成合胞素1和合胞素2,对胎盘合胞体的形成和维持滋养层细胞的融合起关键作用,合胞素发挥病毒编码蛋白与宿主细胞膜融合的功能。这一功能被哺乳动物征用,使胎盘对母体子宫更具“侵略性”,并且使母体失去对胎儿的免疫排斥,从而为胚胎发育提供了进化优势[27]

转录组学研究揭示了HERV表达与早期胚胎发育的复杂互作关系,LTR被征用为启动子或增强子,提供如LBP9、NANOG、OCT4、GCM1、Sp1和GATA等转录因子家族的结合位点,调控附近胚胎发育和多潜能维持的功能基因[28]。人和小鼠ES细胞25%的NANOG和OCT4结合位点是由转座子提供的,并且结合位点附近的基因是这些转录因子的功能靶标[6]。早期胚胎干细胞中ERVs转录生成lncRNA与OCT4(POU5F1)的反式激活互作,协同促进了特异ERVs表达[29-30],形成复杂的调控网络精细调控早期胚胎发育。

3.2 ERVs整合与宿主表型变化

ERVs的LTR被公认为宿主储备的潜在顺式调控元件,在进化过程被招募参与邻近基因的转录调控。鸡的隐性白羽、绿壳蛋、公鸡henny性反转羽毛等表型都是由于ERVs整合影响功能基因表达形成的。TYR基因内含子4中7.5 kb的ALV反向插入引起鸡隐性白羽,TYR转录产物有多种3′UTR区被截短的异常剪接体,外显子5缺失,影响了跨膜域的翻译。可能形成了胞浆型而非跨膜型的TYR,不能正确定位至黑素小体,具有功能活性的黑色素催化合成受损[24]。Chang等[25]发现隐性白羽鸡Tyr酶的表达水平明显低于野生型,但在胚胎皮肤中表达差异不显著,而10周龄皮肤表达差异极显著,这说明ALV对宿主细胞基因的表达调控受到细胞环境的影响。长4 250 bp的EAV-HP反向整合在鸡1号染色体SLCO1B3基因5′UTR区,发挥增强子作用,SLCO1B3转录产物5′末端增加了EAV-HP的24 bp LTR序列[23],并且在鸡卵巢和蛋壳腺中的表达量分别增加180和19倍[31],转运更多的胆绿素到蛋壳,表现绿壳蛋表型。SLCO1B3基因启动子区甲基化水平与其表达水平及蛋壳绿色深度呈显著负相关,随着甲基化水平的提高,CpG5和CpG8位点的甲基化会阻碍转录因子与启动子的结合,从而在产蛋后期降低SLCO1B3的表达并导致蛋壳颜色更浅[32]。Li等[33]发现7 524 bp的ERV整合在鸡10号染色体CYP19A1基因的5′UTR区,3′LTR区的TATA box参与CYP19A1的转录,形成包含99 bp 3′LTR的CYP19A1转录本,并在皮肤组织异位表达,导致公鸡性反转产生henny羽毛特征。ev21整合在鸡PRLR基因5′UTR区,PRLRSPEF2的重复基因与慢羽连锁[34],但ev21是否与该重复区域的形成有关,是否影响PRLR的转录还有待挖掘。

ERVs整合引起其他脊椎动物表型变化。小鼠Agouti基因1C外显子下游内含子中反向整合5 357 bp内源逆转录病毒VL30,VL30内部有另一种内源逆转录病毒β4,两种内源逆转录病毒嵌套整合在Agouti基因的5′UTR区,抑制Agouti基因的正常转录,形成纯黑色被毛表型[35]。鼠内源白血病毒Emv-3整合在肌球蛋白重链基因Myh内含子区,其转录剪切发生变化导致小鼠无被毛表型。逆转录转座子插入到PMEL基因导致澳大利亚牧羊犬白色被毛表型[36];7 125 bp的ERV插入KIT基因形成显性白猫表型[37]。ERVs整合改变插入位点附近功能基因的正常表达,导致宿主表型发生变化。

3.3 ERVs整合与宿主免疫调节

ERVs进化出多种机制参与宿主免疫调节。人、猫、水貂、大鼠、小鼠等宿主胚胎发育以及生长发育阶段ERVs编码的env蛋白有抵抗外源逆转录病毒的感染功能[38-40]。env蛋白通过与外源病毒蛋白竞争细胞表面受体,阻止外源病毒的感染,也能有效塑造T细胞库和体液反应的抗原[41],还具有超抗原诱发非特异T细胞激活功能[42];gag蛋白能干扰外源病毒侵入后的感染周期,影响病毒粒子的组装或释放从而发挥抗病毒感染作用,Fv1蛋白通过与鼠ERVs衣壳结合,阻止衣壳分解和ERVs整合进入细胞染色质[43]

整合到宿主基因组的ERVs片段,尤其是LTR与诱导干扰素的转录调控因子结合,增强免疫基因的表达。整合在TP63基因上游的HERV-9的LTR起到增强子的作用,增强雄性生殖干细胞抗肿瘤能力,并保持生殖细胞的转录保真性[44-45]TP53是重要的肿瘤抑制基因,其编码的蛋白质p53作为转录因子,在体细胞中参与DNA损伤的细胞凋亡过程,因此被视为“基因组的守护者”,人基因组中1/3以上的p53结合位点位于ERVs的LTR区域[46]。综上表明,宿主招募ERVs的LTR丰富细胞转录因子的免疫调控网络。

另外,ERVs产生的非编码序列发挥抗病毒或抗感染基因的增强子作用,尤其是其双向转录产物的生成,活化双链RNA沉默途径发动I型干扰和细胞凋亡。Chen等[47]发现去甲基化试剂处理鸡CEF细胞后,ALV-E1转录激活,生成反义产物lncRNA释放到细胞质与TLR3结合并活化其信号途径,诱导IFN-β相关基因表达发挥抗病毒效应。鸡睾丸中有特异piRNA的表达,piRNA序列与ERV mRNA互补配对形成双链,沉默ERVs转录后翻译,因此逆转座子诱发的病毒到宿主的基因流动可能产生RNA介导的、序列特异性反义免疫记忆,类似CRISPR/Cas系统[48-49]。piRNA生成是ERVs与宿主共进化的结果,家鸡ERVs转录生成的一类piRNA在原鸡中并无表达[50]。ERV转录的RNA增加,导致细胞溶质中核酸的堆积,被核酸传感器识别,诱导细胞产生抗病毒和炎症反应的双链RNA和cDNA[51]。Hu等[52]发现miR-155抑制了病毒感染过程中env的过表达,从而激发自然免疫。

4 ERVs的宿主致病性和生产性能影响

ERVs主要定位于异染色质,被表观遗传沉默而保持稳定状态,在人体正常组织中没有转录活性,但在癌变细胞、神经性病变组织中,有不正常或不受控制的ERVs表达[53-55]。Montesion等[56]对8个HERVs的LTR区序列多态性及其肿瘤细胞转录活性进行比较分析,发现整合位点附近启动子的通读引发ERVs的转录,70%的乳腺肿瘤细胞中ERVs具有转录活性,并且其转录活性与LTR序列转录因子结合性的改变一致,特别是HOX-PBX、RFX3等转录因子结合位点的形成。说明整合位点、细胞环境对ERVs转录表达的重要性,LTR的序列结构与宿主存在共进化关系。另外,外源病毒生成病毒蛋白增加转录因子与LTR的结合性,反式激活ERVs的表达,加重病变[41, 57]

家鸡[58]、猪[59]ERVs整合较晚,仍具备转录活性和感染性,并能与宿主基因或外源病毒重组形成新的病毒。ALV-E与内源逆转录病毒EAV-HP整合形成ALV-J亚型,导致肉鸡骨髓性白血病、蛋鸡广谱性肿瘤[60]。MDV疫苗注射能诱导处于沉默状态的ALV-E1、ALV-E21的表达,诱导淋巴瘤的较高发生率[61]。ALV-E的表达不仅能重组形成新的病毒,还引起家禽肌肉生长率和产蛋率等生产性能的下降。含有产生完整病毒粒子ALV-E10、ALV-E19或ALV-E12的来航鸡造成年产蛋率降低8%~ 9%,蛋重降低2.2 g[62]。Ka等[63]对经过45代选育的高体重和低体重白洛克鸡cDNA芯片分析,发现低体重比高体重具有更多的ALV-E整合位点和表达,并且ALV-E高表达与母鸡低体重存在保守的相关关系。Chen等[64]对18种ALVEs在我国地方鸡、商品蛋鸡、肉鸡等8个品种中的群体分布检测发现,ALVEs的整合多态性与家鸡的选育方向和选育程度存在关联。ERVs在越南猪的拷贝数低于西方猪,并存在品种特异性[65]。Chiu和Vanderwoude[66]发现家猫ERVs通过直接或间接的基因调控对外源病毒感染具有宿主保护作用,表明内源逆转录病毒的进化效应。

5 展望

ERVs与宿主进化发育关系研究的难点之一在于:宿主基因组中存在高相似度的ERVs多拷贝序列。虽然测序技术的提高,增加了ERVs定位和序列检测的准确度,但开展ERVs活性、与邻近基因的表达关系、表观调控和染色质状态等研究首先要明确ERVs的特异性。ERVs作为宿主基因组序列的整合成分,与宿主基因组的长期进化过程中被宿主征用为自身功能,参与免疫调节抑制外源病毒感染、对宿主的健康、疾病等多种生物过程发挥重要作用。探究ERVs在宿主基因组的进化及其调控表达对外源病毒的防控具有指导意义,通过PCR或RFLP技术对宿主ERVs进行检测,利用基因敲除技术建立无ERVs的家鸡或家猪,对转基因鸡、猪器官移植、鸡胚疫苗或成纤维细胞制备具有重要意义。

参考文献
[1] LEE J, MUN S, KIM D H, et al. Chicken (Gallus gallus) endogenous retrovirus generates genomic variations in the chicken genome[J]. Mobile DNA, 2017, 8(1): 2. DOI: 10.1186/s13100-016-0085-5
[2] ADELSON D L, RAISON J M, EDGAR R C. Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome[J]. Proc Natl Acad Sci U S A, 2009, 106(31): 12855–12860. DOI: 10.1073/pnas.0901282106
[3] DAVID J G. Endogenous retroviruses in the human genome sequence[J]. Genome Biol, 2001, 2(6): reviews1017.
[4] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520–562.
[5] UEDA M T, KRYUKOV K, MITSUHASHI S, et al. Comprehensive genomic analysis reveals dynamic evolution of endogenous retroviruses that code for retroviral-like protein domains[J]. Mob DNA, 2020, 11(1): 29. DOI: 10.1186/s13100-020-00224-w
[6] GIFFORD R, TRISTEM M. The evolution, distribution and diversity of endogenous retroviruses[J]. Virus Genes, 2003, 26(3): 291–315. DOI: 10.1023/A:1024455415443
[7] RANNAMÄE E, SAARMA U, ÄRMPALU-IDVAND A, et al. Retroviral analysis reveals the ancient origin of Kihnu native sheep in Estonia: implications for breed conservation[J]. Sci Rep, 2020, 10(1): 17340. DOI: 10.1038/s41598-020-74415-z
[8] GIFFORD W D, PFAFF S L, MACFARLAN T S. Transposable elements as genetic regulatory substrates in early development[J]. Trends Cell Biol, 2013, 23(5): 218–226. DOI: 10.1016/j.tcb.2013.01.001
[9] FUKUDA K, SHINKAI Y. SETDB1-mediated silencing of retroelements[J]. Viruses, 2020, 12(6): 596. DOI: 10.3390/v12060596
[10] CARPENTER M A, LI M, RATHORE A, et al. Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A[J]. J Biol Chem, 2012, 287(41): 34801–34808. DOI: 10.1074/jbc.M112.385161
[11] HU X M, ZHU W Q, CHEN S H, et al. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses[J]. Arch Virol, 2017, 162(1): 89–101. DOI: 10.1007/s00705-016-3086-2
[12] KUSE K, ITO J, MIYAKE A, et al. Existence of two distinct infectious endogenous retroviruses in domestic cats and their different strategies for adaptation to transcriptional regulation[J]. J Virol, 2016, 90(20): 9029–9045. DOI: 10.1128/JVI.00716-16
[13] CHUNG H C, NGUYEN V G, MOON H J, et al. Regulation of porcine endogenous retrovirus by dual LTR1+2 (Long Terminal Region) miRNA in primary porcine kidney cells[J]. J Vet Sci, 2019, 20(5): e50. DOI: 10.4142/jvs.2019.20.e50
[14] GEIS F K, GOFF S P. Silencing and transcriptional regulation of endogenous retroviruses: an overview[J]. Viruses, 2020, 12(8): 884. DOI: 10.3390/v12080884
[15] OLSON E D, MUSIER-FORSYTH K. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly[J]. Semin Cell Dev Biol, 2019, 86: 129–139. DOI: 10.1016/j.semcdb.2018.03.015
[16] SU Q, LI Y, CUI Z Z, et al. The emerging novel avian leukosis virus with mutations in the pol gene shows competitive replication advantages both in vivo and in vitro[J]. Emerg Microbes Infect, 2018, 7(1): 117.
[17] BERTOZZI T M, ELMER J L, MACFARLAN T S, et al. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability[J]. Proc Natl Acad Sci U S A, 2020, 117(3): 31290–31300.
[18] TSUSAKA T, FUKUDA K, SHIMURA C, et al. The fibronectin type-Ⅲ (FNⅢ) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex[J]. Epigenetics Chromatin, 2020, 13(1): 52. DOI: 10.1186/s13072-020-00374-4
[19] ELMER J L, FERGUSON-SMITH A C. Strain-specific epigenetic regulation of endogenous retroviruses: the role of trans-acting modifiers[J]. Viruses, 2020, 12(8): 810. DOI: 10.3390/v12080810
[20] MASON A S, LUND A R, HOCKING P M, et al. Identification and characterisation of endogenous Avian Leukosis Virus subgroup E (ALVE) insertions in chicken whole genome sequencing data[J]. Mob DNA, 2020, 11(1): 22. DOI: 10.1186/s13100-020-00216-w
[21] MASON A S, MIEDZINSKA K, KEBEDE A, et al. Diversity of endogenous avian leukosis virus subgroup E (ALVE) insertions in indigenous chickens[J]. Genet Sel Evol, 2020, 52(1): 29. DOI: 10.1186/s12711-020-00548-4
[22] ROWE H M, TRONO D. Dynamic control of endogenous retroviruses during development[J]. Virology, 2011, 411(2): 273–287. DOI: 10.1016/j.virol.2010.12.007
[23] WANG Z P, QU L J, YAO J F, et al. An EAV-HP insertion in 5' flanking region of SLCO1B3 causes blue eggshell in the chicken[J]. PLoS Genet, 2013, 9(1): e1003183. DOI: 10.1371/journal.pgen.1003183
[24] CHANG C M, FURET J P, COVILLE J L, et al. Quantitative effects of an intronic retroviral insertion on the transcription of the tyrosinase gene in recessive white chickens[J]. Anim Genet, 2007, 38(2): 162–167. DOI: 10.1111/j.1365-2052.2007.01581.x
[25] CHANG C M, COVILLE J L, COQUERELLE G, et al. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens[J]. BMC Genomics, 2006, 7(1): 19. DOI: 10.1186/1471-2164-7-19
[26] MALFAVON-BORJA R, FESCHOTTE C. Fighting fire with fire: endogenous retrovirus envelopes as restriction factors[J]. J Virol, 2015, 89(8): 4047–4050. DOI: 10.1128/JVI.03653-14
[27] LUGANINI A, GRIBAUDO G. Retroviruses of the human virobiota: the recycling of viral genes and the resulting advantages for human hosts during evolution[J]. Front Microbiol, 2020, 11: 1140. DOI: 10.3389/fmicb.2020.01140
[28] MEYER T J, ROSENKRANTZ J L, CARBONE L, et al. Endogenous retroviruses: with us and against us[J]. Front Chem, 2017, 5: 23.
[29] GROW E J, FLYNN R A, CHAVEZ S L, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells[J]. Nature, 2015, 522(7555): 221–225. DOI: 10.1038/nature14308
[30] LU X Y, SACHS F, RAMSAY L A, et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity[J]. Nat Struct Mol Biol, 2014, 21(4): 423–425. DOI: 10.1038/nsmb.2799
[31] WRAGG D, MWACHARO J M, ALCALDE J A, et al. Endogenous retrovirus EAV-HP linked to blue egg phenotype in Mapuche fowl[J]. PLoS One, 2013, 8(8): e71393. DOI: 10.1371/journal.pone.0071393
[32] LI Z J, REN T H, LI W Y, et al. SLCO1B3 association between the methylation statuses at CpG sites in the promoter region of the RNA expression and color change in blue eggshells in Lushi chickens[J]. Front Genet, 2019, 10: 161. DOI: 10.3389/fgene.2019.00161
[33] LI J Y, DAVIS B W, JERN P, et al. Characterization of the endogenous retrovirus insertion in CYP19A1 associated with henny feathering in chicken[J]. Mob DNA, 2019, 10: 38. DOI: 10.1186/s13100-019-0181-4
[34] ZHANG X L, WANG H, ZHANG L C, et al. Analysis of a genetic factors contributing to feathering phenotype in chickens[J]. Poult Sci, 2018, 97(10): 3405–3413. DOI: 10.3382/ps/pey231
[35] TANAVE A, IMAI Y, KOIDE T. Nested retrotransposition in the east Asian mouse genome causes the classical nonagouti mutation[J]. Commun Biol, 2019, 2(1): 283. DOI: 10.1038/s42003-019-0539-7
[36] MURPHY S C, EVANS J M, TSAI K L, et al. Length variations within the Merle retrotransposon of canine PMEL: correlating genotype with phenotype[J]. Mob DNA, 2018, 9(1): 26. DOI: 10.1186/s13100-018-0131-6
[37] DAVID V A, MENOTTI-RAYMOND M, WALLACE A C, et al. Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats[J]. G3 (Bethesda), 2014, 4(10): 1881–1891. DOI: 10.1534/g3.114.013425
[38] KHAZAEE E, FARZANEH N, MIRSHOKRAEI P, et al. Expression of endogenous retroviruses in pre-implantation stages of bovine embryo[J]. Reprod Domest Anim, 2018, 53(6): 1405–1414. DOI: 10.1111/rda.13269
[39] GÖKE J, LU X Y, CHAN Y S, et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells[J]. Cell Stem Cell, 2015, 16(2): 135–141. DOI: 10.1016/j.stem.2015.01.005
[40] NGO M H, ARNAL M, SUMI R, et al. Tracking the fate of endogenous retrovirus segregation in wild and domestic cats[J]. J Virol, 2019, 93(24): e01324–19.
[41] KASSIOTIS G, STOYE J P. Immune responses to endogenous retroelements: taking the bad with the good[J]. Nat Rev Immunol, 2016, 16(4): 207–219. DOI: 10.1038/nri.2016.27
[42] TAI A K, LIN M, CHANG F, et al. Murine Vβ3+ and Vβ7+ T cell subsets are specific targets for the HERV-K18 Env superantigen[J]. J Immunol, 2006, 177(5): 3178–3184. DOI: 10.4049/jimmunol.177.5.3178
[43] FRANK J A, FESCHOTTE C. Co-option of endogenous viral sequences for host cell function[J]. Curr Opin Virol, 2017, 25: 81–89. DOI: 10.1016/j.coviro.2017.07.021
[44] BEYER U, MOLL-ROCEK J, MOLL U M, et al. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes[J]. Proc Natl Acad Sci U S A, 2011, 108(9): 3624–3629. DOI: 10.1073/pnas.1016201108
[45] SAKASHITA A, MAEZAWA S, TAKAHASHI K, et al. Endogenous retroviruses drive species-specific germline transcriptomes in mammals[J]. Nat Struct Mol Biol, 2020, 27(10): 967–977. DOI: 10.1038/s41594-020-0487-4
[46] MICHAELA K, ALGHAMDI F, RACZ M, et al. The impact of p53 on the early stage replication of retrovirus[J]. Virol J, 2017, 14(1): 151. DOI: 10.1186/s12985-017-0820-7
[47] CHEN S H, HU X M, CUI I H, et al. An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1[J]. Antivir Res, 2019, 170: 104571. DOI: 10.1016/j.antiviral.2019.104571
[48] PARRISH N F, FUJINO K, SHIROMOTO Y, et al. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals[J]. RNA, 2015, 21(10): 1691–1703. DOI: 10.1261/rna.052092.115
[49] KELLEHER E S, BARBASH D A. Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense[J]. Mol Biol Evol, 2013, 30(8): 1816–1829. DOI: 10.1093/molbev/mst081
[50] SUN Y H, XIE L H, ZHUO X Y, et al. Domestic chickens activate a piRNA defense against avian leukosis virus[J]. eLife, 2017, 6: e24695.
[51] CHIAPPINELLI K B, STRISSEL P L, DESRICHARD A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses[J]. Cell, 2015, 162(5): 974–986.
[52] HU X M, ZHU W Q, CHEN S H, et al. Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155[J]. Arch Virol, 2016, 161(6): 1623–1632. DOI: 10.1007/s00705-016-2833-8
[53] BANNERT N, HOFMANN H, BLOCK A, et al. HERVs new role in cancer: from accused perpetrators to cheerful protectors[J]. Front Microbiol, 2018, 9: 178.
[54] DE CUBAS A A, DUNKER W, ZANINOVICH A, et al. DNA hypomethylation promotes transposable element expression and activation of immune signaling in renal cell cancer[J]. JCI Insight, 2020, 5(11): e137569.
[55] MUSTELIN T, UKADIKE K C. How retroviruses and retrotransposons in our genome may contribute to autoimmunity in rheumatological conditions[J]. Front Immunol, 2020, 11: 593891.
[56] MONTESION M, WILLIAMS Z H, SUBRAMANIAN R P, et al. Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites[J]. Retrovirology, 2018, 15(1): 57.
[57] DOLCI M, FAVERO C, TOUMI W, et al. Human endogenous retroviruses long terminal repeat methylation, transcription, and protein expression in human colon cancer[J]. Front Oncol, 2020, 10: 569015. DOI: 10.3389/fonc.2020.569015
[58] SACCO M A, CROSETTI A. GGERV20, a recently integrated, segregating endogenous retrovirus in Gallus gallus[J]. J Gen Virol, 2020, 101(3): 299–308.
[59] KRVGER L, STILLFRIED M, PRINZ C, et al. Copy number and prevalence of porcine endogenous retroviruses (PERVs) in German wild boars[J]. Viruses, 2020, 12(4): 419.
[60] VENUGOPAL K. Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses[J]. Res Vet Sci, 1999, 67(2): 113–119.
[61] MAYS J K, BLACK-PYRKOSZ A, MANSOUR T, et al. Endogenous avian leukosis virus in combination with serotype 2 marek's disease virus significantly boosted the incidence of lymphoid leukosis-like bursal lymphomas in susceptible chickens[J]. J Virol, 2019, 93(23): e00861–19.
[62] GAVORA J S, KUHNLEIN U, CRITTENDEN L B, et al. Endogenous viral genes: association with reduced egg production rate and egg size in White Leghorns[J]. Poult Sci, 1991, 70(3): 618–623.
[63] KA S, KERJE S, BORNOLD L, et al. Proviral integrations and expression of endogenous avian leucosis virus during long term selection for high and low body weight in two chicken lines[J]. Retrovirology, 2009, 6(1): 68.
[64] CHEN W G, QU H, LI C Y, et al. Polymorphism of avian leukosis virus subgroup E loci showing selective footprints in chicken[J]. Biochem Genet, 2014, 52(11-12): 524–537.
[65] ISHIHARA S, DANG-NGUYEN T Q, KIKUCHI K, et al. Characteristic features of porcine endogenous retroviruses in Vietnamese native pigs[J]. Anim Sci J, 2020, 91(1): e13336.
[66] CHIU E S, VANDEWOUDE S. Presence of endogenous viral elements negatively correlates with feline leukemia virus susceptibility in puma and domestic cat cells[J]. J Virol, 2020, 94(21): e01274–20.
(编辑  白永平)